// RUN: %clang_cc1 -fsyntax-only -verify %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++98 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
// PR4607
template <class T> struct X {};
template <> struct X<char>
{
static char* g();
};
template <class T> struct X2 {};
template <class U>
struct X2<U*> {
static void f() {
X<U>::g();
}
};
void a(char *a, char *b) {X2<char*>::f();}
namespace WonkyAccess {
template<typename T>
struct X {
int m;
};
template<typename U>
class Y;
template<typename U>
struct Y<U*> : X<U> { };
template<>
struct Y<float*> : X<float> { };
int f(Y<int*> y, Y<float*> y2) {
return y.m + y2.m;
}
}
namespace rdar9169404 {
template<typename T, T N> struct X { };
template<bool C> struct X<bool, C> {
typedef int type;
};
X<bool, -1>::type value;
#if __cplusplus >= 201103L
// expected-error@-2 {{non-type template argument evaluates to -1, which cannot be narrowed to type 'bool'}}
#endif
}
namespace rdar39524996 {
template <typename T, typename U>
struct enable_if_not_same
{
typedef void type;
};
template <typename T>
struct enable_if_not_same<T, T>;
template <typename T>
struct Wrapper {
// Assertion triggered on trying to set twice the same partial specialization
// enable_if_not_same<int, int>
template <class U>
Wrapper(const Wrapper<U>& other,
typename enable_if_not_same<U, T>::type* = 0) {}
explicit Wrapper(int i) {}
};
template <class T>
struct Container {
// It is important that the struct has implicit copy and move constructors.
Container() : x() {}
template <class U>
Container(const Container<U>& other) : x(static_cast<T>(other.x)) {}
// Implicit constructors are member-wise, so the field triggers instantiation
// of T constructors and we instantiate all of them for overloading purposes.
T x;
};
void takesWrapperInContainer(const Container< Wrapper<int> >& c);
void test() {
// Type mismatch triggers initialization with conversion which requires
// implicit constructors to be instantiated.
Container<int> c;
takesWrapperInContainer(c);
}
}
namespace InstantiationDependent {
template<typename> using ignore = void; // expected-warning 0-1{{extension}}
template<typename T, typename = void> struct A {
static const bool specialized = false;
};
template<typename T> struct Hide { typedef void type; };
template<typename T> struct A<T, Hide<ignore<typename T::type> >::type> {
static const bool specialized = true;
};
struct X {};
struct Y { typedef int type; };
_Static_assert(!A<X>::specialized, "");
_Static_assert(A<Y>::specialized, "");
}
namespace IgnorePartialSubstitution {
template <typename... T> struct tuple {}; // expected-warning 0-1{{extension}}
template <typename> struct IsTuple {
enum { value = false };
};
template <typename... Us> struct IsTuple<tuple<Us...> > { // expected-warning 0-1{{extension}}
enum { value = true };
};
template <bool...> using ignore = void; // expected-warning 0-2{{extension}}
template <class... Pred> ignore<Pred::value...> helper(); // expected-warning 0-1{{extension}}
using S = IsTuple<tuple<int> >; // expected-warning 0-1{{extension}}
// This used to pick the primary template, because we got confused and
// thought that template parameter 0 was the current partially-substituted
// pack (from `helper`) during the deduction for the partial specialization.
void f() { helper<S>(); }
_Static_assert(S::value, "");
}
namespace GH60778 {
template <bool B = false> class ClassTemplate {
public:
template <typename T, typename = void> class Nested {};
};
template <typename DerivedType> class Base {};
template <>
template <typename T>
class ClassTemplate<>::Nested<T> : public Base<ClassTemplate<>::Nested<T> > {};
void use() {
// This should instantiate the body of Nested with the template arguments
// from the Partial Specialization. This would previously get confused and
// get the template arguments from the primary template instead.
ClassTemplate<>::Nested<int> instantiation;
}
}