// RUN: %clang_cc1 -fsyntax-only -Wdangling -Wdangling-field -Wreturn-stack-address -verify %s
struct [[gsl::Owner(int)]] MyIntOwner {
MyIntOwner();
int &operator*();
};
struct [[gsl::Pointer(int)]] MyIntPointer {
MyIntPointer(int *p = nullptr);
// Conversion operator and constructor conversion will result in two
// different ASTs. The former is tested with another owner and
// pointer type.
MyIntPointer(const MyIntOwner &);
int &operator*();
MyIntOwner toOwner();
};
struct MySpecialIntPointer : MyIntPointer {
};
// We did see examples in the wild when a derived class changes
// the ownership model. So we have a test for it.
struct [[gsl::Owner(int)]] MyOwnerIntPointer : MyIntPointer {
};
struct [[gsl::Pointer(long)]] MyLongPointerFromConversion {
MyLongPointerFromConversion(long *p = nullptr);
long &operator*();
};
struct [[gsl::Owner(long)]] MyLongOwnerWithConversion {
MyLongOwnerWithConversion();
operator MyLongPointerFromConversion();
long &operator*();
MyIntPointer releaseAsMyPointer();
long *releaseAsRawPointer();
};
void danglingHeapObject() {
new MyLongPointerFromConversion(MyLongOwnerWithConversion{}); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
new MyIntPointer(MyIntOwner{}); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
}
void intentionalFalseNegative() {
int i;
MyIntPointer p{&i};
// In this case we do not have enough information in a statement local
// analysis to detect the problem.
new MyIntPointer(p);
new MyIntPointer(MyIntPointer{p});
}
MyIntPointer ownershipTransferToMyPointer() {
MyLongOwnerWithConversion t;
return t.releaseAsMyPointer(); // ok
}
long *ownershipTransferToRawPointer() {
MyLongOwnerWithConversion t;
return t.releaseAsRawPointer(); // ok
}
struct Y {
int a[4];
};
void dangligGslPtrFromTemporary() {
MyIntPointer p = Y{}.a; // TODO
(void)p;
}
struct DanglingGslPtrField {
MyIntPointer p; // expected-note {{pointer member declared here}}
MyLongPointerFromConversion p2; // expected-note {{pointer member declared here}}
DanglingGslPtrField(int i) : p(&i) {} // TODO
DanglingGslPtrField() : p2(MyLongOwnerWithConversion{}) {} // expected-warning {{initializing pointer member 'p2' to point to a temporary object whose lifetime is shorter than the lifetime of the constructed object}}
DanglingGslPtrField(double) : p(MyIntOwner{}) {} // expected-warning {{initializing pointer member 'p' to point to a temporary object whose lifetime is shorter than the lifetime of the constructed object}}
};
MyIntPointer danglingGslPtrFromLocal() {
int j;
return &j; // TODO
}
MyIntPointer returningLocalPointer() {
MyIntPointer localPointer;
return localPointer; // ok
}
MyIntPointer daglingGslPtrFromLocalOwner() {
MyIntOwner localOwner;
return localOwner; // expected-warning {{address of stack memory associated with local variable 'localOwner' returned}}
}
MyLongPointerFromConversion daglingGslPtrFromLocalOwnerConv() {
MyLongOwnerWithConversion localOwner;
return localOwner; // expected-warning {{address of stack memory associated with local variable 'localOwner' returned}}
}
MyIntPointer danglingGslPtrFromTemporary() {
return MyIntOwner{}; // expected-warning {{returning address of local temporary object}}
}
MyIntOwner makeTempOwner();
MyIntPointer danglingGslPtrFromTemporary2() {
return makeTempOwner(); // expected-warning {{returning address of local temporary object}}
}
MyLongPointerFromConversion danglingGslPtrFromTemporaryConv() {
return MyLongOwnerWithConversion{}; // expected-warning {{returning address of local temporary object}}
}
int *noFalsePositive(MyIntOwner &o) {
MyIntPointer p = o;
return &*p; // ok
}
MyIntPointer global;
MyLongPointerFromConversion global2;
void initLocalGslPtrWithTempOwner() {
MyIntPointer p = MyIntOwner{}; // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
MyIntPointer pp = p = MyIntOwner{}; // expected-warning {{object backing the pointer p will be}}
p = MyIntOwner{}; // expected-warning {{object backing the pointer p }}
pp = p; // no warning
global = MyIntOwner{}; // expected-warning {{object backing the pointer global }}
MyLongPointerFromConversion p2 = MyLongOwnerWithConversion{}; // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
p2 = MyLongOwnerWithConversion{}; // expected-warning {{object backing the pointer p2 }}
global2 = MyLongOwnerWithConversion{}; // expected-warning {{object backing the pointer global2 }}
}
namespace __gnu_cxx {
template <typename T>
struct basic_iterator {
basic_iterator operator++();
T& operator*() const;
T* operator->() const;
};
template<typename T>
bool operator!=(basic_iterator<T>, basic_iterator<T>);
}
namespace std {
template<typename T> struct remove_reference { typedef T type; };
template<typename T> struct remove_reference<T &> { typedef T type; };
template<typename T> struct remove_reference<T &&> { typedef T type; };
template<typename T>
typename remove_reference<T>::type &&move(T &&t) noexcept;
template <typename C>
auto data(const C &c) -> decltype(c.data());
template <typename C>
auto begin(C &c) -> decltype(c.begin());
template<typename T, int N>
T *begin(T (&array)[N]);
using size_t = decltype(sizeof(0));
template<typename T>
struct initializer_list {
const T* ptr; size_t sz;
};
template <typename T>
struct vector {
typedef __gnu_cxx::basic_iterator<T> iterator;
iterator begin();
iterator end();
const T *data() const;
vector();
vector(initializer_list<T> __l);
template<typename InputIterator>
vector(InputIterator first, InputIterator __last);
T &at(int n);
};
template<typename T>
struct basic_string_view {
basic_string_view();
basic_string_view(const T *);
const T *begin() const;
};
using string_view = basic_string_view<char>;
template<class _Mystr> struct iter {
iter& operator-=(int);
iter operator-(int _Off) const {
iter _Tmp = *this;
return _Tmp -= _Off;
}
};
template<typename T>
struct basic_string {
basic_string();
basic_string(const T *);
const T *c_str() const;
operator basic_string_view<T> () const;
using const_iterator = iter<T>;
};
using string = basic_string<char>;
template<typename T>
struct unique_ptr {
T &operator*();
T *get() const;
};
template<typename T>
struct optional {
optional();
optional(const T&);
template<typename U = T>
optional(U&& t);
template<typename U>
optional(optional<U>&& __t);
T &operator*() &;
T &&operator*() &&;
T &value() &;
T &&value() &&;
};
template<typename T>
optional<__decay(T)> make_optional(T&&);
template<typename T>
struct stack {
T &top();
};
struct any {};
template<typename T>
T any_cast(const any& operand);
template<typename T>
struct reference_wrapper {
template<typename U>
reference_wrapper(U &&);
};
template<typename T>
reference_wrapper<T> ref(T& t) noexcept;
}
struct Unannotated {
typedef std::vector<int>::iterator iterator;
iterator begin();
operator iterator() const;
};
void modelIterators() {
std::vector<int>::iterator it = std::vector<int>().begin(); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
(void)it;
}
std::vector<int>::iterator modelIteratorReturn() {
return std::vector<int>().begin(); // expected-warning {{returning address of local temporary object}}
}
const int *modelFreeFunctions() {
return std::data(std::vector<int>()); // expected-warning {{returning address of local temporary object}}
}
int &modelAnyCast() {
return std::any_cast<int&>(std::any{}); // expected-warning {{returning reference to local temporary object}}
}
int modelAnyCast2() {
return std::any_cast<int>(std::any{}); // ok
}
int modelAnyCast3() {
return std::any_cast<int&>(std::any{}); // ok
}
const char *danglingRawPtrFromLocal() {
std::basic_string<char> s;
return s.c_str(); // expected-warning {{address of stack memory associated with local variable 's' returned}}
}
int &danglingRawPtrFromLocal2() {
std::optional<int> o;
return o.value(); // expected-warning {{reference to stack memory associated with local variable 'o' returned}}
}
int &danglingRawPtrFromLocal3() {
std::optional<int> o;
return *o; // expected-warning {{reference to stack memory associated with local variable 'o' returned}}
}
// GH100384
std::string_view containerWithAnnotatedElements() {
std::string_view c1 = std::vector<std::string>().at(0); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
c1 = std::vector<std::string>().at(0); // expected-warning {{object backing the pointer}}
// no warning on constructing from gsl-pointer
std::string_view c2 = std::vector<std::string_view>().at(0);
std::vector<std::string> local;
return local.at(0); // expected-warning {{address of stack memory associated with local variable}}
}
std::string_view localUniquePtr(int i) {
std::unique_ptr<std::string> c1;
if (i)
return *c1; // expected-warning {{address of stack memory associated with local variable}}
std::unique_ptr<std::string_view> c2;
return *c2; // expect no-warning.
}
std::string_view localOptional(int i) {
std::optional<std::string> o;
if (i)
return o.value(); // expected-warning {{address of stack memory associated with local variable}}
std::optional<std::string_view> abc;
return abc.value(); // expect no warning
}
const char *danglingRawPtrFromTemp() {
return std::basic_string<char>().c_str(); // expected-warning {{returning address of local temporary object}}
}
std::unique_ptr<int> getUniquePtr();
int *danglingUniquePtrFromTemp() {
return getUniquePtr().get(); // expected-warning {{returning address of local temporary object}}
}
int *danglingUniquePtrFromTemp2() {
return std::unique_ptr<int>().get(); // expected-warning {{returning address of local temporary object}}
}
void danglingReferenceFromTempOwner() {
int &&r = *std::optional<int>(); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
int &&r2 = *std::optional<int>(5); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
int &&r3 = std::optional<int>(5).value(); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
int &r4 = std::vector<int>().at(3); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
}
std::vector<int> getTempVec();
std::optional<std::vector<int>> getTempOptVec();
void testLoops() {
for (auto i : getTempVec()) // ok
;
for (auto i : *getTempOptVec()) // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
;
}
int &usedToBeFalsePositive(std::vector<int> &v) {
std::vector<int>::iterator it = v.begin();
int& value = *it;
return value; // ok
}
int &doNotFollowReferencesForLocalOwner() {
std::unique_ptr<int> localOwner;
int &p = *localOwner.get();
// In real world code localOwner is usually moved here.
return p; // ok
}
const char *trackThroughMultiplePointer() {
return std::basic_string_view<char>(std::basic_string<char>()).begin(); // expected-warning {{returning address of local temporary object}}
}
struct X {
X(std::unique_ptr<int> up) :
pointee(*up), pointee2(up.get()), pointer(std::move(up)) {}
int &pointee;
int *pointee2;
std::unique_ptr<int> pointer;
};
std::vector<int>::iterator getIt();
std::vector<int> getVec();
const int &handleGslPtrInitsThroughReference() {
const auto &it = getIt(); // Ok, it is lifetime extended.
return *it;
}
void handleGslPtrInitsThroughReference2() {
const std::vector<int> &v = getVec();
const int *val = v.data(); // Ok, it is lifetime extended.
}
void handleTernaryOperator(bool cond) {
std::basic_string<char> def;
std::basic_string_view<char> v = cond ? def : ""; // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
}
std::string operator+(std::string_view s1, std::string_view s2);
void danglingStringviewAssignment(std::string_view a1, std::string_view a2) {
a1 = std::string(); // expected-warning {{object backing}}
a2 = a1 + a1; // expected-warning {{object backing}}
}
std::reference_wrapper<int> danglingPtrFromNonOwnerLocal() {
int i = 5;
return i; // TODO
}
std::reference_wrapper<int> danglingPtrFromNonOwnerLocal2() {
int i = 5;
return std::ref(i); // TODO
}
std::reference_wrapper<int> danglingPtrFromNonOwnerLocal3() {
int i = 5;
return std::reference_wrapper<int>(i); // TODO
}
std::reference_wrapper<Unannotated> danglingPtrFromNonOwnerLocal4() {
Unannotated i;
return std::reference_wrapper<Unannotated>(i); // TODO
}
std::reference_wrapper<Unannotated> danglingPtrFromNonOwnerLocal5() {
Unannotated i;
return std::ref(i); // TODO
}
int *returnPtrToLocalArray() {
int a[5];
return std::begin(a); // TODO
}
struct ptr_wrapper {
std::vector<int>::iterator member;
};
ptr_wrapper getPtrWrapper();
std::vector<int>::iterator returnPtrFromWrapper() {
ptr_wrapper local = getPtrWrapper();
return local.member;
}
std::vector<int>::iterator returnPtrFromWrapperThroughRef() {
ptr_wrapper local = getPtrWrapper();
ptr_wrapper &local2 = local;
return local2.member;
}
std::vector<int>::iterator returnPtrFromWrapperThroughRef2() {
ptr_wrapper local = getPtrWrapper();
std::vector<int>::iterator &local2 = local.member;
return local2;
}
void checkPtrMemberFromAggregate() {
std::vector<int>::iterator local = getPtrWrapper().member; // OK.
}
std::vector<int>::iterator doNotInterferWithUnannotated() {
Unannotated value;
// Conservative choice for now. Probably not ok, but we do not warn.
return std::begin(value);
}
std::vector<int>::iterator doNotInterferWithUnannotated2() {
Unannotated value;
return value;
}
std::vector<int>::iterator supportDerefAddrofChain(int a, std::vector<int>::iterator value) {
switch (a) {
default:
return value;
case 1:
return *&value;
case 2:
return *&*&value;
case 3:
return *&*&*&value;
}
}
int &supportDerefAddrofChain2(int a, std::vector<int>::iterator value) {
switch (a) {
default:
return *value;
case 1:
return **&value;
case 2:
return **&*&value;
case 3:
return **&*&*&value;
}
}
int *supportDerefAddrofChain3(int a, std::vector<int>::iterator value) {
switch (a) {
default:
return &*value;
case 1:
return &*&*value;
case 2:
return &*&**&value;
case 3:
return &*&**&*&value;
}
}
MyIntPointer handleDerivedToBaseCast1(MySpecialIntPointer ptr) {
return ptr;
}
MyIntPointer handleDerivedToBaseCast2(MyOwnerIntPointer ptr) {
return ptr; // expected-warning {{address of stack memory associated with parameter 'ptr' returned}}
}
std::vector<int>::iterator noFalsePositiveWithVectorOfPointers() {
std::vector<std::vector<int>::iterator> iters;
return iters.at(0);
}
void testForBug49342()
{
auto it = std::iter<char>{} - 2; // Used to be false positive.
}
namespace GH93386 {
// verify no duplicated diagnostics are emitted.
struct [[gsl::Pointer]] S {
S(const std::vector<int>& abc [[clang::lifetimebound]]);
};
S test(std::vector<int> a) {
return S(a); // expected-warning {{address of stack memory associated with}}
}
auto s = S(std::vector<int>()); // expected-warning {{temporary whose address is used as value of local variable}}
// Verify no regression on the follow case.
std::string_view test2(int i, std::optional<std::string_view> a) {
if (i)
return std::move(*a);
return std::move(a.value());
}
struct Foo;
struct FooView {
FooView(const Foo& foo [[clang::lifetimebound]]);
};
FooView test3(int i, std::optional<Foo> a) {
if (i)
return *a; // expected-warning {{address of stack memory}}
return a.value(); // expected-warning {{address of stack memory}}
}
} // namespace GH93386
namespace GH100549 {
struct UrlAnalyzed {
UrlAnalyzed(std::string_view url [[clang::lifetimebound]]);
};
std::string StrCat(std::string_view, std::string_view);
void test1() {
UrlAnalyzed url(StrCat("abc", "bcd")); // expected-warning {{object backing the pointer will be destroyed}}
}
std::string_view ReturnStringView(std::string_view abc [[clang::lifetimebound]]);
void test() {
std::string_view svjkk1 = ReturnStringView(StrCat("bar", "x")); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
}
} // namespace GH100549
namespace GH108272 {
template <typename T>
struct [[gsl::Owner]] StatusOr {
const T &value() [[clang::lifetimebound]];
};
template <typename V>
class Wrapper1 {
public:
operator V() const;
V value;
};
std::string_view test1() {
StatusOr<Wrapper1<std::string_view>> k;
// Be conservative in this case, as there is not enough information available
// to infer the lifetime relationship for the Wrapper1 type.
std::string_view good = StatusOr<Wrapper1<std::string_view>>().value();
return k.value();
}
template <typename V>
class Wrapper2 {
public:
operator V() const [[clang::lifetimebound]];
V value;
};
std::string_view test2() {
StatusOr<Wrapper2<std::string_view>> k;
// We expect dangling issues as the conversion operator is lifetimebound。
std::string_view bad = StatusOr<Wrapper2<std::string_view>>().value(); // expected-warning {{temporary whose address is used as value of}}
return k.value(); // expected-warning {{address of stack memory associated}}
}
} // namespace GH108272
namespace GH100526 {
void test() {
std::vector<std::string_view> v1({std::string()}); // expected-warning {{object backing the pointer will be destroyed at the end}}
std::vector<std::string_view> v2({
std::string(), // expected-warning {{object backing the pointer will be destroyed at the end}}
std::string_view()
});
std::vector<std::string_view> v3({
std::string_view(),
std::string() // expected-warning {{object backing the pointer will be destroyed at the end}}
});
std::optional<std::string_view> o1 = std::string(); // expected-warning {{object backing the pointer}}
std::string s;
// This is a tricky use-after-free case, what it does:
// 1. make_optional creates a temporary "optional<string>"" object
// 2. the temporary object owns the underlying string which is copied from s.
// 3. the t3 object holds the view to the underlying string of the temporary object.
std::optional<std::string_view> o2 = std::make_optional(s); // expected-warning {{object backing the pointer}}
std::optional<std::string_view> o3 = std::optional<std::string>(s); // expected-warning {{object backing the pointer}}
std::optional<std::string_view> o4 = std::optional<std::string_view>(s);
// FIXME: should work for assignment cases
v1 = {std::string()};
o1 = std::string();
// no warning on copying pointers.
std::vector<std::string_view> n1 = {std::string_view()};
std::optional<std::string_view> n2 = {std::string_view()};
std::optional<std::string_view> n3 = std::string_view();
std::optional<std::string_view> n4 = std::make_optional(std::string_view());
const char* b = "";
std::optional<std::string_view> n5 = std::make_optional(b);
std::optional<std::string_view> n6 = std::make_optional("test");
}
std::vector<std::string_view> test2(int i) {
std::vector<std::string_view> t;
if (i)
return t; // this is fine, no dangling
return std::vector<std::string_view>(t.begin(), t.end());
}
class Foo {
public:
operator std::string_view() const { return ""; }
};
class [[gsl::Owner]] FooOwner {
public:
operator std::string_view() const { return ""; }
};
std::optional<Foo> GetFoo();
std::optional<FooOwner> GetFooOwner();
template <typename T>
struct [[gsl::Owner]] Container1 {
Container1();
};
template <typename T>
struct [[gsl::Owner]] Container2 {
template<typename U>
Container2(const Container1<U>& C2);
};
std::optional<std::string_view> test3(int i) {
std::string s;
std::string_view sv;
if (i)
return s; // expected-warning {{address of stack memory associated}}
return sv; // fine
Container2<std::string_view> c1 = Container1<Foo>(); // no diagnostic as Foo is not an Owner.
Container2<std::string_view> c2 = Container1<FooOwner>(); // expected-warning {{object backing the pointer will be destroyed}}
return GetFoo(); // fine, we don't know Foo is owner or not, be conservative.
return GetFooOwner(); // expected-warning {{returning address of local temporary object}}
}
std::optional<int*> test4(int a) {
return std::make_optional(nullptr); // fine
}
template <typename T>
struct [[gsl::Owner]] StatusOr {
const T &valueLB() const [[clang::lifetimebound]];
const T &valueNoLB() const;
};
template<typename T>
struct [[gsl::Pointer]] Span {
Span(const std::vector<T> &V);
const int& getFieldLB() const [[clang::lifetimebound]];
const int& getFieldNoLB() const;
};
/////// From Owner<Pointer> ///////
// Pointer from Owner<Pointer>
std::string_view test5() {
std::string_view a = StatusOr<std::string_view>().valueLB(); // expected-warning {{object backing the pointer will be dest}}
return StatusOr<std::string_view>().valueLB(); // expected-warning {{returning address of local temporary}}
// No dangling diagnostics on non-lifetimebound methods.
std::string_view b = StatusOr<std::string_view>().valueNoLB();
return StatusOr<std::string_view>().valueNoLB();
}
// Pointer<Pointer> from Owner<Pointer>
// Prevent regression GH108463
Span<int*> test6(std::vector<int*> v) {
Span<int *> dangling = std::vector<int*>(); // expected-warning {{object backing the pointer}}
dangling = std::vector<int*>(); // expected-warning {{object backing the pointer}}
return v; // expected-warning {{address of stack memory}}
}
/////// From Owner<Owner<Pointer>> ///////
// Pointer from Owner<Owner<Pointer>>
int* test7(StatusOr<StatusOr<int*>> aa) {
// No dangling diagnostic on pointer.
return aa.valueLB().valueLB(); // OK.
}
// Owner<Pointer> from Owner<Owner<Pointer>>
std::vector<int*> test8(StatusOr<std::vector<int*>> aa) {
return aa.valueLB(); // OK, no pointer being construct on this case.
return aa.valueNoLB();
}
// Pointer<Pointer> from Owner<Owner<Pointer>>
Span<int*> test9(StatusOr<std::vector<int*>> aa) {
return aa.valueLB(); // expected-warning {{address of stack memory associated}}
return aa.valueNoLB(); // OK.
}
/////// From Owner<Owner> ///////
// Pointer<Owner>> from Owner<Owner>
Span<std::string> test10(StatusOr<std::vector<std::string>> aa) {
return aa.valueLB(); // expected-warning {{address of stack memory}}
return aa.valueNoLB(); // OK.
}
/////// From Owner<Pointer<Owner>> ///////
// Pointer<Owner>> from Owner<Pointer<Owner>>
Span<std::string> test11(StatusOr<Span<std::string>> aa) {
return aa.valueLB(); // expected-warning {{address of stack memory}}
return aa.valueNoLB(); // OK.
}
// Lifetimebound and gsl::Pointer.
const int& test12(Span<int> a) {
return a.getFieldLB(); // expected-warning {{reference to stack memory associated}}
return a.getFieldNoLB(); // OK.
}
void test13() {
// FIXME: RHS is Owner<Pointer>, we skip this case to avoid false positives.
std::optional<Span<int*>> abc = std::vector<int*>{};
std::optional<Span<int>> t = std::vector<int> {}; // expected-warning {{object backing the pointer will be destroyed}}
}
} // namespace GH100526