//==------ riscv_vector_common.td - RISC-V V-ext builtin class ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines RVV builtin base class for RISC-V V-extension.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction definitions
//===----------------------------------------------------------------------===//
// Each record of the class RVVBuiltin defines a collection of builtins (i.e.
// "def vadd : RVVBuiltin" will be used to define things like "vadd_vv_i32m1",
// "vadd_vv_i32m2", etc).
//
// The elements of this collection are defined by an instantiation process the
// range of which is specified by the cross product of the LMUL attribute and
// every element in the attribute TypeRange. By default builtins have LMUL = [1,
// 2, 4, 8, 1/2, 1/4, 1/8] so the process is repeated 7 times. In tablegen we
// use the Log2LMUL [0, 1, 2, 3, -1, -2, -3] to represent the LMUL.
//
// LMUL represents the fact that the types of values used by that builtin are
// values generated by instructions that are executed under that LMUL. However,
// this does not mean the builtin is necessarily lowered into an instruction
// that executes under the specified LMUL. An example where this happens are
// loads and stores of masks. A mask like `vbool8_t` can be generated, for
// instance, by comparing two `__rvv_int8m1_t` (this is LMUL=1) or comparing two
// `__rvv_int16m2_t` (this is LMUL=2). The actual load or store, however, will
// be performed under LMUL=1 because mask registers are not grouped.
//
// TypeRange is a non-empty sequence of basic types:
//
// c: int8_t (i8)
// s: int16_t (i16)
// i: int32_t (i32)
// l: int64_t (i64)
// x: float16_t (half)
// f: float32_t (float)
// d: float64_t (double)
// y: bfloat16_t (bfloat16)
//
// This way, given an LMUL, a record with a TypeRange "sil" will cause the
// definition of 3 builtins. Each type "t" in the TypeRange (in this example
// they are int16_t, int32_t, int64_t) is used as a parameter that drives the
// definition of that particular builtin (for the given LMUL).
//
// During the instantiation, types can be transformed or modified using type
// transformers. Given a type "t" the following primitive type transformers can
// be applied to it to yield another type.
//
// e: type of "t" as is (identity)
// v: computes a vector type whose element type is "t" for the current LMUL
// w: computes a vector type identical to what 'v' computes except for the
// element type which is twice as wide as the element type of 'v'
// q: computes a vector type identical to what 'v' computes except for the
// element type which is four times as wide as the element type of 'v'
// o: computes a vector type identical to what 'v' computes except for the
// element type which is eight times as wide as the element type of 'v'
// m: computes a vector type identical to what 'v' computes except for the
// element type which is bool
// 0: void type, ignores "t"
// z: size_t, ignores "t"
// t: ptrdiff_t, ignores "t"
// u: unsigned long, ignores "t"
// l: long, ignores "t"
// f: float32, ignores "t"
//
// So for instance if t is "i", i.e. int, then "e" will yield int again. "v"
// will yield an RVV vector type (assume LMUL=1), so __rvv_int32m1_t.
// Accordingly "w" would yield __rvv_int64m2_t.
//
// A type transformer can be prefixed by other non-primitive type transformers.
//
// P: constructs a pointer to the current type
// C: adds const to the type
// K: requires the integer type to be a constant expression
// U: given an integer type or vector type, computes its unsigned variant
// I: given a vector type, compute the vector type with integer type
// elements of the same width
// F: given a vector type, compute the vector type with floating-point type
// elements of the same width
// S: given a vector type, computes its equivalent one for LMUL=1. This is a
// no-op if the vector was already LMUL=1
// (Log2EEW:Value): Log2EEW value could be 3/4/5/6 (8/16/32/64), given a
// vector type (SEW and LMUL) and EEW (8/16/32/64), computes its
// equivalent integer vector type with EEW and corresponding ELMUL (elmul =
// (eew/sew) * lmul). For example, vector type is __rvv_float16m4
// (SEW=16, LMUL=4) and Log2EEW is 3 (EEW=8), and then equivalent vector
// type is __rvv_uint8m2_t (elmul=(8/16)*4 = 2). Ignore to define a new
// builtins if its equivalent type has illegal lmul.
// (FixedSEW:Value): Given a vector type (SEW and LMUL), and computes another
// vector type which only changed SEW as given value. Ignore to define a new
// builtin if its equivalent type has illegal lmul or the SEW does not changed.
// (SFixedLog2LMUL:Value): Smaller Fixed Log2LMUL. Given a vector type (SEW
// and LMUL), and computes another vector type which only changed LMUL as
// given value. The new LMUL should be smaller than the old one. Ignore to
// define a new builtin if its equivalent type has illegal lmul.
// (SEFixedLog2LMUL:Value): Smaller or Equal Fixed Log2LMUL. Given a vector
// type (SEW and LMUL), and computes another vector type which only
// changed LMUL as given value. The new LMUL should be smaller than or
// equal to the old one. Ignore to define a new builtin if its equivalent
// type has illegal lmul.
// (LFixedLog2LMUL:Value): Larger Fixed Log2LMUL. Given a vector type (SEW
// and LMUL), and computes another vector type which only changed LMUL as
// given value. The new LMUL should be larger than the old one. Ignore to
// define a new builtin if its equivalent type has illegal lmul.
//
// Following with the example above, if t is "i", then "Ue" will yield unsigned
// int and "Fv" will yield __rvv_float32m1_t (again assuming LMUL=1), Fw would
// yield __rvv_float64m2_t, etc.
//
// Each builtin is then defined by applying each type in TypeRange against the
// sequence of type transformers described in Suffix and Prototype.
//
// The name of the builtin is defined by the Name attribute (which defaults to
// the name of the class) appended (separated with an underscore) the Suffix
// attribute. For instance with Name="foo", Suffix = "v" and TypeRange = "il",
// the builtin generated will be __builtin_rvv_foo_i32m1 and
// __builtin_rvv_foo_i64m1 (under LMUL=1). If Suffix contains more than one
// type transformer (say "vv") each of the types is separated with an
// underscore as in "__builtin_rvv_foo_i32m1_i32m1".
//
// The C/C++ prototype of the builtin is defined by the Prototype attribute.
// Prototype is a non-empty sequence of type transformers, the first of which
// is the return type of the builtin and the rest are the parameters of the
// builtin, in order. For instance if Prototype is "wvv" and TypeRange is "si"
// a first builtin will have type
// __rvv_int32m2_t (__rvv_int16m1_t, __rvv_int16m1_t) and the second builtin
// will have type __rvv_int64m2_t (__rvv_int32m1_t, __rvv_int32m1_t) (again
// under LMUL=1).
//
// There are a number of attributes that are used to constraint the number and
// shape of the builtins generated. Refer to the comments below for them.
class PolicyScheme<int val>{
int Value = val;
}
def NonePolicy : PolicyScheme<0>;
def HasPassthruOperand : PolicyScheme<1>;
def HasPolicyOperand : PolicyScheme<2>;
class RVVBuiltin<string suffix, string prototype, string type_range,
string overloaded_suffix = ""> {
// Base name that will be prepended in __builtin_rvv_ and appended the
// computed Suffix.
string Name = NAME;
// If not empty, each instantiated builtin will have this appended after an
// underscore (_). It is instantiated like Prototype.
string Suffix = suffix;
// If empty, default OverloadedName is sub string of `Name` which end of first
// '_'. For example, the default overloaded name is `vadd` for Name `vadd_vv`.
// It's used for describe some special naming cases.
string OverloadedName = "";
// If not empty, each OverloadedName will have this appended after an
// underscore (_). It is instantiated like Prototype.
string OverloadedSuffix = overloaded_suffix;
// The different variants of the builtin, parameterised with a type.
string TypeRange = type_range;
// We use each type described in TypeRange and LMUL with prototype to
// instantiate a specific element of the set of builtins being defined.
// Prototype attribute defines the C/C++ prototype of the builtin. It is a
// non-empty sequence of type transformers, the first of which is the return
// type of the builtin and the rest are the parameters of the builtin, in
// order. For instance if Prototype is "wvv", TypeRange is "si" and LMUL=1, a
// first builtin will have type
// __rvv_int32m2_t (__rvv_int16m1_t, __rvv_int16m1_t), and the second builtin
// will have type __rvv_int64m2_t (__rvv_int32m1_t, __rvv_int32m1_t).
string Prototype = prototype;
// This builtin has a masked form.
bit HasMasked = true;
// If HasMasked, this flag states that this builtin has a maskedoff operand. It
// is always the first operand in builtin and IR intrinsic.
bit HasMaskedOffOperand = true;
// This builtin has a granted vector length parameter.
bit HasVL = true;
// The policy scheme for masked intrinsic IR.
// It could be NonePolicy or HasPolicyOperand.
// HasPolicyOperand: Has a policy operand. 0 is tail and mask undisturbed, 1 is
// tail agnostic, 2 is mask undisturbed, and 3 is tail and mask agnostic. The
// policy operand is located at the last position.
PolicyScheme MaskedPolicyScheme = HasPolicyOperand;
// The policy scheme for unmasked intrinsic IR.
// It could be NonePolicy, HasPassthruOperand or HasPolicyOperand.
// HasPassthruOperand: Has a passthru operand to decide tail policy. If it is
// poison, tail policy is tail agnostic, otherwise policy is tail undisturbed.
// HasPolicyOperand: Has a policy operand. 1 is tail agnostic and 0 is tail
// undisturbed.
PolicyScheme UnMaskedPolicyScheme = NonePolicy;
// This builtin support tail agnostic and undisturbed policy.
bit HasTailPolicy = true;
// This builtin support mask agnostic and undisturbed policy.
bit HasMaskPolicy = true;
// This builtin prototype with TA or TAMA policy could not support overloading
// API. Other policy intrinsic functions would support overloading API with
// suffix `_tu`, `tumu`, `tuma`, `tamu` and `tama`.
bit SupportOverloading = true;
// This builtin is valid for the given Log2LMULs.
list<int> Log2LMUL = [0, 1, 2, 3, -1, -2, -3];
// Manual code in clang codegen riscv_vector_builtin_cg.inc
code ManualCodegen = [{}];
// When emit the automatic clang codegen, it describes what types we have to use
// to obtain the specific LLVM intrinsic. -1 means the return type, otherwise,
// k >= 0 meaning the k-th operand (counting from zero) of the codegen'd
// parameter of the unmasked version. k can't be the mask operand's position.
list<int> IntrinsicTypes = [];
// If these names are not empty, this is the ID of the LLVM intrinsic
// we want to lower to.
string IRName = NAME;
// If HasMasked, this is the ID of the LLVM intrinsic we want to lower to.
string MaskedIRName = NAME #"_mask";
// Use clang_builtin_alias to save the number of builtins.
bit HasBuiltinAlias = true;
// Features required to enable for this builtin.
list<string> RequiredFeatures = [];
// Number of fields for Load/Store Segment instructions.
int NF = 1;
// Set to true if the builtin is associated with tuple types.
bit IsTuple = false;
// Set to true if the builtin has a parameter that models floating-point
// rounding mode control
bit HasFRMRoundModeOp = false;
}
// This is the code emitted in the header.
class RVVHeader {
code HeaderCode;
}
//===----------------------------------------------------------------------===//
// Basic classes with automatic codegen.
//===----------------------------------------------------------------------===//
class RVVOutBuiltin<string suffix, string prototype, string type_range>
: RVVBuiltin<suffix, prototype, type_range> {
let IntrinsicTypes = [-1];
}
class RVVOp0Builtin<string suffix, string prototype, string type_range>
: RVVBuiltin<suffix, prototype, type_range> {
let IntrinsicTypes = [0];
}
class RVVOutOp1Builtin<string suffix, string prototype, string type_range>
: RVVBuiltin<suffix, prototype, type_range> {
let IntrinsicTypes = [-1, 1];
}
class RVVOutOp0Op1Builtin<string suffix, string prototype, string type_range>
: RVVBuiltin<suffix, prototype, type_range> {
let IntrinsicTypes = [-1, 0, 1];
}
multiclass RVVBuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes,
list<int> intrinsic_types> {
let IRName = intrinsic_name, MaskedIRName = intrinsic_name # "_mask",
IntrinsicTypes = intrinsic_types in {
foreach s_p = suffixes_prototypes in {
let Name = NAME # "_" # s_p[0] in {
defvar suffix = s_p[1];
defvar prototype = s_p[2];
def : RVVBuiltin<suffix, prototype, type_range>;
}
}
}
}
// IntrinsicTypes is output, op0, op1 [-1, 0, 1]
multiclass RVVOutOp0Op1BuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes>
: RVVBuiltinSet<intrinsic_name, type_range, suffixes_prototypes,
[-1, 0, 1]>;
multiclass RVVOutBuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes>
: RVVBuiltinSet<intrinsic_name, type_range, suffixes_prototypes, [-1]>;
multiclass RVVOp0BuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes>
: RVVBuiltinSet<intrinsic_name, type_range, suffixes_prototypes, [0]>;
// IntrinsicTypes is output, op1 [-1, 0]
multiclass RVVOutOp0BuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes>
: RVVBuiltinSet<intrinsic_name, type_range, suffixes_prototypes, [-1, 0]>;
// IntrinsicTypes is output, op1 [-1, 1]
multiclass RVVOutOp1BuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes>
: RVVBuiltinSet<intrinsic_name, type_range, suffixes_prototypes, [-1, 1]>;
multiclass RVVOp0Op1BuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes>
: RVVBuiltinSet<intrinsic_name, type_range, suffixes_prototypes, [0, 1]>;
multiclass RVVOutOp1Op2BuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes>
: RVVBuiltinSet<intrinsic_name, type_range, suffixes_prototypes, [-1, 1, 2]>;
// IntrinsicTypes is output, op2 [-1, 2]
multiclass RVVOutOp2BuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes>
: RVVBuiltinSet<intrinsic_name, type_range, suffixes_prototypes, [-1, 2]>;
multiclass RVVSignedBinBuiltinSet
: RVVOutOp1BuiltinSet<NAME, "csil",
[["vv", "v", "vvv"],
["vx", "v", "vve"]]>;
multiclass RVVSignedBinBuiltinSetRoundingMode
: RVVOutOp1BuiltinSet<NAME, "csil",
[["vv", "v", "vvvu"],
["vx", "v", "vveu"]]>;
multiclass RVVUnsignedBinBuiltinSet
: RVVOutOp1BuiltinSet<NAME, "csil",
[["vv", "Uv", "UvUvUv"],
["vx", "Uv", "UvUvUe"]]>;
multiclass RVVUnsignedBinBuiltinSetRoundingMode
: RVVOutOp1BuiltinSet<NAME, "csil",
[["vv", "Uv", "UvUvUvu"],
["vx", "Uv", "UvUvUeu"]]>;
multiclass RVVIntBinBuiltinSet
: RVVSignedBinBuiltinSet,
RVVUnsignedBinBuiltinSet;
multiclass RVVInt64BinBuiltinSet
: RVVOutOp1BuiltinSet<NAME, "l",
[["vv", "v", "vvv"],
["vx", "v", "vve"]]>,
RVVOutOp1BuiltinSet<NAME, "l",
[["vv", "Uv", "UvUvUv"],
["vx", "Uv", "UvUvUe"]]>;
multiclass RVVSlideOneBuiltinSet
: RVVOutOp1BuiltinSet<NAME, "csil",
[["vx", "v", "vve"],
["vx", "Uv", "UvUvUe"]]>;
multiclass RVVSignedShiftBuiltinSet
: RVVOutOp1BuiltinSet<NAME, "csil",
[["vv", "v", "vvUv"],
["vx", "v", "vvz"]]>;
multiclass RVVSignedShiftBuiltinSetRoundingMode
: RVVOutOp1BuiltinSet<NAME, "csil",
[["vv", "v", "vvUvu"],
["vx", "v", "vvzu"]]>;
multiclass RVVUnsignedShiftBuiltinSet
: RVVOutOp1BuiltinSet<NAME, "csil",
[["vv", "Uv", "UvUvUv"],
["vx", "Uv", "UvUvz"]]>;
multiclass RVVUnsignedShiftBuiltinSetRoundingMode
: RVVOutOp1BuiltinSet<NAME, "csil",
[["vv", "Uv", "UvUvUvu"],
["vx", "Uv", "UvUvzu"]]>;
multiclass RVVShiftBuiltinSet
: RVVSignedShiftBuiltinSet,
RVVUnsignedShiftBuiltinSet;
let Log2LMUL = [-3, -2, -1, 0, 1, 2] in {
multiclass RVVSignedNShiftBuiltinSet
: RVVOutOp0Op1BuiltinSet<NAME, "csil",
[["wv", "v", "vwUv"],
["wx", "v", "vwz"]]>;
multiclass RVVSignedNShiftBuiltinSetRoundingMode
: RVVOutOp0Op1BuiltinSet<NAME, "csil",
[["wv", "v", "vwUvu"],
["wx", "v", "vwzu"]]>;
multiclass RVVUnsignedNShiftBuiltinSet
: RVVOutOp0Op1BuiltinSet<NAME, "csil",
[["wv", "Uv", "UvUwUv"],
["wx", "Uv", "UvUwz"]]>;
multiclass RVVUnsignedNShiftBuiltinSetRoundingMode
: RVVOutOp0Op1BuiltinSet<NAME, "csil",
[["wv", "Uv", "UvUwUvu"],
["wx", "Uv", "UvUwzu"]]>;
}
multiclass RVVCarryinBuiltinSet
: RVVOutOp1BuiltinSet<NAME, "csil",
[["vvm", "v", "vvvm"],
["vxm", "v", "vvem"],
["vvm", "Uv", "UvUvUvm"],
["vxm", "Uv", "UvUvUem"]]>;
multiclass RVVCarryOutInBuiltinSet<string intrinsic_name>
: RVVOp0Op1BuiltinSet<intrinsic_name, "csil",
[["vvm", "vm", "mvvm"],
["vxm", "vm", "mvem"],
["vvm", "Uvm", "mUvUvm"],
["vxm", "Uvm", "mUvUem"]]>;
multiclass RVVSignedMaskOutBuiltinSet
: RVVOp0Op1BuiltinSet<NAME, "csil",
[["vv", "vm", "mvv"],
["vx", "vm", "mve"]]>;
multiclass RVVUnsignedMaskOutBuiltinSet
: RVVOp0Op1BuiltinSet<NAME, "csil",
[["vv", "Uvm", "mUvUv"],
["vx", "Uvm", "mUvUe"]]>;
multiclass RVVIntMaskOutBuiltinSet
: RVVSignedMaskOutBuiltinSet,
RVVUnsignedMaskOutBuiltinSet;
class RVVIntExt<string intrinsic_name, string suffix, string prototype,
string type_range>
: RVVBuiltin<suffix, prototype, type_range> {
let IRName = intrinsic_name;
let MaskedIRName = intrinsic_name # "_mask";
let OverloadedName = NAME;
let IntrinsicTypes = [-1, 0];
}
let HasMaskedOffOperand = false in {
multiclass RVVIntTerBuiltinSet {
defm "" : RVVOutOp1BuiltinSet<NAME, "csil",
[["vv", "v", "vvvv"],
["vx", "v", "vvev"],
["vv", "Uv", "UvUvUvUv"],
["vx", "Uv", "UvUvUeUv"]]>;
}
multiclass RVVFloatingTerBuiltinSet {
defm "" : RVVOutOp1BuiltinSet<NAME, "xfd",
[["vv", "v", "vvvv"],
["vf", "v", "vvev"]]>;
}
multiclass RVVFloatingTerBuiltinSetRoundingMode {
defm "" : RVVOutOp1BuiltinSet<NAME, "xfd",
[["vv", "v", "vvvvu"],
["vf", "v", "vvevu"]]>;
}
}
let HasMaskedOffOperand = false, Log2LMUL = [-2, -1, 0, 1, 2] in {
multiclass RVVFloatingWidenTerBuiltinSet {
defm "" : RVVOutOp1Op2BuiltinSet<NAME, "xf",
[["vv", "w", "wwvv"],
["vf", "w", "wwev"]]>;
}
multiclass RVVFloatingWidenTerBuiltinSetRoundingMode {
defm "" : RVVOutOp1Op2BuiltinSet<NAME, "xf",
[["vv", "w", "wwvvu"],
["vf", "w", "wwevu"]]>;
}
}
multiclass RVVFloatingBinBuiltinSet
: RVVOutOp1BuiltinSet<NAME, "xfd",
[["vv", "v", "vvv"],
["vf", "v", "vve"]]>;
multiclass RVVFloatingBinBuiltinSetRoundingMode
: RVVOutOp1BuiltinSet<NAME, "xfd",
[["vv", "v", "vvvu"],
["vf", "v", "vveu"]]>;
multiclass RVVFloatingBinVFBuiltinSet
: RVVOutOp1BuiltinSet<NAME, "xfd",
[["vf", "v", "vve"]]>;
multiclass RVVFloatingBinVFBuiltinSetRoundingMode
: RVVOutOp1BuiltinSet<NAME, "xfd",
[["vf", "v", "vveu"]]>;
multiclass RVVFloatingMaskOutBuiltinSet
: RVVOp0Op1BuiltinSet<NAME, "xfd",
[["vv", "vm", "mvv"],
["vf", "vm", "mve"]]>;
multiclass RVVFloatingMaskOutVFBuiltinSet
: RVVOp0Op1BuiltinSet<NAME, "fd",
[["vf", "vm", "mve"]]>;
multiclass RVVConvBuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes> {
let Name = intrinsic_name,
IRName = intrinsic_name,
MaskedIRName = intrinsic_name # "_mask",
IntrinsicTypes = [-1, 0] in {
foreach s_p = suffixes_prototypes in {
defvar suffix = s_p[0];
defvar prototype = s_p[1];
def : RVVBuiltin<suffix, prototype, type_range>;
}
}
}
class RVVMaskBinBuiltin : RVVOutBuiltin<"m", "mmm", "c"> {
let Name = NAME # "_mm";
let HasMasked = false;
}
class RVVMaskUnaryBuiltin : RVVOutBuiltin<"m", "mm", "c"> {
let Name = NAME # "_m";
}
class RVVMaskNullaryBuiltin : RVVOutBuiltin<"m", "m", "c"> {
let Name = NAME # "_m";
let HasMasked = false;
let SupportOverloading = false;
}
class RVVMaskOp0Builtin<string prototype> : RVVOp0Builtin<"m", prototype, "c"> {
let Name = NAME # "_m";
let HasMaskedOffOperand = false;
}
let UnMaskedPolicyScheme = HasPolicyOperand,
HasMaskedOffOperand = false in {
multiclass RVVSlideUpBuiltinSet {
defm "" : RVVOutBuiltinSet<NAME, "csilxfd",
[["vx","v", "vvvz"]]>;
defm "" : RVVOutBuiltinSet<NAME, "csil",
[["vx","Uv", "UvUvUvz"]]>;
}
}
let UnMaskedPolicyScheme = HasPassthruOperand,
ManualCodegen = [{
if (IsMasked) {
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end() - 1);
if ((PolicyAttrs & RVV_VTA) && (PolicyAttrs & RVV_VMA))
Ops.insert(Ops.begin(), llvm::PoisonValue::get(ResultType));
} else {
if (PolicyAttrs & RVV_VTA)
Ops.insert(Ops.begin(), llvm::PoisonValue::get(ResultType));
}
Ops.push_back(ConstantInt::get(Ops.back()->getType(), PolicyAttrs));
IntrinsicTypes = {ResultType, Ops.back()->getType()};
}] in {
multiclass RVVSlideDownBuiltinSet {
defm "" : RVVOutBuiltinSet<NAME, "csilxfd",
[["vx","v", "vvz"]]>;
defm "" : RVVOutBuiltinSet<NAME, "csil",
[["vx","Uv", "UvUvz"]]>;
}
}
class RVVFloatingUnaryBuiltin<string builtin_suffix, string ir_suffix,
string prototype>
: RVVOutBuiltin<ir_suffix, prototype, "xfd"> {
let Name = NAME # "_" # builtin_suffix;
}
class RVVFloatingUnaryVVBuiltin : RVVFloatingUnaryBuiltin<"v", "v", "vv">;
class RVVConvBuiltin<string suffix, string prototype, string type_range,
string overloaded_name>
: RVVBuiltin<suffix, prototype, type_range> {
let IntrinsicTypes = [-1, 0];
let OverloadedName = overloaded_name;
}
class RVVConvToSignedBuiltin<string overloaded_name>
: RVVConvBuiltin<"Iv", "Ivv", "xfd", overloaded_name>;
class RVVConvToUnsignedBuiltin<string overloaded_name>
: RVVConvBuiltin<"Uv", "Uvv", "xfd", overloaded_name>;
class RVVConvToWidenSignedBuiltin<string overloaded_name>
: RVVConvBuiltin<"Iw", "Iwv", "xf", overloaded_name>;
class RVVConvToWidenUnsignedBuiltin<string overloaded_name>
: RVVConvBuiltin<"Uw", "Uwv", "xf", overloaded_name>;
class RVVConvToNarrowingSignedBuiltin<string overloaded_name>
: RVVConvBuiltin<"Iv", "IvFw", "si", overloaded_name>;
class RVVConvToNarrowingUnsignedBuiltin<string overloaded_name>
: RVVConvBuiltin<"Uv", "UvFw", "si", overloaded_name>;
let HasMaskedOffOperand = true in {
multiclass RVVSignedReductionBuiltin {
defm "" : RVVOutOp0BuiltinSet<NAME, "csil",
[["vs", "vSv", "SvvSv"]]>;
}
multiclass RVVUnsignedReductionBuiltin {
defm "" : RVVOutOp0BuiltinSet<NAME, "csil",
[["vs", "UvUSv", "USvUvUSv"]]>;
}
multiclass RVVFloatingReductionBuiltin {
defm "" : RVVOutOp0BuiltinSet<NAME, "xfd",
[["vs", "vSv", "SvvSv"]]>;
}
multiclass RVVFloatingReductionBuiltinRoundingMode {
defm "" : RVVOutOp0BuiltinSet<NAME, "xfd",
[["vs", "vSv", "SvvSvu"]]>;
}
multiclass RVVFloatingWidenReductionBuiltin {
defm "" : RVVOutOp0BuiltinSet<NAME, "xf",
[["vs", "vSw", "SwvSw"]]>;
}
multiclass RVVFloatingWidenReductionBuiltinRoundingMode {
defm "" : RVVOutOp0BuiltinSet<NAME, "xf",
[["vs", "vSw", "SwvSwu"]]>;
}
}
multiclass RVVIntReductionBuiltinSet
: RVVSignedReductionBuiltin,
RVVUnsignedReductionBuiltin;
// For widen operation which has different mangling name.
multiclass RVVWidenBuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes> {
let Log2LMUL = [-3, -2, -1, 0, 1, 2],
IRName = intrinsic_name, MaskedIRName = intrinsic_name # "_mask" in {
foreach s_p = suffixes_prototypes in {
let Name = NAME # "_" # s_p[0],
OverloadedName = NAME # "_" # s_p[0] in {
defvar suffix = s_p[1];
defvar prototype = s_p[2];
def : RVVOutOp0Op1Builtin<suffix, prototype, type_range>;
}
}
}
}
// For widen operation with widen operand which has different mangling name.
multiclass RVVWidenWOp0BuiltinSet<string intrinsic_name, string type_range,
list<list<string>> suffixes_prototypes> {
let Log2LMUL = [-3, -2, -1, 0, 1, 2],
IRName = intrinsic_name, MaskedIRName = intrinsic_name # "_mask" in {
foreach s_p = suffixes_prototypes in {
let Name = NAME # "_" # s_p[0],
OverloadedName = NAME # "_" # s_p[0] in {
defvar suffix = s_p[1];
defvar prototype = s_p[2];
def : RVVOutOp1Builtin<suffix, prototype, type_range>;
}
}
}
}
multiclass RVVSignedWidenBinBuiltinSet
: RVVWidenBuiltinSet<NAME, "csi",
[["vv", "w", "wvv"],
["vx", "w", "wve"]]>;
multiclass RVVSignedWidenOp0BinBuiltinSet
: RVVWidenWOp0BuiltinSet<NAME # "_w", "csi",
[["wv", "w", "wwv"],
["wx", "w", "wwe"]]>;
multiclass RVVUnsignedWidenBinBuiltinSet
: RVVWidenBuiltinSet<NAME, "csi",
[["vv", "Uw", "UwUvUv"],
["vx", "Uw", "UwUvUe"]]>;
multiclass RVVUnsignedWidenOp0BinBuiltinSet
: RVVWidenWOp0BuiltinSet<NAME # "_w", "csi",
[["wv", "Uw", "UwUwUv"],
["wx", "Uw", "UwUwUe"]]>;
multiclass RVVFloatingWidenBinBuiltinSet
: RVVWidenBuiltinSet<NAME, "xf",
[["vv", "w", "wvv"],
["vf", "w", "wve"]]>;
multiclass RVVFloatingWidenBinBuiltinSetRoundingMode
: RVVWidenBuiltinSet<NAME, "xf",
[["vv", "w", "wvvu"],
["vf", "w", "wveu"]]>;
multiclass RVVFloatingWidenOp0BinBuiltinSet
: RVVWidenWOp0BuiltinSet<NAME # "_w", "xf",
[["wv", "w", "wwv"],
["wf", "w", "wwe"]]>;
multiclass RVVFloatingWidenOp0BinBuiltinSetRoundingMode
: RVVWidenWOp0BuiltinSet<NAME # "_w", "xf",
[["wv", "w", "wwvu"],
["wf", "w", "wweu"]]>;