//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests
// This test is super slow, in particular with msan or tsan. In order to avoid timeouts and to
// spend less time waiting for this particular test to complete we compile with optimizations.
// ADDITIONAL_COMPILE_FLAGS(msan): -O1
// ADDITIONAL_COMPILE_FLAGS(tsan): -O1
// FIXME: This and other tests fail under GCC with optimizations enabled.
// More investigation is needed, but it appears that GCC is performing more constant folding.
// <random>
// template<class IntType = int>
// class negative_binomial_distribution
// template<class _URNG> result_type operator()(_URNG& g);
#include <random>
#include <cassert>
#include <cmath>
#include <numeric>
#include <vector>
#include "test_macros.h"
template <class T>
T sqr(T x) {
return x * x;
}
template <class T>
void test1() {
typedef std::negative_binomial_distribution<T> D;
typedef std::minstd_rand G;
G g;
D d(5, .25);
const int N = 1000000;
std::vector<typename D::result_type> u;
for (int i = 0; i < N; ++i)
{
typename D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
}
template <class T>
void test2() {
typedef std::negative_binomial_distribution<T> D;
typedef std::mt19937 G;
G g;
D d(30, .03125);
const int N = 1000000;
std::vector<typename D::result_type> u;
for (int i = 0; i < N; ++i)
{
typename D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.02);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.1);
}
template <class T>
void test3() {
typedef std::negative_binomial_distribution<T> D;
typedef std::mt19937 G;
G g;
D d(40, .25);
const int N = 1000000;
std::vector<typename D::result_type> u;
for (int i = 0; i < N; ++i)
{
typename D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.02);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.08);
}
template <class T>
void test4() {
typedef std::negative_binomial_distribution<T> D;
typedef std::mt19937 G;
G g;
D d(40, 1);
const int N = 1000;
std::vector<typename D::result_type> u;
for (int i = 0; i < N; ++i)
{
typename D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(mean == x_mean);
assert(var == x_var);
// assert(skew == x_skew);
(void)skew; (void)x_skew;
// assert(kurtosis == x_kurtosis);
(void)kurtosis; (void)x_kurtosis;
}
template <class T>
void test5() {
typedef std::negative_binomial_distribution<T> D;
typedef std::mt19937 G;
G g;
D d(127, 0.5);
const int N = 1000000;
std::vector<typename D::result_type> u;
for (int i = 0; i < N; ++i)
{
typename D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.02);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3);
}
template <class T>
void test6() {
typedef std::negative_binomial_distribution<T> D;
typedef std::mt19937 G;
G g;
D d(1, 0.05);
const int N = 1000000;
std::vector<typename D::result_type> u;
for (int i = 0; i < N; ++i)
{
typename D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
}
template <class T>
void tests() {
test1<T>();
test2<T>();
test3<T>();
test4<T>();
test5<T>();
test6<T>();
}
int main(int, char**) {
tests<short>();
tests<int>();
tests<long>();
tests<long long>();
tests<unsigned short>();
tests<unsigned int>();
tests<unsigned long>();
tests<unsigned long long>();
#if defined(_LIBCPP_VERSION) // extension
// TODO: std::negative_binomial_distribution currently doesn't work reliably with small types.
// tests<int8_t>();
// tests<uint8_t>();
#if !defined(TEST_HAS_NO_INT128)
tests<__int128_t>();
tests<__uint128_t>();
#endif
#endif
return 0;
}