; RUN: opt %loadNPMPolly '-passes=polly-import-jscop,polly-codegen' \
; RUN: -S < %s | FileCheck %s
; RUN: opt %loadNPMPolly '-passes=polly-import-jscop,polly-codegen' \
; RUN: -polly-import-jscop-postfix=pow2 \
; RUN: -S < %s | FileCheck %s -check-prefix=POW2
;
; void exprModDiv(float *A, float *B, float *C, long N, long p) {
; for (long i = 0; i < N; i++)
; C[i] += A[i] + B[i] + A[i] + B[i + p];
; }
;
;
; This test case changes the access functions such that the resulting index
; expressions are modulo or division operations. We test that the code we
; generate takes advantage of knowledge about unsigned numerators. This is
; useful as LLVM will translate urem and udiv operations with power-of-two
; denominators to fast bitwise and or shift operations.
; A[i % 127]
; CHECK: %pexp.pdiv_r = urem i64 %polly.indvar, 127
; CHECK: %polly.access.A9 = getelementptr float, ptr %A, i64 %pexp.pdiv_r
; A[floor(i / 127)]
;
; Note: without the floor, we would create a map i -> i/127, which only contains
; values of i that are divisible by 127. All other values of i would not
; be mapped to any value. However, to generate correct code we require
; each value of i to indeed be mapped to a value.
;
; CHECK: %pexp.p_div_q = udiv i64 %polly.indvar, 127
; CHECK: %polly.access.B10 = getelementptr float, ptr %B, i64 %pexp.p_div_q
; A[p % 128]
; A[p / 127]
; CHECK: %pexp.div = sdiv exact i64 %p, 127
; CHECK: %polly.access.B12 = getelementptr float, ptr %B, i64 %pexp.div
; A[i % 128]
; POW2: %pexp.pdiv_r = urem i64 %polly.indvar, 128
; POW2: %polly.access.A9 = getelementptr float, ptr %A, i64 %pexp.pdiv_r
; A[floor(i / 128)]
; POW2: %pexp.p_div_q = udiv i64 %polly.indvar, 128
; POW2: %polly.access.B10 = getelementptr float, ptr %B, i64 %pexp.p_div_q
; A[p % 128]
; A[p / 128]
; POW2: %pexp.div = sdiv exact i64 %p, 128
; POW2: %polly.access.B12 = getelementptr float, ptr %B, i64 %pexp.div
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
define void @exprModDiv(ptr %A, ptr %B, ptr %C, i64 %N, i64 %p) {
entry:
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%i.0 = phi i64 [ 0, %entry ], [ %inc, %for.inc ]
%cmp = icmp slt i64 %i.0, %N
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%arrayidx = getelementptr inbounds float, ptr %A, i64 %i.0
%tmp = load float, ptr %arrayidx, align 4
%arrayidx1 = getelementptr inbounds float, ptr %B, i64 %i.0
%tmp1 = load float, ptr %arrayidx1, align 4
%add = fadd float %tmp, %tmp1
%arrayidx2 = getelementptr inbounds float, ptr %A, i64 %i.0
%tmp2 = load float, ptr %arrayidx2, align 4
%add3 = fadd float %add, %tmp2
%padd = add nsw i64 %p, %i.0
%arrayidx4 = getelementptr inbounds float, ptr %B, i64 %padd
%tmp3 = load float, ptr %arrayidx4, align 4
%add5 = fadd float %add3, %tmp3
%arrayidx6 = getelementptr inbounds float, ptr %C, i64 %i.0
%tmp4 = load float, ptr %arrayidx6, align 4
%add7 = fadd float %tmp4, %add5
store float %add7, ptr %arrayidx6, align 4
br label %for.inc
for.inc: ; preds = %for.body
%inc = add nuw nsw i64 %i.0, 1
br label %for.cond
for.end: ; preds = %for.cond
ret void
}