// RUN: %clang_analyze_cc1 -std=c++11 -fblocks %s \
// RUN: -verify=expected,newdelete \
// RUN: -analyzer-checker=core \
// RUN: -analyzer-checker=cplusplus.NewDelete
//
// RUN: %clang_analyze_cc1 -DLEAKS -std=c++11 -fblocks %s \
// RUN: -verify=expected,newdelete,leak \
// RUN: -analyzer-checker=core \
// RUN: -analyzer-checker=cplusplus.NewDelete \
// RUN: -analyzer-checker=cplusplus.NewDeleteLeaks
//
// RUN: %clang_analyze_cc1 -std=c++11 -fblocks -verify %s \
// RUN: -verify=expected,leak \
// RUN: -analyzer-checker=core \
// RUN: -analyzer-checker=cplusplus.NewDeleteLeaks
//
// RUN: %clang_analyze_cc1 -std=c++17 -fblocks %s \
// RUN: -verify=expected,newdelete \
// RUN: -analyzer-checker=core \
// RUN: -analyzer-checker=cplusplus.NewDelete
//
// RUN: %clang_analyze_cc1 -DLEAKS -std=c++17 -fblocks %s \
// RUN: -verify=expected,newdelete,leak \
// RUN: -analyzer-checker=core \
// RUN: -analyzer-checker=cplusplus.NewDelete \
// RUN: -analyzer-checker=cplusplus.NewDeleteLeaks
//
// RUN: %clang_analyze_cc1 -std=c++17 -fblocks -verify %s \
// RUN: -verify=expected,leak \
// RUN: -analyzer-checker=core \
// RUN: -analyzer-checker=cplusplus.NewDeleteLeaks
#include "Inputs/system-header-simulator-cxx.h"
typedef __typeof__(sizeof(int)) size_t;
extern "C" void *malloc(size_t);
extern "C" void free (void* ptr);
int *global;
//----- Standard non-placement operators
void testGlobalOpNew() {
void *p = operator new(0);
} // leak-warning{{Potential leak of memory pointed to by 'p'}}
void testGlobalOpNewArray() {
void *p = operator new[](0);
} // leak-warning{{Potential leak of memory pointed to by 'p'}}
void testGlobalNewExpr() {
int *p = new int;
} // leak-warning{{Potential leak of memory pointed to by 'p'}}
void testGlobalNewExprArray() {
int *p = new int[0];
} // leak-warning{{Potential leak of memory pointed to by 'p'}}
//----- Standard nothrow placement operators
void testGlobalNoThrowPlacementOpNewBeforeOverload() {
void *p = operator new(0, std::nothrow);
} // leak-warning{{Potential leak of memory pointed to by 'p'}}
void testGlobalNoThrowPlacementExprNewBeforeOverload() {
int *p = new(std::nothrow) int;
} // leak-warning{{Potential leak of memory pointed to by 'p'}}
//----- Other cases
void testNewMemoryIsInHeap() {
int *p = new int;
if (global != p) // condition is always true as 'p' wraps a heap region that
// is different from a region wrapped by 'global'
global = p; // pointer escapes
}
struct PtrWrapper {
int *x;
PtrWrapper(int *input) : x(input) {}
};
void testNewInvalidationPlacement(PtrWrapper *w) {
// Ensure that we don't consider this a leak.
new (w) PtrWrapper(new int); // no warn
}
//-----------------------------------------
// check for usage of zero-allocated memory
//-----------------------------------------
void testUseZeroAlloc1() {
int *p = (int *)operator new(0);
*p = 1; // newdelete-warning {{Use of memory allocated with size zero}}
delete p;
}
int testUseZeroAlloc2() {
int *p = (int *)operator new[](0);
return p[0]; // newdelete-warning {{Use of memory allocated with size zero}}
delete[] p;
}
void f(int);
void testUseZeroAlloc3() {
int *p = new int[0];
f(*p); // newdelete-warning {{Use of memory allocated with size zero}}
delete[] p;
}
//---------------
// other checks
//---------------
class SomeClass {
public:
void f(int *p);
};
void f(int *p1, int *p2 = 0, int *p3 = 0);
void g(SomeClass &c, ...);
void testUseFirstArgAfterDelete() {
int *p = new int;
delete p;
f(p); // newdelete-warning{{Use of memory after it is freed}}
}
void testUseMiddleArgAfterDelete(int *p) {
delete p;
f(0, p); // newdelete-warning{{Use of memory after it is freed}}
}
void testUseLastArgAfterDelete(int *p) {
delete p;
f(0, 0, p); // newdelete-warning{{Use of memory after it is freed}}
}
void testUseSeveralArgsAfterDelete(int *p) {
delete p;
f(p, p, p); // newdelete-warning{{Use of memory after it is freed}}
}
void testUseRefArgAfterDelete(SomeClass &c) {
delete &c;
g(c); // newdelete-warning{{Use of memory after it is freed}}
}
void testVariadicArgAfterDelete() {
SomeClass c;
int *p = new int;
delete p;
g(c, 0, p); // newdelete-warning{{Use of memory after it is freed}}
}
void testUseMethodArgAfterDelete(int *p) {
SomeClass *c = new SomeClass;
delete p;
c->f(p); // newdelete-warning{{Use of memory after it is freed}}
}
void testUseThisAfterDelete() {
SomeClass *c = new SomeClass;
delete c;
c->f(0); // newdelete-warning{{Use of memory after it is freed}}
}
void testDoubleDelete() {
int *p = new int;
delete p;
delete p; // newdelete-warning{{Attempt to free released memory}}
}
void testExprDeleteArg() {
int i;
delete &i; // newdelete-warning{{Argument to 'delete' is the address of the local variable 'i', which is not memory allocated by 'new'}}
}
void testExprDeleteArrArg() {
int i;
delete[] & i; // newdelete-warning{{Argument to 'delete[]' is the address of the local variable 'i', which is not memory allocated by 'new[]'}}
}
void testAllocDeallocNames() {
int *p = new(std::nothrow) int[1];
delete[] (++p);
// newdelete-warning@-1{{Argument to 'delete[]' is offset by 4 bytes from the start of memory allocated by 'new[]'}}
}
//--------------------------------
// Test escape of newed const pointer. Note, a const pointer can be deleted.
//--------------------------------
struct StWithConstPtr {
const int *memp;
};
void escape(const int &x);
void escapeStruct(const StWithConstPtr &x);
void escapePtr(const StWithConstPtr *x);
void escapeVoidPtr(const void *x);
void testConstEscape() {
int *p = new int(1);
escape(*p);
} // no-warning
void testConstEscapeStruct() {
StWithConstPtr *St = new StWithConstPtr();
escapeStruct(*St);
} // no-warning
void testConstEscapeStructPtr() {
StWithConstPtr *St = new StWithConstPtr();
escapePtr(St);
} // no-warning
void testConstEscapeMember() {
StWithConstPtr St;
St.memp = new int(2);
escapeVoidPtr(St.memp);
} // no-warning
void testConstEscapePlacementNew() {
int *x = (int *)malloc(sizeof(int));
void *y = new (x) int;
escapeVoidPtr(y);
} // no-warning
//============== Test Uninitialized delete delete[]========================
void testUninitDelete() {
int *x;
int * y = new int;
delete y;
delete x; // expected-warning{{Argument to 'delete' is uninitialized}}
}
void testUninitDeleteArray() {
int *x;
int * y = new int[5];
delete[] y;
delete[] x; // expected-warning{{Argument to 'delete[]' is uninitialized}}
}
void testUninitFree() {
int *x;
free(x); // expected-warning{{1st function call argument is an uninitialized value}}
}
void testUninitDeleteSink() {
int *x;
delete x; // expected-warning{{Argument to 'delete' is uninitialized}}
(*(volatile int *)0 = 1); // no warn
}
void testUninitDeleteArraySink() {
int *x;
delete[] x; // expected-warning{{Argument to 'delete[]' is uninitialized}}
(*(volatile int *)0 = 1); // no warn
}
namespace reference_count {
class control_block {
unsigned count;
public:
control_block() : count(0) {}
void retain() { ++count; }
int release() { return --count; }
};
template <typename T>
class shared_ptr {
T *p;
control_block *control;
public:
shared_ptr() : p(0), control(0) {}
explicit shared_ptr(T *p) : p(p), control(new control_block) {
control->retain();
}
shared_ptr(const shared_ptr &other) : p(other.p), control(other.control) {
if (control)
control->retain();
}
~shared_ptr() {
if (control && control->release() == 0) {
delete p;
delete control;
}
};
T &operator *() {
return *p;
};
void swap(shared_ptr &other) {
T *tmp = p;
p = other.p;
other.p = tmp;
control_block *ctrlTmp = control;
control = other.control;
other.control = ctrlTmp;
}
};
template <typename T, typename... Args>
shared_ptr<T> make_shared(Args &&...args) {
return shared_ptr<T>(new T(static_cast<Args &&>(args)...));
}
void testSingle() {
shared_ptr<int> a(new int);
*a = 1;
}
void testMake() {
shared_ptr<int> a = make_shared<int>();
*a = 1;
}
void testMakeInParens() {
shared_ptr<int> a = (make_shared<int>()); // no warn
*a = 1;
}
void testDouble() {
shared_ptr<int> a(new int);
shared_ptr<int> b = a;
*a = 1;
}
void testInvalidated() {
shared_ptr<int> a(new int);
shared_ptr<int> b = a;
*a = 1;
extern void use(shared_ptr<int> &);
use(b);
}
void testNestedScope() {
shared_ptr<int> a(new int);
{
shared_ptr<int> b = a;
}
*a = 1;
}
void testSwap() {
shared_ptr<int> a(new int);
shared_ptr<int> b;
shared_ptr<int> c = a;
shared_ptr<int>(c).swap(b);
}
void testUseAfterFree() {
int *p = new int;
{
shared_ptr<int> a(p);
shared_ptr<int> b = a;
}
// FIXME: We should get a warning here, but we don't because we've
// conservatively modeled ~shared_ptr.
*p = 1;
}
}
// Test double delete
class DerefClass{
public:
int *x;
DerefClass() {}
~DerefClass() {
int i = 0;
x = &i;
*x = 1;
}
};
void testDoubleDeleteClassInstance() {
DerefClass *foo = new DerefClass();
delete foo;
delete foo; // newdelete-warning {{Attempt to delete released memory}}
}
class EmptyClass{
public:
EmptyClass() {}
~EmptyClass() {}
};
void testDoubleDeleteEmptyClass() {
EmptyClass *foo = new EmptyClass();
delete foo;
delete foo; // newdelete-warning {{Attempt to delete released memory}}
}
struct Base {
virtual ~Base() {}
};
struct Derived : Base {
};
Base *allocate() {
return new Derived;
}
void shouldNotReportLeak() {
Derived *p = (Derived *)allocate();
delete p;
}
template<void *allocate_fn(size_t)>
void* allocate_via_nttp(size_t n) {
return allocate_fn(n);
}
template<void deallocate_fn(void*)>
void deallocate_via_nttp(void* ptr) {
deallocate_fn(ptr);
}
void testNTTPNewNTTPDelete() {
void* p = allocate_via_nttp<::operator new>(10);
deallocate_via_nttp<::operator delete>(p);
} // no warn
void testNTTPNewDirectDelete() {
void* p = allocate_via_nttp<::operator new>(10);
::operator delete(p);
} // no warn
void testDirectNewNTTPDelete() {
void* p = ::operator new(10);
deallocate_via_nttp<::operator delete>(p);
}
void not_free(void*) {
}
void testLeakBecauseNTTPIsNotDeallocation() {
void* p = ::operator new(10);
deallocate_via_nttp<not_free>(p);
} // leak-warning{{Potential leak of memory pointed to by 'p'}}