//===-- lib/Semantics/check-declarations.cpp ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Static declaration checking
#include "check-declarations.h"
#include "definable.h"
#include "pointer-assignment.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Parser/characters.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include <algorithm>
#include <map>
#include <string>
namespace Fortran::semantics {
namespace characteristics = evaluate::characteristics;
using characteristics::DummyArgument;
using characteristics::DummyDataObject;
using characteristics::DummyProcedure;
using characteristics::FunctionResult;
using characteristics::Procedure;
class CheckHelper {
public:
explicit CheckHelper(SemanticsContext &c) : context_{c} {}
SemanticsContext &context() { return context_; }
void Check() { Check(context_.globalScope()); }
void Check(const ParamValue &, bool canBeAssumed);
void Check(const Bound &bound) {
CheckSpecExpr(bound.GetExplicit(), /*forElementalFunctionResult=*/false);
}
void Check(const ShapeSpec &spec) {
Check(spec.lbound());
Check(spec.ubound());
}
void Check(const ArraySpec &);
void Check(const DeclTypeSpec &, bool canHaveAssumedTypeParameters);
void Check(const Symbol &);
void CheckCommonBlock(const Symbol &);
void Check(const Scope &);
const Procedure *Characterize(const Symbol &);
private:
template <typename A>
void CheckSpecExpr(const A &x, bool forElementalFunctionResult) {
evaluate::CheckSpecificationExpr(
x, DEREF(scope_), foldingContext_, forElementalFunctionResult);
}
void CheckValue(const Symbol &, const DerivedTypeSpec *);
void CheckVolatile(const Symbol &, const DerivedTypeSpec *);
void CheckContiguous(const Symbol &);
void CheckPointer(const Symbol &);
void CheckPassArg(
const Symbol &proc, const Symbol *interface, const WithPassArg &);
void CheckProcBinding(const Symbol &, const ProcBindingDetails &);
void CheckObjectEntity(const Symbol &, const ObjectEntityDetails &);
void CheckPointerInitialization(const Symbol &);
void CheckArraySpec(const Symbol &, const ArraySpec &);
void CheckProcEntity(const Symbol &, const ProcEntityDetails &);
void CheckSubprogram(const Symbol &, const SubprogramDetails &);
void CheckExternal(const Symbol &);
void CheckAssumedTypeEntity(const Symbol &, const ObjectEntityDetails &);
void CheckDerivedType(const Symbol &, const DerivedTypeDetails &);
bool CheckFinal(
const Symbol &subroutine, SourceName, const Symbol &derivedType);
bool CheckDistinguishableFinals(const Symbol &f1, SourceName f1name,
const Symbol &f2, SourceName f2name, const Symbol &derivedType);
void CheckGeneric(const Symbol &, const GenericDetails &);
void CheckHostAssoc(const Symbol &, const HostAssocDetails &);
bool CheckDefinedOperator(
SourceName, GenericKind, const Symbol &, const Procedure &);
std::optional<parser::MessageFixedText> CheckNumberOfArgs(
const GenericKind &, std::size_t);
bool CheckDefinedOperatorArg(
const SourceName &, const Symbol &, const Procedure &, std::size_t);
bool CheckDefinedAssignment(const Symbol &, const Procedure &);
bool CheckDefinedAssignmentArg(const Symbol &, const DummyArgument &, int);
void CheckSpecifics(const Symbol &, const GenericDetails &);
void CheckEquivalenceSet(const EquivalenceSet &);
void CheckEquivalenceObject(const EquivalenceObject &);
void CheckBlockData(const Scope &);
void CheckGenericOps(const Scope &);
bool CheckConflicting(const Symbol &, Attr, Attr);
void WarnMissingFinal(const Symbol &);
void CheckSymbolType(const Symbol &); // C702
bool InPure() const {
return innermostSymbol_ && IsPureProcedure(*innermostSymbol_);
}
bool InElemental() const {
return innermostSymbol_ && IsElementalProcedure(*innermostSymbol_);
}
bool InFunction() const {
return innermostSymbol_ && IsFunction(*innermostSymbol_);
}
bool InInterface() const {
const SubprogramDetails *subp{innermostSymbol_
? innermostSymbol_->detailsIf<SubprogramDetails>()
: nullptr};
return subp && subp->isInterface();
}
template <typename... A>
parser::Message *SayWithDeclaration(const Symbol &symbol, A &&...x) {
parser::Message *msg{messages_.Say(std::forward<A>(x)...)};
if (msg && messages_.at().begin() != symbol.name().begin()) {
evaluate::AttachDeclaration(*msg, symbol);
}
return msg;
}
bool InModuleFile() const {
return FindModuleFileContaining(context_.FindScope(messages_.at())) !=
nullptr;
}
template <typename FeatureOrUsageWarning, typename... A>
parser::Message *Warn(FeatureOrUsageWarning warning, A &&...x) {
if (!context_.ShouldWarn(warning) || InModuleFile()) {
return nullptr;
} else {
return messages_.Say(warning, std::forward<A>(x)...);
}
}
template <typename FeatureOrUsageWarning, typename... A>
parser::Message *Warn(
FeatureOrUsageWarning warning, parser::CharBlock source, A &&...x) {
if (!context_.ShouldWarn(warning) ||
FindModuleFileContaining(context_.FindScope(source))) {
return nullptr;
} else {
return messages_.Say(warning, source, std::forward<A>(x)...);
}
}
bool IsResultOkToDiffer(const FunctionResult &);
void CheckGlobalName(const Symbol &);
void CheckProcedureAssemblyName(const Symbol &symbol);
void CheckExplicitSave(const Symbol &);
parser::Messages WhyNotInteroperableDerivedType(const Symbol &);
parser::Messages WhyNotInteroperableObject(const Symbol &);
parser::Messages WhyNotInteroperableFunctionResult(const Symbol &);
parser::Messages WhyNotInteroperableProcedure(const Symbol &, bool isError);
void CheckBindC(const Symbol &);
// Check functions for defined I/O procedures
void CheckDefinedIoProc(
const Symbol &, const GenericDetails &, common::DefinedIo);
bool CheckDioDummyIsData(const Symbol &, const Symbol *, std::size_t);
void CheckDioDummyIsDerived(
const Symbol &, const Symbol &, common::DefinedIo ioKind, const Symbol &);
void CheckDioDummyIsDefaultInteger(const Symbol &, const Symbol &);
void CheckDioDummyIsScalar(const Symbol &, const Symbol &);
void CheckDioDummyAttrs(const Symbol &, const Symbol &, Attr);
void CheckDioDtvArg(
const Symbol &, const Symbol *, common::DefinedIo, const Symbol &);
void CheckGenericVsIntrinsic(const Symbol &, const GenericDetails &);
void CheckDefaultIntegerArg(const Symbol &, const Symbol *, Attr);
void CheckDioAssumedLenCharacterArg(
const Symbol &, const Symbol *, std::size_t, Attr);
void CheckDioVlistArg(const Symbol &, const Symbol *, std::size_t);
void CheckDioArgCount(const Symbol &, common::DefinedIo ioKind, std::size_t);
struct TypeWithDefinedIo {
const DerivedTypeSpec &type;
common::DefinedIo ioKind;
const Symbol &proc;
const Symbol &generic;
};
void CheckAlreadySeenDefinedIo(const DerivedTypeSpec &, common::DefinedIo,
const Symbol &, const Symbol &generic);
void CheckModuleProcedureDef(const Symbol &);
SemanticsContext &context_;
evaluate::FoldingContext &foldingContext_{context_.foldingContext()};
parser::ContextualMessages &messages_{foldingContext_.messages()};
const Scope *scope_{nullptr};
bool scopeIsUninstantiatedPDT_{false};
// This symbol is the one attached to the innermost enclosing scope
// that has a symbol.
const Symbol *innermostSymbol_{nullptr};
// Cache of calls to Procedure::Characterize(Symbol)
std::map<SymbolRef, std::optional<Procedure>, SymbolAddressCompare>
characterizeCache_;
// Collection of module procedure symbols with non-BIND(C)
// global names, qualified by their module.
std::map<std::pair<SourceName, const Symbol *>, SymbolRef> moduleProcs_;
// Collection of symbols with global names, BIND(C) or otherwise
std::map<std::string, SymbolRef> globalNames_;
// Collection of external procedures without global definitions
std::map<std::string, SymbolRef> externalNames_;
// Collection of target dependent assembly names of external and BIND(C)
// procedures.
std::map<std::string, SymbolRef> procedureAssemblyNames_;
// Derived types that have been examined by WhyNotInteroperable_XXX
UnorderedSymbolSet examinedByWhyNotInteroperable_;
};
class DistinguishabilityHelper {
public:
DistinguishabilityHelper(SemanticsContext &context) : context_{context} {}
void Add(const Symbol &, GenericKind, const Symbol &, const Procedure &);
void Check(const Scope &);
private:
void SayNotDistinguishable(const Scope &, const SourceName &, GenericKind,
const Symbol &, const Symbol &, bool isHardConflict);
void AttachDeclaration(parser::Message &, const Scope &, const Symbol &);
SemanticsContext &context_;
struct ProcedureInfo {
GenericKind kind;
const Procedure &procedure;
};
std::map<SourceName, std::map<const Symbol *, ProcedureInfo>>
nameToSpecifics_;
};
void CheckHelper::Check(const ParamValue &value, bool canBeAssumed) {
if (value.isAssumed()) {
if (!canBeAssumed) { // C795, C721, C726
messages_.Say(
"An assumed (*) type parameter may be used only for a (non-statement function) dummy argument, associate name, character named constant, or external function result"_err_en_US);
}
} else {
CheckSpecExpr(value.GetExplicit(), /*forElementalFunctionResult=*/false);
}
}
void CheckHelper::Check(const ArraySpec &shape) {
for (const auto &spec : shape) {
Check(spec);
}
}
void CheckHelper::Check(
const DeclTypeSpec &type, bool canHaveAssumedTypeParameters) {
if (type.category() == DeclTypeSpec::Character) {
Check(type.characterTypeSpec().length(), canHaveAssumedTypeParameters);
} else if (const DerivedTypeSpec *derived{type.AsDerived()}) {
for (auto &parm : derived->parameters()) {
Check(parm.second, canHaveAssumedTypeParameters);
}
}
}
static bool IsBlockData(const Scope &scope) {
return scope.kind() == Scope::Kind::BlockData;
}
static bool IsBlockData(const Symbol &symbol) {
return symbol.scope() && IsBlockData(*symbol.scope());
}
void CheckHelper::Check(const Symbol &symbol) {
if (symbol.has<UseErrorDetails>()) {
return;
}
if (symbol.name().size() > common::maxNameLen &&
&symbol == &symbol.GetUltimate()) {
Warn(common::LanguageFeature::LongNames, symbol.name(),
"%s has length %d, which is greater than the maximum name length %d"_port_en_US,
symbol.name(), symbol.name().size(), common::maxNameLen);
}
if (context_.HasError(symbol)) {
return;
}
auto restorer{messages_.SetLocation(symbol.name())};
context_.set_location(symbol.name());
const DeclTypeSpec *type{symbol.GetType()};
const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr};
bool isDone{false};
common::visit(
common::visitors{
[&](const UseDetails &x) { isDone = true; },
[&](const HostAssocDetails &x) {
CheckHostAssoc(symbol, x);
isDone = true;
},
[&](const ProcBindingDetails &x) {
CheckProcBinding(symbol, x);
isDone = true;
},
[&](const ObjectEntityDetails &x) { CheckObjectEntity(symbol, x); },
[&](const ProcEntityDetails &x) { CheckProcEntity(symbol, x); },
[&](const SubprogramDetails &x) { CheckSubprogram(symbol, x); },
[&](const DerivedTypeDetails &x) { CheckDerivedType(symbol, x); },
[&](const GenericDetails &x) { CheckGeneric(symbol, x); },
[](const auto &) {},
},
symbol.details());
if (symbol.attrs().test(Attr::VOLATILE)) {
CheckVolatile(symbol, derived);
}
if (symbol.attrs().test(Attr::BIND_C)) {
CheckBindC(symbol);
}
if (symbol.attrs().test(Attr::SAVE) &&
!symbol.implicitAttrs().test(Attr::SAVE)) {
CheckExplicitSave(symbol);
}
if (symbol.attrs().test(Attr::CONTIGUOUS)) {
CheckContiguous(symbol);
}
CheckGlobalName(symbol);
CheckProcedureAssemblyName(symbol);
if (symbol.attrs().test(Attr::ASYNCHRONOUS) &&
!evaluate::IsVariable(symbol)) {
messages_.Say(
"An entity may not have the ASYNCHRONOUS attribute unless it is a variable"_err_en_US);
}
if (symbol.attrs().HasAny({Attr::INTENT_IN, Attr::INTENT_INOUT,
Attr::INTENT_OUT, Attr::OPTIONAL, Attr::VALUE}) &&
!IsDummy(symbol)) {
messages_.Say(
"Only a dummy argument may have an INTENT, VALUE, or OPTIONAL attribute"_err_en_US);
} else if (symbol.attrs().test(Attr::VALUE)) {
CheckValue(symbol, derived);
}
if (isDone) {
return; // following checks do not apply
}
if (symbol.attrs().test(Attr::PROTECTED)) {
if (symbol.owner().kind() != Scope::Kind::Module) { // C854
messages_.Say(
"A PROTECTED entity must be in the specification part of a module"_err_en_US);
}
if (!evaluate::IsVariable(symbol) && !IsProcedurePointer(symbol)) { // C855
messages_.Say(
"A PROTECTED entity must be a variable or pointer"_err_en_US);
}
if (FindCommonBlockContaining(symbol)) { // C856
messages_.Say(
"A PROTECTED entity may not be in a common block"_err_en_US);
}
}
if (IsPointer(symbol)) {
CheckPointer(symbol);
}
if (InPure()) {
if (InInterface()) {
// Declarations in interface definitions "have no effect" if they
// are not pertinent to the characteristics of the procedure.
// Restrictions on entities in pure procedure interfaces don't need
// enforcement.
} else if (!FindCommonBlockContaining(symbol) && IsSaved(symbol)) {
if (IsInitialized(symbol)) {
messages_.Say(
"A pure subprogram may not initialize a variable"_err_en_US);
} else {
messages_.Say(
"A pure subprogram may not have a variable with the SAVE attribute"_err_en_US);
}
}
if (symbol.attrs().test(Attr::VOLATILE) &&
(IsDummy(symbol) || !InInterface())) {
messages_.Say(
"A pure subprogram may not have a variable with the VOLATILE attribute"_err_en_US);
}
if (innermostSymbol_ && innermostSymbol_->name() == "__builtin_c_funloc") {
// The intrinsic procedure C_FUNLOC() gets a pass on this check.
} else if (IsProcedure(symbol) && !IsPureProcedure(symbol) &&
IsDummy(symbol)) {
messages_.Say(
"A dummy procedure of a pure subprogram must be pure"_err_en_US);
}
}
const auto *object{symbol.detailsIf<ObjectEntityDetails>()};
if (type) { // Section 7.2, paragraph 7; C795
bool isChar{type->category() == DeclTypeSpec::Character};
bool canHaveAssumedParameter{(isChar && IsNamedConstant(symbol)) ||
(IsAssumedLengthCharacter(symbol) && // C722
(IsExternal(symbol) ||
ClassifyProcedure(symbol) ==
ProcedureDefinitionClass::Dummy)) ||
symbol.test(Symbol::Flag::ParentComp)};
if (!IsStmtFunctionDummy(symbol)) { // C726
if (object) {
canHaveAssumedParameter |= object->isDummy() ||
(isChar && object->isFuncResult()) ||
IsStmtFunctionResult(symbol); // Avoids multiple messages
} else {
canHaveAssumedParameter |= symbol.has<AssocEntityDetails>();
}
}
if (IsProcedurePointer(symbol) && symbol.HasExplicitInterface()) {
// Don't check function result types here
} else {
Check(*type, canHaveAssumedParameter);
}
if (InFunction() && IsFunctionResult(symbol)) {
if (InPure()) {
if (type->IsPolymorphic() && IsAllocatable(symbol)) { // C1585
messages_.Say(
"Result of pure function may not be both polymorphic and ALLOCATABLE"_err_en_US);
}
if (derived) {
// These cases would be caught be the general validation of local
// variables in a pure context, but these messages are more specific.
if (HasImpureFinal(symbol)) { // C1584
messages_.Say(
"Result of pure function may not have an impure FINAL subroutine"_err_en_US);
}
if (auto bad{
FindPolymorphicAllocatablePotentialComponent(*derived)}) {
SayWithDeclaration(*bad,
"Result of pure function may not have polymorphic ALLOCATABLE potential component '%s'"_err_en_US,
bad.BuildResultDesignatorName());
}
}
}
if (InElemental() && isChar) { // F'2023 C15121
CheckSpecExpr(type->characterTypeSpec().length().GetExplicit(),
/*forElementalFunctionResult=*/true);
// TODO: check PDT LEN parameters
}
}
}
if (IsAssumedLengthCharacter(symbol) && IsFunction(symbol)) { // C723
if (symbol.attrs().test(Attr::RECURSIVE)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot be RECURSIVE"_err_en_US);
}
if (symbol.Rank() > 0) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot return an array"_err_en_US);
}
if (!IsStmtFunction(symbol)) {
if (IsElementalProcedure(symbol)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot be ELEMENTAL"_err_en_US);
} else if (IsPureProcedure(symbol)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot be PURE"_err_en_US);
}
}
if (const Symbol *result{FindFunctionResult(symbol)}) {
if (IsPointer(*result)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot return a POINTER"_err_en_US);
}
}
if (IsProcedurePointer(symbol) && IsDummy(symbol)) {
Warn(common::UsageWarning::Portability,
"A dummy procedure pointer should not have assumed-length CHARACTER(*) result type"_port_en_US);
// The non-dummy case is a hard error that's caught elsewhere.
}
}
if (IsDummy(symbol)) {
if (IsNamedConstant(symbol)) {
messages_.Say(
"A dummy argument may not also be a named constant"_err_en_US);
}
} else if (IsFunctionResult(symbol)) {
if (IsNamedConstant(symbol)) {
messages_.Say(
"A function result may not also be a named constant"_err_en_US);
}
}
if (IsAutomatic(symbol)) {
if (const Symbol * common{FindCommonBlockContaining(symbol)}) {
messages_.Say(
"Automatic data object '%s' may not appear in COMMON block /%s/"_err_en_US,
symbol.name(), common->name());
} else if (symbol.owner().IsModule()) {
messages_.Say(
"Automatic data object '%s' may not appear in a module"_err_en_US,
symbol.name());
} else if (IsBlockData(symbol.owner())) {
messages_.Say(
"Automatic data object '%s' may not appear in a BLOCK DATA subprogram"_err_en_US,
symbol.name());
} else if (symbol.owner().kind() == Scope::Kind::MainProgram) {
if (context_.IsEnabled(common::LanguageFeature::AutomaticInMainProgram)) {
Warn(common::LanguageFeature::AutomaticInMainProgram,
"Automatic data object '%s' should not appear in the specification part of a main program"_port_en_US,
symbol.name());
} else {
messages_.Say(
"Automatic data object '%s' may not appear in the specification part of a main program"_err_en_US,
symbol.name());
}
}
}
if (IsProcedure(symbol)) {
if (IsAllocatable(symbol)) {
messages_.Say(
"Procedure '%s' may not be ALLOCATABLE"_err_en_US, symbol.name());
}
if (!symbol.HasExplicitInterface() && symbol.Rank() > 0) {
messages_.Say(
"Procedure '%s' may not be an array without an explicit interface"_err_en_US,
symbol.name());
}
}
}
void CheckHelper::CheckCommonBlock(const Symbol &symbol) {
CheckGlobalName(symbol);
if (symbol.attrs().test(Attr::BIND_C)) {
CheckBindC(symbol);
}
for (MutableSymbolRef ref : symbol.get<CommonBlockDetails>().objects()) {
if (ref->test(Symbol::Flag::CrayPointee)) {
messages_.Say(ref->name(),
"Cray pointee '%s' may not be a member of a COMMON block"_err_en_US,
ref->name());
}
}
}
// C859, C860
void CheckHelper::CheckExplicitSave(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
if (ultimate.test(Symbol::Flag::InDataStmt)) {
// checked elsewhere
} else if (symbol.has<UseDetails>()) {
messages_.Say(
"The USE-associated name '%s' may not have an explicit SAVE attribute"_err_en_US,
symbol.name());
} else if (IsDummy(ultimate)) {
messages_.Say(
"The dummy argument '%s' may not have an explicit SAVE attribute"_err_en_US,
symbol.name());
} else if (IsFunctionResult(ultimate)) {
messages_.Say(
"The function result variable '%s' may not have an explicit SAVE attribute"_err_en_US,
symbol.name());
} else if (const Symbol * common{FindCommonBlockContaining(ultimate)}) {
messages_.Say(
"The entity '%s' in COMMON block /%s/ may not have an explicit SAVE attribute"_err_en_US,
symbol.name(), common->name());
} else if (IsAutomatic(ultimate)) {
messages_.Say(
"The automatic object '%s' may not have an explicit SAVE attribute"_err_en_US,
symbol.name());
} else if (!evaluate::IsVariable(ultimate) && !IsProcedurePointer(ultimate)) {
messages_.Say(
"The entity '%s' with an explicit SAVE attribute must be a variable, procedure pointer, or COMMON block"_err_en_US,
symbol.name());
}
}
void CheckHelper::CheckValue(
const Symbol &symbol, const DerivedTypeSpec *derived) { // C863 - C865
if (IsProcedure(symbol)) {
messages_.Say(
"VALUE attribute may apply only to a dummy data object"_err_en_US);
return; // don't pile on
}
if (IsAssumedSizeArray(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an assumed-size array"_err_en_US);
}
if (evaluate::IsCoarray(symbol)) {
messages_.Say("VALUE attribute may not apply to a coarray"_err_en_US);
}
if (IsAllocatable(symbol)) {
messages_.Say("VALUE attribute may not apply to an ALLOCATABLE"_err_en_US);
} else if (IsPointer(symbol)) {
messages_.Say("VALUE attribute may not apply to a POINTER"_err_en_US);
}
if (IsIntentInOut(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an INTENT(IN OUT) argument"_err_en_US);
} else if (IsIntentOut(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an INTENT(OUT) argument"_err_en_US);
}
if (symbol.attrs().test(Attr::VOLATILE)) {
messages_.Say("VALUE attribute may not apply to a VOLATILE"_err_en_US);
}
if (innermostSymbol_ && IsBindCProcedure(*innermostSymbol_)) {
if (IsOptional(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an OPTIONAL in a BIND(C) procedure"_err_en_US);
}
if (symbol.Rank() > 0) {
messages_.Say(
"VALUE attribute may not apply to an array in a BIND(C) procedure"_err_en_US);
}
}
if (derived) {
if (FindCoarrayUltimateComponent(*derived)) {
messages_.Say(
"VALUE attribute may not apply to a type with a coarray ultimate component"_err_en_US);
}
}
if (evaluate::IsAssumedRank(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an assumed-rank array"_err_en_US);
}
if (IsAssumedLengthCharacter(symbol)) {
// F'2008 feature not widely implemented
Warn(common::UsageWarning::Portability,
"VALUE attribute on assumed-length CHARACTER may not be portable"_port_en_US);
}
}
void CheckHelper::CheckAssumedTypeEntity( // C709
const Symbol &symbol, const ObjectEntityDetails &details) {
if (const DeclTypeSpec *type{symbol.GetType()};
type && type->category() == DeclTypeSpec::TypeStar) {
if (!IsDummy(symbol)) {
messages_.Say(
"Assumed-type entity '%s' must be a dummy argument"_err_en_US,
symbol.name());
} else {
if (symbol.attrs().test(Attr::ALLOCATABLE)) {
messages_.Say("Assumed-type argument '%s' cannot have the ALLOCATABLE"
" attribute"_err_en_US,
symbol.name());
}
if (symbol.attrs().test(Attr::POINTER)) {
messages_.Say("Assumed-type argument '%s' cannot have the POINTER"
" attribute"_err_en_US,
symbol.name());
}
if (symbol.attrs().test(Attr::VALUE)) {
messages_.Say("Assumed-type argument '%s' cannot have the VALUE"
" attribute"_err_en_US,
symbol.name());
}
if (symbol.attrs().test(Attr::INTENT_OUT)) {
messages_.Say(
"Assumed-type argument '%s' cannot be INTENT(OUT)"_err_en_US,
symbol.name());
}
if (evaluate::IsCoarray(symbol)) {
messages_.Say(
"Assumed-type argument '%s' cannot be a coarray"_err_en_US,
symbol.name());
}
if (details.IsArray() && details.shape().IsExplicitShape()) {
messages_.Say("Assumed-type array argument '%s' must be assumed shape,"
" assumed size, or assumed rank"_err_en_US,
symbol.name());
}
}
}
}
void CheckHelper::CheckObjectEntity(
const Symbol &symbol, const ObjectEntityDetails &details) {
CheckSymbolType(symbol);
CheckArraySpec(symbol, details.shape());
CheckConflicting(symbol, Attr::ALLOCATABLE, Attr::PARAMETER);
CheckConflicting(symbol, Attr::ASYNCHRONOUS, Attr::PARAMETER);
CheckConflicting(symbol, Attr::SAVE, Attr::PARAMETER);
CheckConflicting(symbol, Attr::TARGET, Attr::PARAMETER);
CheckConflicting(symbol, Attr::VOLATILE, Attr::PARAMETER);
Check(details.shape());
Check(details.coshape());
if (details.shape().Rank() > common::maxRank) {
messages_.Say(
"'%s' has rank %d, which is greater than the maximum supported rank %d"_err_en_US,
symbol.name(), details.shape().Rank(), common::maxRank);
} else if (details.shape().Rank() + details.coshape().Rank() >
common::maxRank) {
messages_.Say(
"'%s' has rank %d and corank %d, whose sum is greater than the maximum supported rank %d"_err_en_US,
symbol.name(), details.shape().Rank(), details.coshape().Rank(),
common::maxRank);
}
CheckAssumedTypeEntity(symbol, details);
WarnMissingFinal(symbol);
const DeclTypeSpec *type{details.type()};
const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr};
bool isComponent{symbol.owner().IsDerivedType()};
if (!details.coshape().empty()) {
bool isDeferredCoshape{details.coshape().CanBeDeferredShape()};
if (IsAllocatable(symbol)) {
if (!isDeferredCoshape) { // C827
messages_.Say("'%s' is an ALLOCATABLE coarray and must have a deferred"
" coshape"_err_en_US,
symbol.name());
}
} else if (isComponent) { // C746
std::string deferredMsg{
isDeferredCoshape ? "" : " and have a deferred coshape"};
messages_.Say("Component '%s' is a coarray and must have the ALLOCATABLE"
" attribute%s"_err_en_US,
symbol.name(), deferredMsg);
} else {
if (!details.coshape().CanBeAssumedSize()) { // C828
messages_.Say(
"'%s' is a non-ALLOCATABLE coarray and must have an explicit coshape"_err_en_US,
symbol.name());
}
}
if (IsBadCoarrayType(derived)) { // C747 & C824
messages_.Say(
"Coarray '%s' may not have type TEAM_TYPE, C_PTR, or C_FUNPTR"_err_en_US,
symbol.name());
}
if (evaluate::IsAssumedRank(symbol)) {
messages_.Say("Coarray '%s' may not be an assumed-rank array"_err_en_US,
symbol.name());
}
}
if (details.isDummy()) {
if (IsIntentOut(symbol)) {
// Some of these errors would also be caught by the general check
// for definability of automatically deallocated local variables,
// but these messages are more specific.
if (FindUltimateComponent(symbol, [](const Symbol &x) {
return evaluate::IsCoarray(x) && IsAllocatable(x);
})) { // C846
messages_.Say(
"An INTENT(OUT) dummy argument may not be, or contain, an ALLOCATABLE coarray"_err_en_US);
}
if (IsOrContainsEventOrLockComponent(symbol)) { // C847
messages_.Say(
"An INTENT(OUT) dummy argument may not be, or contain, EVENT_TYPE or LOCK_TYPE"_err_en_US);
}
if (IsAssumedSizeArray(symbol)) { // C834
if (type && type->IsPolymorphic()) {
messages_.Say(
"An INTENT(OUT) assumed-size dummy argument array may not be polymorphic"_err_en_US);
}
if (derived) {
if (derived->HasDefaultInitialization()) {
messages_.Say(
"An INTENT(OUT) assumed-size dummy argument array may not have a derived type with any default component initialization"_err_en_US);
}
if (IsFinalizable(*derived)) {
messages_.Say(
"An INTENT(OUT) assumed-size dummy argument array may not be finalizable"_err_en_US);
}
}
}
}
if (InPure() && !IsStmtFunction(DEREF(innermostSymbol_)) &&
!IsPointer(symbol) && !IsIntentIn(symbol) &&
!symbol.attrs().test(Attr::VALUE)) {
const char *what{InFunction() ? "function" : "subroutine"};
bool ok{true};
if (IsIntentOut(symbol)) {
if (type && type->IsPolymorphic()) { // C1588
messages_.Say(
"An INTENT(OUT) dummy argument of a pure %s may not be polymorphic"_err_en_US,
what);
ok = false;
} else if (derived) {
if (FindUltimateComponent(*derived, [](const Symbol &x) {
const DeclTypeSpec *type{x.GetType()};
return type && type->IsPolymorphic();
})) { // C1588
messages_.Say(
"An INTENT(OUT) dummy argument of a pure %s may not have a polymorphic ultimate component"_err_en_US,
what);
ok = false;
}
if (HasImpureFinal(symbol)) { // C1587
messages_.Say(
"An INTENT(OUT) dummy argument of a pure %s may not have an impure FINAL subroutine"_err_en_US,
what);
ok = false;
}
}
} else if (!IsIntentInOut(symbol)) { // C1586
messages_.Say(
"non-POINTER dummy argument of pure %s must have INTENT() or VALUE attribute"_err_en_US,
what);
ok = false;
}
if (ok && InFunction() && !InModuleFile() && !InElemental()) {
if (context_.IsEnabled(common::LanguageFeature::RelaxedPureDummy)) {
Warn(common::LanguageFeature::RelaxedPureDummy,
"non-POINTER dummy argument of pure function should be INTENT(IN) or VALUE"_warn_en_US);
} else {
messages_.Say(
"non-POINTER dummy argument of pure function must be INTENT(IN) or VALUE"_err_en_US);
}
}
}
if (auto ignoreTKR{GetIgnoreTKR(symbol)}; !ignoreTKR.empty()) {
const Symbol *ownerSymbol{symbol.owner().symbol()};
bool inModuleProc{ownerSymbol && IsModuleProcedure(*ownerSymbol)};
bool inExplicitExternalInterface{
InInterface() && !IsSeparateModuleProcedureInterface(ownerSymbol)};
if (!InInterface() && !inModuleProc) {
messages_.Say(
"!DIR$ IGNORE_TKR may apply only in an interface or a module procedure"_err_en_US);
}
if (ownerSymbol && ownerSymbol->attrs().test(Attr::ELEMENTAL) &&
details.ignoreTKR().test(common::IgnoreTKR::Rank)) {
messages_.Say(
"!DIR$ IGNORE_TKR(R) may not apply in an ELEMENTAL procedure"_err_en_US);
}
if (IsPassedViaDescriptor(symbol)) {
if (IsAllocatableOrObjectPointer(&symbol)) {
if (inExplicitExternalInterface) {
Warn(common::UsageWarning::IgnoreTKRUsage,
"!DIR$ IGNORE_TKR should not apply to an allocatable or pointer"_warn_en_US);
} else {
messages_.Say(
"!DIR$ IGNORE_TKR may not apply to an allocatable or pointer"_err_en_US);
}
} else if (ignoreTKR.test(common::IgnoreTKR::Rank)) {
if (ignoreTKR.count() == 1 && evaluate::IsAssumedRank(symbol)) {
Warn(common::UsageWarning::IgnoreTKRUsage,
"!DIR$ IGNORE_TKR(R) is not meaningful for an assumed-rank array"_warn_en_US);
} else if (inExplicitExternalInterface) {
Warn(common::UsageWarning::IgnoreTKRUsage,
"!DIR$ IGNORE_TKR(R) should not apply to a dummy argument passed via descriptor"_warn_en_US);
} else {
messages_.Say(
"!DIR$ IGNORE_TKR(R) may not apply to a dummy argument passed via descriptor"_err_en_US);
}
}
}
}
} else if (!details.ignoreTKR().empty()) {
messages_.Say(
"!DIR$ IGNORE_TKR directive may apply only to a dummy data argument"_err_en_US);
}
if (InElemental()) {
if (details.isDummy()) { // C15100
if (details.shape().Rank() > 0) {
messages_.Say(
"A dummy argument of an ELEMENTAL procedure must be scalar"_err_en_US);
}
if (IsAllocatable(symbol)) {
messages_.Say(
"A dummy argument of an ELEMENTAL procedure may not be ALLOCATABLE"_err_en_US);
}
if (evaluate::IsCoarray(symbol)) {
messages_.Say(
"A dummy argument of an ELEMENTAL procedure may not be a coarray"_err_en_US);
}
if (IsPointer(symbol)) {
messages_.Say(
"A dummy argument of an ELEMENTAL procedure may not be a POINTER"_err_en_US);
}
if (!symbol.attrs().HasAny(Attrs{Attr::VALUE, Attr::INTENT_IN,
Attr::INTENT_INOUT, Attr::INTENT_OUT})) { // F'2023 C15120
messages_.Say(
"A dummy argument of an ELEMENTAL procedure must have an INTENT() or VALUE attribute"_err_en_US);
}
} else if (IsFunctionResult(symbol)) { // C15101
if (details.shape().Rank() > 0) {
messages_.Say(
"The result of an ELEMENTAL function must be scalar"_err_en_US);
}
if (IsAllocatable(symbol)) {
messages_.Say(
"The result of an ELEMENTAL function may not be ALLOCATABLE"_err_en_US);
}
if (IsPointer(symbol)) {
messages_.Say(
"The result of an ELEMENTAL function may not be a POINTER"_err_en_US);
}
}
}
if (HasDeclarationInitializer(symbol)) { // C808; ignore DATA initialization
CheckPointerInitialization(symbol);
if (IsAutomatic(symbol)) {
messages_.Say(
"An automatic variable or component must not be initialized"_err_en_US);
} else if (IsDummy(symbol)) {
messages_.Say("A dummy argument must not be initialized"_err_en_US);
} else if (IsFunctionResult(symbol)) {
messages_.Say("A function result must not be initialized"_err_en_US);
} else if (IsInBlankCommon(symbol)) {
Warn(common::LanguageFeature::InitBlankCommon,
"A variable in blank COMMON should not be initialized"_port_en_US);
}
}
if (symbol.owner().kind() == Scope::Kind::BlockData) {
if (IsAllocatable(symbol)) {
messages_.Say(
"An ALLOCATABLE variable may not appear in a BLOCK DATA subprogram"_err_en_US);
} else if (IsInitialized(symbol) && !FindCommonBlockContaining(symbol)) {
messages_.Say(
"An initialized variable in BLOCK DATA must be in a COMMON block"_err_en_US);
}
}
if (derived && InPure() && !InInterface() &&
IsAutomaticallyDestroyed(symbol) &&
!IsIntentOut(symbol) /*has better messages*/ &&
!IsFunctionResult(symbol) /*ditto*/) {
// Check automatically deallocated local variables for possible
// problems with finalization in PURE.
if (auto whyNot{
WhyNotDefinable(symbol.name(), symbol.owner(), {}, symbol)}) {
if (auto *msg{messages_.Say(
"'%s' may not be a local variable in a pure subprogram"_err_en_US,
symbol.name())}) {
msg->Attach(std::move(whyNot->set_severity(parser::Severity::Because)));
}
}
}
if (symbol.attrs().test(Attr::EXTERNAL)) {
SayWithDeclaration(symbol,
"'%s' is a data object and may not be EXTERNAL"_err_en_US,
symbol.name());
}
// Check CUDA attributes and special circumstances of being in device
// subprograms
const Scope &progUnit{GetProgramUnitContaining(symbol)};
const auto *subpDetails{!isComponent && progUnit.symbol()
? progUnit.symbol()->detailsIf<SubprogramDetails>()
: nullptr};
bool inDeviceSubprogram{IsCUDADeviceContext(&symbol.owner())};
if (inDeviceSubprogram) {
if (IsSaved(symbol)) {
Warn(common::UsageWarning::CUDAUsage,
"'%s' should not have the SAVE attribute or initialization in a device subprogram"_warn_en_US,
symbol.name());
}
if (IsPointer(symbol)) {
Warn(common::UsageWarning::CUDAUsage,
"Pointer '%s' may not be associated in a device subprogram"_warn_en_US,
symbol.name());
}
if (details.isDummy() &&
details.cudaDataAttr().value_or(common::CUDADataAttr::Device) !=
common::CUDADataAttr::Device &&
details.cudaDataAttr().value_or(common::CUDADataAttr::Device) !=
common::CUDADataAttr::Managed) {
Warn(common::UsageWarning::CUDAUsage,
"Dummy argument '%s' may not have ATTRIBUTES(%s) in a device subprogram"_warn_en_US,
symbol.name(),
parser::ToUpperCaseLetters(
common::EnumToString(*details.cudaDataAttr())));
}
}
if (details.cudaDataAttr()) {
if (auto dyType{evaluate::DynamicType::From(symbol)}) {
if (dyType->category() != TypeCategory::Derived) {
if (!IsCUDAIntrinsicType(*dyType)) {
messages_.Say(
"'%s' has intrinsic type '%s' that is not available on the device"_err_en_US,
symbol.name(), dyType->AsFortran());
}
}
}
auto attr{*details.cudaDataAttr()};
switch (attr) {
case common::CUDADataAttr::Constant:
if (subpDetails && !inDeviceSubprogram) {
messages_.Say(
"Object '%s' with ATTRIBUTES(CONSTANT) may not be declared in a host subprogram"_err_en_US,
symbol.name());
} else if (IsAllocatableOrPointer(symbol) ||
symbol.attrs().test(Attr::TARGET)) {
messages_.Say(
"Object '%s' with ATTRIBUTES(CONSTANT) may not be allocatable, pointer, or target"_err_en_US,
symbol.name());
} else if (auto shape{evaluate::GetShape(foldingContext_, symbol)};
!shape ||
!evaluate::AsConstantExtents(foldingContext_, *shape)) {
messages_.Say(
"Object '%s' with ATTRIBUTES(CONSTANT) must have constant array bounds"_err_en_US,
symbol.name());
}
break;
case common::CUDADataAttr::Device:
if (isComponent && !IsAllocatable(symbol)) {
messages_.Say(
"Component '%s' with ATTRIBUTES(DEVICE) must also be allocatable"_err_en_US,
symbol.name());
}
break;
case common::CUDADataAttr::Managed:
if (!IsAutomatic(symbol) && !IsAllocatable(symbol) &&
!details.isDummy() && !evaluate::IsExplicitShape(symbol)) {
messages_.Say(
"Object '%s' with ATTRIBUTES(MANAGED) must also be allocatable, automatic, explicit shape, or a dummy argument"_err_en_US,
symbol.name());
}
break;
case common::CUDADataAttr::Pinned:
if (inDeviceSubprogram) {
Warn(common::UsageWarning::CUDAUsage,
"Object '%s' with ATTRIBUTES(PINNED) may not be declared in a device subprogram"_warn_en_US,
symbol.name());
} else if (IsPointer(symbol)) {
Warn(common::UsageWarning::CUDAUsage,
"Object '%s' with ATTRIBUTES(PINNED) may not be a pointer"_warn_en_US,
symbol.name());
} else if (!IsAllocatable(symbol)) {
Warn(common::UsageWarning::CUDAUsage,
"Object '%s' with ATTRIBUTES(PINNED) should also be allocatable"_warn_en_US,
symbol.name());
}
break;
case common::CUDADataAttr::Shared:
if (IsAllocatableOrPointer(symbol) || symbol.attrs().test(Attr::TARGET)) {
messages_.Say(
"Object '%s' with ATTRIBUTES(SHARED) may not be allocatable, pointer, or target"_err_en_US,
symbol.name());
} else if (!inDeviceSubprogram) {
messages_.Say(
"Object '%s' with ATTRIBUTES(SHARED) must be declared in a device subprogram"_err_en_US,
symbol.name());
}
break;
case common::CUDADataAttr::Unified:
if (((!subpDetails &&
symbol.owner().kind() != Scope::Kind::MainProgram) ||
inDeviceSubprogram) &&
!isComponent) {
messages_.Say(
"Object '%s' with ATTRIBUTES(UNIFIED) must be declared in a host subprogram"_err_en_US,
symbol.name());
}
break;
case common::CUDADataAttr::Texture:
messages_.Say(
"ATTRIBUTES(TEXTURE) is obsolete and no longer supported"_err_en_US);
break;
}
if (attr != common::CUDADataAttr::Pinned) {
if (details.commonBlock()) {
messages_.Say(
"Object '%s' with ATTRIBUTES(%s) may not be in COMMON"_err_en_US,
symbol.name(),
parser::ToUpperCaseLetters(common::EnumToString(attr)));
} else if (FindEquivalenceSet(symbol)) {
messages_.Say(
"Object '%s' with ATTRIBUTES(%s) may not be in an equivalence group"_err_en_US,
symbol.name(),
parser::ToUpperCaseLetters(common::EnumToString(attr)));
}
}
if (subpDetails /* not a module variable */ && IsSaved(symbol) &&
!inDeviceSubprogram && !IsAllocatable(symbol) &&
attr == common::CUDADataAttr::Device) {
messages_.Say(
"Saved object '%s' in host code may not have ATTRIBUTES(DEVICE) unless allocatable"_err_en_US,
symbol.name(),
parser::ToUpperCaseLetters(common::EnumToString(attr)));
}
if (isComponent) {
if (attr == common::CUDADataAttr::Device) {
const DeclTypeSpec *type{symbol.GetType()};
if (const DerivedTypeSpec *
derived{type ? type->AsDerived() : nullptr}) {
DirectComponentIterator directs{*derived};
if (auto iter{std::find_if(directs.begin(), directs.end(),
[](const Symbol &) { return false; })}) {
messages_.Say(
"Derived type component '%s' may not have ATTRIBUTES(DEVICE) as it has a direct device component '%s'"_err_en_US,
symbol.name(), iter.BuildResultDesignatorName());
}
}
} else if (attr == common::CUDADataAttr::Constant ||
attr == common::CUDADataAttr::Shared) {
messages_.Say(
"Derived type component '%s' may not have ATTRIBUTES(%s)"_err_en_US,
symbol.name(),
parser::ToUpperCaseLetters(common::EnumToString(attr)));
}
} else if (!subpDetails && symbol.owner().kind() != Scope::Kind::Module &&
symbol.owner().kind() != Scope::Kind::MainProgram &&
symbol.owner().kind() != Scope::Kind::BlockConstruct) {
messages_.Say(
"ATTRIBUTES(%s) may apply only to module, host subprogram, block, or device subprogram data"_err_en_US,
parser::ToUpperCaseLetters(common::EnumToString(attr)));
}
}
if (derived && derived->IsVectorType()) {
CHECK(type);
std::string typeName{type->AsFortran()};
if (IsAssumedShape(symbol)) {
SayWithDeclaration(symbol,
"Assumed-shape entity of %s type is not supported"_err_en_US,
typeName);
} else if (IsDeferredShape(symbol)) {
SayWithDeclaration(symbol,
"Deferred-shape entity of %s type is not supported"_err_en_US,
typeName);
} else if (evaluate::IsAssumedRank(symbol)) {
SayWithDeclaration(symbol,
"Assumed Rank entity of %s type is not supported"_err_en_US,
typeName);
}
}
}
void CheckHelper::CheckPointerInitialization(const Symbol &symbol) {
if (IsPointer(symbol) && !context_.HasError(symbol) &&
!scopeIsUninstantiatedPDT_) {
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (object->init()) { // C764, C765; C808
if (auto designator{evaluate::AsGenericExpr(symbol)}) {
auto restorer{messages_.SetLocation(symbol.name())};
context_.set_location(symbol.name());
CheckInitialDataPointerTarget(
context_, *designator, *object->init(), DEREF(scope_));
}
}
} else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
if (proc->init() && *proc->init()) {
// C1519 - must be nonelemental external or module procedure,
// or an unrestricted specific intrinsic function.
const Symbol &ultimate{(*proc->init())->GetUltimate()};
bool checkTarget{true};
if (ultimate.attrs().test(Attr::INTRINSIC)) {
if (auto intrinsic{context_.intrinsics().IsSpecificIntrinsicFunction(
ultimate.name().ToString())};
!intrinsic || intrinsic->isRestrictedSpecific) { // C1030
context_.Say(
"Intrinsic procedure '%s' is not an unrestricted specific "
"intrinsic permitted for use as the initializer for procedure "
"pointer '%s'"_err_en_US,
ultimate.name(), symbol.name());
checkTarget = false;
}
} else if ((!ultimate.attrs().test(Attr::EXTERNAL) &&
ultimate.owner().kind() != Scope::Kind::Module) ||
IsDummy(ultimate) || IsPointer(ultimate)) {
context_.Say("Procedure pointer '%s' initializer '%s' is neither "
"an external nor a module procedure"_err_en_US,
symbol.name(), ultimate.name());
checkTarget = false;
} else if (IsElementalProcedure(ultimate)) {
context_.Say("Procedure pointer '%s' cannot be initialized with the "
"elemental procedure '%s'"_err_en_US,
symbol.name(), ultimate.name());
checkTarget = false;
}
if (checkTarget) {
SomeExpr lhs{evaluate::ProcedureDesignator{symbol}};
SomeExpr rhs{evaluate::ProcedureDesignator{**proc->init()}};
CheckPointerAssignment(context_, lhs, rhs,
GetProgramUnitOrBlockConstructContaining(symbol),
/*isBoundsRemapping=*/false, /*isAssumedRank=*/false);
}
}
}
}
}
// The six different kinds of array-specs:
// array-spec -> explicit-shape-list | deferred-shape-list
// | assumed-shape-list | implied-shape-list
// | assumed-size | assumed-rank
// explicit-shape -> [ lb : ] ub
// deferred-shape -> :
// assumed-shape -> [ lb ] :
// implied-shape -> [ lb : ] *
// assumed-size -> [ explicit-shape-list , ] [ lb : ] *
// assumed-rank -> ..
// Note:
// - deferred-shape is also an assumed-shape
// - A single "*" or "lb:*" might be assumed-size or implied-shape-list
void CheckHelper::CheckArraySpec(
const Symbol &symbol, const ArraySpec &arraySpec) {
if (arraySpec.Rank() == 0) {
return;
}
bool isExplicit{arraySpec.IsExplicitShape()};
bool canBeDeferred{arraySpec.CanBeDeferredShape()};
bool canBeImplied{arraySpec.CanBeImpliedShape()};
bool canBeAssumedShape{arraySpec.CanBeAssumedShape()};
bool canBeAssumedSize{arraySpec.CanBeAssumedSize()};
bool isAssumedRank{arraySpec.IsAssumedRank()};
bool isCUDAShared{
GetCUDADataAttr(&symbol).value_or(common::CUDADataAttr::Device) ==
common::CUDADataAttr::Shared};
bool isCrayPointee{symbol.test(Symbol::Flag::CrayPointee)};
std::optional<parser::MessageFixedText> msg;
if (isCrayPointee && !isExplicit && !canBeAssumedSize) {
msg =
"Cray pointee '%s' must have explicit shape or assumed size"_err_en_US;
} else if (IsAllocatableOrPointer(symbol) && !canBeDeferred &&
!isAssumedRank) {
if (symbol.owner().IsDerivedType()) { // C745
if (IsAllocatable(symbol)) {
msg = "Allocatable array component '%s' must have"
" deferred shape"_err_en_US;
} else {
msg = "Array pointer component '%s' must have deferred shape"_err_en_US;
}
} else {
if (IsAllocatable(symbol)) { // C832
msg = "Allocatable array '%s' must have deferred shape or"
" assumed rank"_err_en_US;
} else {
msg = "Array pointer '%s' must have deferred shape or"
" assumed rank"_err_en_US;
}
}
} else if (IsDummy(symbol)) {
if (canBeImplied && !canBeAssumedSize) { // C836
msg = "Dummy array argument '%s' may not have implied shape"_err_en_US;
}
} else if (canBeAssumedShape && !canBeDeferred) {
msg = "Assumed-shape array '%s' must be a dummy argument"_err_en_US;
} else if (isAssumedRank) { // C837
msg = "Assumed-rank array '%s' must be a dummy argument"_err_en_US;
} else if (canBeAssumedSize && !canBeImplied && !isCUDAShared &&
!isCrayPointee) { // C833
msg = "Assumed-size array '%s' must be a dummy argument"_err_en_US;
} else if (canBeImplied) {
if (!IsNamedConstant(symbol) && !isCUDAShared &&
!isCrayPointee) { // C835, C836
msg = "Implied-shape array '%s' must be a named constant or a "
"dummy argument"_err_en_US;
}
} else if (IsNamedConstant(symbol)) {
if (!isExplicit && !canBeImplied) {
msg = "Named constant '%s' array must have constant or"
" implied shape"_err_en_US;
}
} else if (!isExplicit &&
!(IsAllocatableOrPointer(symbol) || isCrayPointee)) {
if (symbol.owner().IsDerivedType()) { // C749
msg = "Component array '%s' without ALLOCATABLE or POINTER attribute must"
" have explicit shape"_err_en_US;
} else { // C816
msg = "Array '%s' without ALLOCATABLE or POINTER attribute must have"
" explicit shape"_err_en_US;
}
}
if (msg) {
context_.Say(std::move(*msg), symbol.name());
}
}
void CheckHelper::CheckProcEntity(
const Symbol &symbol, const ProcEntityDetails &details) {
CheckSymbolType(symbol);
const Symbol *interface{details.procInterface()};
if (details.isDummy()) {
if (!symbol.attrs().test(Attr::POINTER) && // C843
symbol.attrs().HasAny(
{Attr::INTENT_IN, Attr::INTENT_OUT, Attr::INTENT_INOUT})) {
messages_.Say("A dummy procedure without the POINTER attribute"
" may not have an INTENT attribute"_err_en_US);
}
if (InElemental()) { // C15100
messages_.Say(
"An ELEMENTAL subprogram may not have a dummy procedure"_err_en_US);
}
if (interface && IsElementalProcedure(*interface)) {
// There's no explicit constraint or "shall" that we can find in the
// standard for this check, but it seems to be implied in multiple
// sites, and ELEMENTAL non-intrinsic actual arguments *are*
// explicitly forbidden. But we allow "PROCEDURE(SIN)::dummy"
// because it is explicitly legal to *pass* the specific intrinsic
// function SIN as an actual argument.
if (interface->attrs().test(Attr::INTRINSIC)) {
Warn(common::UsageWarning::Portability,
"A dummy procedure should not have an ELEMENTAL intrinsic as its interface"_port_en_US);
} else {
messages_.Say("A dummy procedure may not be ELEMENTAL"_err_en_US);
}
}
} else if (IsPointer(symbol)) {
CheckPointerInitialization(symbol);
if (interface) {
if (interface->attrs().test(Attr::INTRINSIC)) {
auto intrinsic{context_.intrinsics().IsSpecificIntrinsicFunction(
interface->name().ToString())};
if (!intrinsic || intrinsic->isRestrictedSpecific) { // C1515
messages_.Say(
"Intrinsic procedure '%s' is not an unrestricted specific "
"intrinsic permitted for use as the definition of the interface "
"to procedure pointer '%s'"_err_en_US,
interface->name(), symbol.name());
} else if (IsElementalProcedure(*interface)) {
Warn(common::UsageWarning::Portability,
"Procedure pointer '%s' should not have an ELEMENTAL intrinsic as its interface"_port_en_US,
symbol.name()); // C1517
}
} else if (IsElementalProcedure(*interface)) {
messages_.Say("Procedure pointer '%s' may not be ELEMENTAL"_err_en_US,
symbol.name()); // C1517
}
}
if (symbol.owner().IsDerivedType()) {
CheckPassArg(symbol, interface, details);
}
} else if (symbol.owner().IsDerivedType()) {
const auto &name{symbol.name()};
messages_.Say(name,
"Procedure component '%s' must have POINTER attribute"_err_en_US, name);
}
CheckExternal(symbol);
}
// When a module subprogram has the MODULE prefix the following must match
// with the corresponding separate module procedure interface body:
// - C1549: characteristics and dummy argument names
// - C1550: binding label
// - C1551: NON_RECURSIVE prefix
class SubprogramMatchHelper {
public:
explicit SubprogramMatchHelper(CheckHelper &checkHelper)
: checkHelper{checkHelper} {}
void Check(const Symbol &, const Symbol &);
private:
SemanticsContext &context() { return checkHelper.context(); }
void CheckDummyArg(const Symbol &, const Symbol &, const DummyArgument &,
const DummyArgument &);
void CheckDummyDataObject(const Symbol &, const Symbol &,
const DummyDataObject &, const DummyDataObject &);
void CheckDummyProcedure(const Symbol &, const Symbol &,
const DummyProcedure &, const DummyProcedure &);
bool CheckSameIntent(
const Symbol &, const Symbol &, common::Intent, common::Intent);
template <typename... A>
void Say(
const Symbol &, const Symbol &, parser::MessageFixedText &&, A &&...);
template <typename ATTRS>
bool CheckSameAttrs(const Symbol &, const Symbol &, ATTRS, ATTRS);
bool ShapesAreCompatible(const DummyDataObject &, const DummyDataObject &);
evaluate::Shape FoldShape(const evaluate::Shape &);
std::optional<evaluate::Shape> FoldShape(
const std::optional<evaluate::Shape> &shape) {
if (shape) {
return FoldShape(*shape);
}
return std::nullopt;
}
std::string AsFortran(DummyDataObject::Attr attr) {
return parser::ToUpperCaseLetters(DummyDataObject::EnumToString(attr));
}
std::string AsFortran(DummyProcedure::Attr attr) {
return parser::ToUpperCaseLetters(DummyProcedure::EnumToString(attr));
}
CheckHelper &checkHelper;
};
// 15.6.2.6 para 3 - can the result of an ENTRY differ from its function?
bool CheckHelper::IsResultOkToDiffer(const FunctionResult &result) {
if (result.attrs.test(FunctionResult::Attr::Allocatable) ||
result.attrs.test(FunctionResult::Attr::Pointer)) {
return false;
}
const auto *typeAndShape{result.GetTypeAndShape()};
if (!typeAndShape || typeAndShape->Rank() != 0) {
return false;
}
auto category{typeAndShape->type().category()};
if (category == TypeCategory::Character ||
category == TypeCategory::Derived) {
return false;
}
int kind{typeAndShape->type().kind()};
return kind == context_.GetDefaultKind(category) ||
(category == TypeCategory::Real &&
kind == context_.doublePrecisionKind());
}
void CheckHelper::CheckSubprogram(
const Symbol &symbol, const SubprogramDetails &details) {
// Evaluate a procedure definition's characteristics to flush out
// any errors that analysis might expose, in case this subprogram hasn't
// had any calls in this compilation unit that would have validated them.
if (!context_.HasError(symbol) && !details.isDummy() &&
!details.isInterface() && !details.stmtFunction()) {
if (!Procedure::Characterize(symbol, foldingContext_)) {
context_.SetError(symbol);
}
}
if (const Symbol *iface{FindSeparateModuleSubprogramInterface(&symbol)}) {
SubprogramMatchHelper{*this}.Check(symbol, *iface);
}
if (const Scope *entryScope{details.entryScope()}) {
// ENTRY F'2023 15.6.2.6
std::optional<parser::MessageFixedText> error;
const Symbol *subprogram{entryScope->symbol()};
const SubprogramDetails *subprogramDetails{nullptr};
if (subprogram) {
subprogramDetails = subprogram->detailsIf<SubprogramDetails>();
}
if (!(entryScope->parent().IsGlobal() || entryScope->parent().IsModule() ||
entryScope->parent().IsSubmodule())) {
error = "ENTRY may not appear in an internal subprogram"_err_en_US;
} else if (subprogramDetails && details.isFunction() &&
subprogramDetails->isFunction() &&
!context_.HasError(details.result()) &&
!context_.HasError(subprogramDetails->result())) {
auto result{FunctionResult::Characterize(
details.result(), context_.foldingContext())};
auto subpResult{FunctionResult::Characterize(
subprogramDetails->result(), context_.foldingContext())};
if (result && subpResult && *result != *subpResult &&
(!IsResultOkToDiffer(*result) || !IsResultOkToDiffer(*subpResult))) {
error =
"Result of ENTRY is not compatible with result of containing function"_err_en_US;
}
}
if (error) {
if (auto *msg{messages_.Say(symbol.name(), *error)}) {
if (subprogram) {
msg->Attach(subprogram->name(), "Containing subprogram"_en_US);
}
}
}
}
if (details.isFunction() &&
details.result().name() != symbol.name()) { // F'2023 C1569 & C1583
if (auto iter{symbol.owner().find(details.result().name())};
iter != symbol.owner().end()) {
const Symbol &resNameSym{*iter->second};
if (const auto *resNameSubp{resNameSym.detailsIf<SubprogramDetails>()}) {
if (const Scope * resNameEntryScope{resNameSubp->entryScope()}) {
const Scope *myScope{
details.entryScope() ? details.entryScope() : symbol.scope()};
if (resNameEntryScope == myScope) {
if (auto *msg{messages_.Say(symbol.name(),
"Explicit RESULT('%s') of function '%s' cannot have the same name as a distinct ENTRY into the same scope"_err_en_US,
details.result().name(), symbol.name())}) {
msg->Attach(
resNameSym.name(), "ENTRY with conflicting name"_en_US);
}
}
}
}
}
}
if (const MaybeExpr & stmtFunction{details.stmtFunction()}) {
if (auto msg{evaluate::CheckStatementFunction(
symbol, *stmtFunction, context_.foldingContext())}) {
SayWithDeclaration(symbol, std::move(*msg));
} else if (IsPointer(symbol)) {
SayWithDeclaration(symbol,
"A statement function must not have the POINTER attribute"_err_en_US);
} else if (details.result().flags().test(Symbol::Flag::Implicit)) {
// 15.6.4 p2 weird requirement
if (const Symbol *
host{symbol.owner().parent().FindSymbol(symbol.name())}) {
evaluate::AttachDeclaration(
Warn(common::LanguageFeature::StatementFunctionExtensions,
symbol.name(),
"An implicitly typed statement function should not appear when the same symbol is available in its host scope"_port_en_US),
*host);
}
}
if (GetProgramUnitOrBlockConstructContaining(symbol).kind() ==
Scope::Kind::BlockConstruct) { // C1107
messages_.Say(symbol.name(),
"A statement function definition may not appear in a BLOCK construct"_err_en_US);
}
}
if (IsElementalProcedure(symbol)) {
// See comment on the similar check in CheckProcEntity()
if (details.isDummy()) {
messages_.Say("A dummy procedure may not be ELEMENTAL"_err_en_US);
} else {
for (const Symbol *dummy : details.dummyArgs()) {
if (!dummy) { // C15100
messages_.Say(
"An ELEMENTAL subroutine may not have an alternate return dummy argument"_err_en_US);
}
}
}
}
if (details.isInterface()) {
if (!details.isDummy() && details.isFunction() &&
IsAssumedLengthCharacter(details.result())) { // C721
messages_.Say(details.result().name(),
"A function interface may not declare an assumed-length CHARACTER(*) result"_err_en_US);
}
}
CheckExternal(symbol);
CheckModuleProcedureDef(symbol);
auto cudaAttrs{details.cudaSubprogramAttrs()};
if (cudaAttrs &&
(*cudaAttrs == common::CUDASubprogramAttrs::Global ||
*cudaAttrs == common::CUDASubprogramAttrs::Grid_Global) &&
details.isFunction()) {
messages_.Say(symbol.name(),
"A function may not have ATTRIBUTES(GLOBAL) or ATTRIBUTES(GRID_GLOBAL)"_err_en_US);
}
if (cudaAttrs &&
(*cudaAttrs == common::CUDASubprogramAttrs::Global ||
*cudaAttrs == common::CUDASubprogramAttrs::Grid_Global) &&
symbol.attrs().HasAny({Attr::RECURSIVE, Attr::PURE, Attr::ELEMENTAL})) {
messages_.Say(symbol.name(),
"A kernel subprogram may not be RECURSIVE, PURE, or ELEMENTAL"_err_en_US);
}
if (cudaAttrs && *cudaAttrs != common::CUDASubprogramAttrs::Host) {
// CUDA device subprogram checks
if (ClassifyProcedure(symbol) == ProcedureDefinitionClass::Internal) {
messages_.Say(symbol.name(),
"A device subprogram may not be an internal subprogram"_err_en_US);
}
}
if ((!details.cudaLaunchBounds().empty() ||
!details.cudaClusterDims().empty()) &&
!(cudaAttrs &&
(*cudaAttrs == common::CUDASubprogramAttrs::Global ||
*cudaAttrs == common::CUDASubprogramAttrs::Grid_Global))) {
messages_.Say(symbol.name(),
"A subroutine may not have LAUNCH_BOUNDS() or CLUSTER_DIMS() unless it has ATTRIBUTES(GLOBAL) or ATTRIBUTES(GRID_GLOBAL)"_err_en_US);
}
if (!IsStmtFunction(symbol)) {
if (const Scope * outerDevice{FindCUDADeviceContext(&symbol.owner())};
outerDevice && outerDevice->symbol()) {
if (auto *msg{messages_.Say(symbol.name(),
"'%s' may not be an internal procedure of CUDA device subprogram '%s'"_err_en_US,
symbol.name(), outerDevice->symbol()->name())}) {
msg->Attach(outerDevice->symbol()->name(),
"Containing CUDA device subprogram"_en_US);
}
}
}
}
void CheckHelper::CheckExternal(const Symbol &symbol) {
if (IsExternal(symbol)) {
std::string interfaceName{symbol.name().ToString()};
if (const auto *bind{symbol.GetBindName()}) {
interfaceName = *bind;
}
if (const Symbol * global{FindGlobal(symbol)};
global && global != &symbol) {
std::string definitionName{global->name().ToString()};
if (const auto *bind{global->GetBindName()}) {
definitionName = *bind;
}
if (interfaceName == definitionName) {
parser::Message *msg{nullptr};
if (!IsProcedure(*global)) {
if ((symbol.flags().test(Symbol::Flag::Function) ||
symbol.flags().test(Symbol::Flag::Subroutine))) {
msg = Warn(common::UsageWarning::ExternalNameConflict,
"The global entity '%s' corresponding to the local procedure '%s' is not a callable subprogram"_warn_en_US,
global->name(), symbol.name());
}
} else if (auto chars{Characterize(symbol)}) {
if (auto globalChars{Characterize(*global)}) {
if (chars->HasExplicitInterface()) {
std::string whyNot;
if (!chars->IsCompatibleWith(*globalChars,
/*ignoreImplicitVsExplicit=*/false, &whyNot)) {
msg = Warn(common::UsageWarning::ExternalInterfaceMismatch,
"The global subprogram '%s' is not compatible with its local procedure declaration (%s)"_warn_en_US,
global->name(), whyNot);
}
} else if (!globalChars->CanBeCalledViaImplicitInterface()) {
// TODO: This should be a hard error if the procedure has
// actually been called (as opposed to just being used as a
// procedure pointer target or passed as an actual argument).
msg = Warn(common::UsageWarning::ExternalInterfaceMismatch,
"The global subprogram '%s' should not be referenced via the implicit interface '%s'"_warn_en_US,
global->name(), symbol.name());
}
}
}
if (msg) {
if (msg->IsFatal()) {
context_.SetError(symbol);
}
evaluate::AttachDeclaration(msg, *global);
evaluate::AttachDeclaration(msg, symbol);
}
}
} else if (auto iter{externalNames_.find(interfaceName)};
iter != externalNames_.end()) {
const Symbol &previous{*iter->second};
if (auto chars{Characterize(symbol)}) {
if (auto previousChars{Characterize(previous)}) {
std::string whyNot;
if (!chars->IsCompatibleWith(*previousChars,
/*ignoreImplicitVsExplicit=*/false, &whyNot)) {
if (auto *msg{Warn(common::UsageWarning::ExternalInterfaceMismatch,
"The external interface '%s' is not compatible with an earlier definition (%s)"_warn_en_US,
symbol.name(), whyNot)}) {
evaluate::AttachDeclaration(msg, previous);
evaluate::AttachDeclaration(msg, symbol);
}
}
}
}
} else {
externalNames_.emplace(interfaceName, symbol);
}
}
}
void CheckHelper::CheckDerivedType(
const Symbol &derivedType, const DerivedTypeDetails &details) {
if (details.isForwardReferenced() && !context_.HasError(derivedType)) {
messages_.Say("The derived type '%s' has not been defined"_err_en_US,
derivedType.name());
}
const Scope *scope{derivedType.scope()};
if (!scope) {
CHECK(details.isForwardReferenced());
return;
}
CHECK(scope->symbol() == &derivedType);
CHECK(scope->IsDerivedType());
if (derivedType.attrs().test(Attr::ABSTRACT) && // C734
(derivedType.attrs().test(Attr::BIND_C) || details.sequence())) {
messages_.Say("An ABSTRACT derived type must be extensible"_err_en_US);
}
if (const DeclTypeSpec *parent{FindParentTypeSpec(derivedType)}) {
const DerivedTypeSpec *parentDerived{parent->AsDerived()};
if (!IsExtensibleType(parentDerived)) { // C705
messages_.Say("The parent type is not extensible"_err_en_US);
}
if (!derivedType.attrs().test(Attr::ABSTRACT) && parentDerived &&
parentDerived->typeSymbol().attrs().test(Attr::ABSTRACT)) {
ScopeComponentIterator components{*parentDerived};
for (const Symbol &component : components) {
if (component.attrs().test(Attr::DEFERRED)) {
if (scope->FindComponent(component.name()) == &component) {
SayWithDeclaration(component,
"Non-ABSTRACT extension of ABSTRACT derived type '%s' lacks a binding for DEFERRED procedure '%s'"_err_en_US,
parentDerived->typeSymbol().name(), component.name());
}
}
}
}
DerivedTypeSpec derived{derivedType.name(), derivedType};
derived.set_scope(*scope);
if (FindCoarrayUltimateComponent(derived) && // C736
!(parentDerived && FindCoarrayUltimateComponent(*parentDerived))) {
messages_.Say(
"Type '%s' has a coarray ultimate component so the type at the base "
"of its type extension chain ('%s') must be a type that has a "
"coarray ultimate component"_err_en_US,
derivedType.name(), scope->GetDerivedTypeBase().GetSymbol()->name());
}
if (FindEventOrLockPotentialComponent(derived) && // C737
!(FindEventOrLockPotentialComponent(*parentDerived) ||
IsEventTypeOrLockType(parentDerived))) {
messages_.Say(
"Type '%s' has an EVENT_TYPE or LOCK_TYPE component, so the type "
"at the base of its type extension chain ('%s') must either have an "
"EVENT_TYPE or LOCK_TYPE component, or be EVENT_TYPE or "
"LOCK_TYPE"_err_en_US,
derivedType.name(), scope->GetDerivedTypeBase().GetSymbol()->name());
}
}
if (HasIntrinsicTypeName(derivedType)) { // C729
messages_.Say("A derived type name cannot be the name of an intrinsic"
" type"_err_en_US);
}
std::map<SourceName, SymbolRef> previous;
for (const auto &pair : details.finals()) {
SourceName source{pair.first};
const Symbol &ref{*pair.second};
if (CheckFinal(ref, source, derivedType) &&
std::all_of(previous.begin(), previous.end(),
[&](std::pair<SourceName, SymbolRef> prev) {
return CheckDistinguishableFinals(
ref, source, *prev.second, prev.first, derivedType);
})) {
previous.emplace(source, ref);
}
}
}
// C786
bool CheckHelper::CheckFinal(
const Symbol &subroutine, SourceName finalName, const Symbol &derivedType) {
if (!IsModuleProcedure(subroutine)) {
SayWithDeclaration(subroutine, finalName,
"FINAL subroutine '%s' of derived type '%s' must be a module procedure"_err_en_US,
subroutine.name(), derivedType.name());
return false;
}
const Procedure *proc{Characterize(subroutine)};
if (!proc) {
return false; // error recovery
}
if (!proc->IsSubroutine()) {
SayWithDeclaration(subroutine, finalName,
"FINAL subroutine '%s' of derived type '%s' must be a subroutine"_err_en_US,
subroutine.name(), derivedType.name());
return false;
}
if (proc->dummyArguments.size() != 1) {
SayWithDeclaration(subroutine, finalName,
"FINAL subroutine '%s' of derived type '%s' must have a single dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
return false;
}
const auto &arg{proc->dummyArguments[0]};
const Symbol *errSym{&subroutine};
if (const auto *details{subroutine.detailsIf<SubprogramDetails>()}) {
if (!details->dummyArgs().empty()) {
if (const Symbol *argSym{details->dummyArgs()[0]}) {
errSym = argSym;
}
}
}
const auto *ddo{std::get_if<DummyDataObject>(&arg.u)};
if (!ddo) {
SayWithDeclaration(subroutine, finalName,
"FINAL subroutine '%s' of derived type '%s' must have a single dummy argument that is a data object"_err_en_US,
subroutine.name(), derivedType.name());
return false;
}
bool ok{true};
if (arg.IsOptional()) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have an OPTIONAL dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->attrs.test(DummyDataObject::Attr::Allocatable)) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have an ALLOCATABLE dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->attrs.test(DummyDataObject::Attr::Pointer)) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have a POINTER dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->intent == common::Intent::Out) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have a dummy argument with INTENT(OUT)"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->attrs.test(DummyDataObject::Attr::Value)) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have a dummy argument with the VALUE attribute"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->type.corank() > 0) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have a coarray dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->type.type().IsPolymorphic()) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have a polymorphic dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
} else if (ddo->type.type().category() != TypeCategory::Derived ||
&ddo->type.type().GetDerivedTypeSpec().typeSymbol() != &derivedType) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must have a TYPE(%s) dummy argument"_err_en_US,
subroutine.name(), derivedType.name(), derivedType.name());
ok = false;
} else { // check that all LEN type parameters are assumed
for (auto ref : OrderParameterDeclarations(derivedType)) {
if (IsLenTypeParameter(*ref)) {
const auto *value{
ddo->type.type().GetDerivedTypeSpec().FindParameter(ref->name())};
if (!value || !value->isAssumed()) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must have a dummy argument with an assumed LEN type parameter '%s=*'"_err_en_US,
subroutine.name(), derivedType.name(), ref->name());
ok = false;
}
}
}
}
return ok;
}
bool CheckHelper::CheckDistinguishableFinals(const Symbol &f1,
SourceName f1Name, const Symbol &f2, SourceName f2Name,
const Symbol &derivedType) {
const Procedure *p1{Characterize(f1)};
const Procedure *p2{Characterize(f2)};
if (p1 && p2) {
std::optional<bool> areDistinct{characteristics::Distinguishable(
context_.languageFeatures(), *p1, *p2)};
if (areDistinct.value_or(false)) {
return true;
}
if (auto *msg{messages_.Say(f1Name,
"FINAL subroutines '%s' and '%s' of derived type '%s' cannot be distinguished by rank or KIND type parameter value"_err_en_US,
f1Name, f2Name, derivedType.name())}) {
msg->Attach(f2Name, "FINAL declaration of '%s'"_en_US, f2.name())
.Attach(f1.name(), "Definition of '%s'"_en_US, f1Name)
.Attach(f2.name(), "Definition of '%s'"_en_US, f2Name);
}
}
return false;
}
void CheckHelper::CheckHostAssoc(
const Symbol &symbol, const HostAssocDetails &details) {
const Symbol &hostSymbol{details.symbol()};
if (hostSymbol.test(Symbol::Flag::ImplicitOrError)) {
if (details.implicitOrSpecExprError) {
messages_.Say("Implicitly typed local entity '%s' not allowed in"
" specification expression"_err_en_US,
symbol.name());
} else if (details.implicitOrExplicitTypeError) {
messages_.Say(
"No explicit type declared for '%s'"_err_en_US, symbol.name());
}
}
}
void CheckHelper::CheckGeneric(
const Symbol &symbol, const GenericDetails &details) {
CheckSpecifics(symbol, details);
common::visit(common::visitors{
[&](const common::DefinedIo &io) {
CheckDefinedIoProc(symbol, details, io);
},
[&](const GenericKind::OtherKind &other) {
if (other == GenericKind::OtherKind::Name) {
CheckGenericVsIntrinsic(symbol, details);
}
},
[](const auto &) {},
},
details.kind().u);
// Ensure that shadowed symbols are checked
if (details.specific()) {
Check(*details.specific());
}
if (details.derivedType()) {
Check(*details.derivedType());
}
}
// Check that the specifics of this generic are distinguishable from each other
void CheckHelper::CheckSpecifics(
const Symbol &generic, const GenericDetails &details) {
GenericKind kind{details.kind()};
DistinguishabilityHelper helper{context_};
for (const Symbol &specific : details.specificProcs()) {
if (specific.attrs().test(Attr::ABSTRACT)) {
if (auto *msg{messages_.Say(generic.name(),
"Generic interface '%s' must not use abstract interface '%s' as a specific procedure"_err_en_US,
generic.name(), specific.name())}) {
msg->Attach(
specific.name(), "Definition of '%s'"_en_US, specific.name());
}
continue;
}
if (specific.attrs().test(Attr::INTRINSIC)) {
// GNU Fortran allows INTRINSIC procedures in generics.
auto intrinsic{context_.intrinsics().IsSpecificIntrinsicFunction(
specific.name().ToString())};
if (intrinsic && !intrinsic->isRestrictedSpecific) {
if (auto *msg{Warn(common::LanguageFeature::IntrinsicAsSpecific,
specific.name(),
"Specific procedure '%s' of generic interface '%s' should not be INTRINSIC"_port_en_US,
specific.name(), generic.name())}) {
msg->Attach(
generic.name(), "Definition of '%s'"_en_US, generic.name());
}
} else {
if (auto *msg{Warn(common::LanguageFeature::IntrinsicAsSpecific,
specific.name(),
"Procedure '%s' of generic interface '%s' is INTRINSIC but not an unrestricted specific intrinsic function"_port_en_US,
specific.name(), generic.name())}) {
msg->Attach(
generic.name(), "Definition of '%s'"_en_US, generic.name());
}
continue;
}
}
if (IsStmtFunction(specific)) {
if (auto *msg{messages_.Say(specific.name(),
"Specific procedure '%s' of generic interface '%s' may not be a statement function"_err_en_US,
specific.name(), generic.name())}) {
msg->Attach(generic.name(), "Definition of '%s'"_en_US, generic.name());
}
continue;
}
if (const Procedure *procedure{Characterize(specific)}) {
if (procedure->HasExplicitInterface()) {
helper.Add(generic, kind, specific, *procedure);
} else {
if (auto *msg{messages_.Say(specific.name(),
"Specific procedure '%s' of generic interface '%s' must have an explicit interface"_err_en_US,
specific.name(), generic.name())}) {
msg->Attach(
generic.name(), "Definition of '%s'"_en_US, generic.name());
}
}
}
}
helper.Check(generic.owner());
}
static bool CUDAHostDeviceDiffer(
const Procedure &proc, const DummyDataObject &arg) {
auto procCUDA{
proc.cudaSubprogramAttrs.value_or(common::CUDASubprogramAttrs::Host)};
bool procIsHostOnly{procCUDA == common::CUDASubprogramAttrs::Host};
bool procIsDeviceOnly{
!procIsHostOnly && procCUDA != common::CUDASubprogramAttrs::HostDevice};
const auto &argCUDA{arg.cudaDataAttr};
bool argIsHostOnly{!argCUDA || *argCUDA == common::CUDADataAttr::Pinned};
bool argIsDeviceOnly{(!argCUDA && procIsDeviceOnly) ||
(argCUDA &&
(*argCUDA != common::CUDADataAttr::Managed &&
*argCUDA != common::CUDADataAttr::Pinned &&
*argCUDA != common::CUDADataAttr::Unified))};
return (procIsHostOnly && argIsDeviceOnly) ||
(procIsDeviceOnly && argIsHostOnly);
}
static bool ConflictsWithIntrinsicAssignment(const Procedure &proc) {
const auto &lhsData{std::get<DummyDataObject>(proc.dummyArguments[0].u)};
const auto &lhsTnS{lhsData.type};
const auto &rhsData{std::get<DummyDataObject>(proc.dummyArguments[1].u)};
const auto &rhsTnS{rhsData.type};
return !CUDAHostDeviceDiffer(proc, lhsData) &&
!CUDAHostDeviceDiffer(proc, rhsData) &&
Tristate::No ==
IsDefinedAssignment(
lhsTnS.type(), lhsTnS.Rank(), rhsTnS.type(), rhsTnS.Rank());
}
static bool ConflictsWithIntrinsicOperator(
const GenericKind &kind, const Procedure &proc) {
if (!kind.IsIntrinsicOperator()) {
return false;
}
const auto &arg0Data{std::get<DummyDataObject>(proc.dummyArguments[0].u)};
if (CUDAHostDeviceDiffer(proc, arg0Data)) {
return false;
}
const auto &arg0TnS{arg0Data.type};
auto type0{arg0TnS.type()};
if (proc.dummyArguments.size() == 1) { // unary
return common::visit(
common::visitors{
[&](common::NumericOperator) { return IsIntrinsicNumeric(type0); },
[&](common::LogicalOperator) { return IsIntrinsicLogical(type0); },
[](const auto &) -> bool { DIE("bad generic kind"); },
},
kind.u);
} else { // binary
int rank0{arg0TnS.Rank()};
const auto &arg1Data{std::get<DummyDataObject>(proc.dummyArguments[1].u)};
if (CUDAHostDeviceDiffer(proc, arg1Data)) {
return false;
}
const auto &arg1TnS{arg1Data.type};
auto type1{arg1TnS.type()};
int rank1{arg1TnS.Rank()};
return common::visit(
common::visitors{
[&](common::NumericOperator) {
return IsIntrinsicNumeric(type0, rank0, type1, rank1);
},
[&](common::LogicalOperator) {
return IsIntrinsicLogical(type0, rank0, type1, rank1);
},
[&](common::RelationalOperator opr) {
return IsIntrinsicRelational(opr, type0, rank0, type1, rank1);
},
[&](GenericKind::OtherKind x) {
CHECK(x == GenericKind::OtherKind::Concat);
return IsIntrinsicConcat(type0, rank0, type1, rank1);
},
[](const auto &) -> bool { DIE("bad generic kind"); },
},
kind.u);
}
}
// Check if this procedure can be used for defined operators (see 15.4.3.4.2).
bool CheckHelper::CheckDefinedOperator(SourceName opName, GenericKind kind,
const Symbol &specific, const Procedure &proc) {
if (context_.HasError(specific)) {
return false;
}
std::optional<parser::MessageFixedText> msg;
auto checkDefinedOperatorArgs{
[&](SourceName opName, const Symbol &specific, const Procedure &proc) {
bool arg0Defined{CheckDefinedOperatorArg(opName, specific, proc, 0)};
bool arg1Defined{CheckDefinedOperatorArg(opName, specific, proc, 1)};
return arg0Defined && arg1Defined;
}};
if (specific.attrs().test(Attr::NOPASS)) { // C774
msg = "%s procedure '%s' may not have NOPASS attribute"_err_en_US;
} else if (!proc.functionResult.has_value()) {
msg = "%s procedure '%s' must be a function"_err_en_US;
} else if (proc.functionResult->IsAssumedLengthCharacter()) {
const auto *subpDetails{specific.detailsIf<SubprogramDetails>()};
if (subpDetails && !subpDetails->isDummy() && subpDetails->isInterface()) {
// Error is caught by more general test for interfaces with
// assumed-length character function results
return true;
}
msg = "%s function '%s' may not have assumed-length CHARACTER(*)"
" result"_err_en_US;
} else if (auto m{CheckNumberOfArgs(kind, proc.dummyArguments.size())}) {
if (m->IsFatal()) {
msg = *m;
} else {
evaluate::AttachDeclaration(
Warn(common::UsageWarning::DefinedOperatorArgs, specific.name(),
std::move(*m), MakeOpName(opName), specific.name()),
specific);
return true;
}
} else if (!checkDefinedOperatorArgs(opName, specific, proc)) {
return false; // error was reported
} else if (ConflictsWithIntrinsicOperator(kind, proc)) {
msg = "%s function '%s' conflicts with intrinsic operator"_err_en_US;
}
if (msg) {
SayWithDeclaration(
specific, std::move(*msg), MakeOpName(opName), specific.name());
context_.SetError(specific);
return false;
}
return true;
}
// If the number of arguments is wrong for this intrinsic operator, return
// false and return the error message in msg.
std::optional<parser::MessageFixedText> CheckHelper::CheckNumberOfArgs(
const GenericKind &kind, std::size_t nargs) {
if (!kind.IsIntrinsicOperator()) {
if (nargs < 1 || nargs > 2) {
if (context_.ShouldWarn(common::UsageWarning::DefinedOperatorArgs)) {
return "%s function '%s' should have 1 or 2 dummy arguments"_warn_en_US;
}
}
return std::nullopt;
}
std::size_t min{2}, max{2}; // allowed number of args; default is binary
common::visit(common::visitors{
[&](const common::NumericOperator &x) {
if (x == common::NumericOperator::Add ||
x == common::NumericOperator::Subtract) {
min = 1; // + and - are unary or binary
}
},
[&](const common::LogicalOperator &x) {
if (x == common::LogicalOperator::Not) {
min = 1; // .NOT. is unary
max = 1;
}
},
[](const common::RelationalOperator &) {
// all are binary
},
[](const GenericKind::OtherKind &x) {
CHECK(x == GenericKind::OtherKind::Concat);
},
[](const auto &) { DIE("expected intrinsic operator"); },
},
kind.u);
if (nargs >= min && nargs <= max) {
return std::nullopt;
} else if (max == 1) {
return "%s function '%s' must have one dummy argument"_err_en_US;
} else if (min == 2) {
return "%s function '%s' must have two dummy arguments"_err_en_US;
} else {
return "%s function '%s' must have one or two dummy arguments"_err_en_US;
}
}
bool CheckHelper::CheckDefinedOperatorArg(const SourceName &opName,
const Symbol &symbol, const Procedure &proc, std::size_t pos) {
if (pos >= proc.dummyArguments.size()) {
return true;
}
auto &arg{proc.dummyArguments.at(pos)};
std::optional<parser::MessageFixedText> msg;
if (arg.IsOptional()) {
msg =
"In %s function '%s', dummy argument '%s' may not be OPTIONAL"_err_en_US;
} else if (const auto *dataObject{std::get_if<DummyDataObject>(&arg.u)};
dataObject == nullptr) {
msg =
"In %s function '%s', dummy argument '%s' must be a data object"_err_en_US;
} else if (dataObject->intent == common::Intent::Out) {
msg =
"In %s function '%s', dummy argument '%s' may not be INTENT(OUT)"_err_en_US;
} else if (dataObject->intent != common::Intent::In &&
!dataObject->attrs.test(DummyDataObject::Attr::Value)) {
evaluate::AttachDeclaration(
Warn(common::UsageWarning::DefinedOperatorArgs,
"In %s function '%s', dummy argument '%s' should have INTENT(IN) or VALUE attribute"_warn_en_US,
parser::ToUpperCaseLetters(opName.ToString()), symbol.name(),
arg.name),
symbol);
return true;
}
if (msg) {
SayWithDeclaration(symbol, std::move(*msg),
parser::ToUpperCaseLetters(opName.ToString()), symbol.name(), arg.name);
return false;
}
return true;
}
// Check if this procedure can be used for defined assignment (see 15.4.3.4.3).
bool CheckHelper::CheckDefinedAssignment(
const Symbol &specific, const Procedure &proc) {
if (context_.HasError(specific)) {
return false;
}
std::optional<parser::MessageFixedText> msg;
if (specific.attrs().test(Attr::NOPASS)) { // C774
msg = "Defined assignment procedure '%s' may not have"
" NOPASS attribute"_err_en_US;
} else if (!proc.IsSubroutine()) {
msg = "Defined assignment procedure '%s' must be a subroutine"_err_en_US;
} else if (proc.dummyArguments.size() != 2) {
msg = "Defined assignment subroutine '%s' must have"
" two dummy arguments"_err_en_US;
} else {
// Check both arguments even if the first has an error.
bool ok0{CheckDefinedAssignmentArg(specific, proc.dummyArguments[0], 0)};
bool ok1{CheckDefinedAssignmentArg(specific, proc.dummyArguments[1], 1)};
if (!(ok0 && ok1)) {
return false; // error was reported
} else if (ConflictsWithIntrinsicAssignment(proc)) {
msg =
"Defined assignment subroutine '%s' conflicts with intrinsic assignment"_err_en_US;
} else {
return true; // OK
}
}
SayWithDeclaration(specific, std::move(msg.value()), specific.name());
context_.SetError(specific);
return false;
}
bool CheckHelper::CheckDefinedAssignmentArg(
const Symbol &symbol, const DummyArgument &arg, int pos) {
std::optional<parser::MessageFixedText> msg;
if (arg.IsOptional()) {
msg = "In defined assignment subroutine '%s', dummy argument '%s'"
" may not be OPTIONAL"_err_en_US;
} else if (const auto *dataObject{std::get_if<DummyDataObject>(&arg.u)}) {
if (pos == 0) {
if (dataObject->intent == common::Intent::In) {
msg = "In defined assignment subroutine '%s', first dummy argument '%s'"
" may not have INTENT(IN)"_err_en_US;
} else if (dataObject->intent != common::Intent::Out &&
dataObject->intent != common::Intent::InOut) {
msg =
"In defined assignment subroutine '%s', first dummy argument '%s' should have INTENT(OUT) or INTENT(INOUT)"_warn_en_US;
}
} else if (pos == 1) {
if (dataObject->intent == common::Intent::Out) {
msg = "In defined assignment subroutine '%s', second dummy"
" argument '%s' may not have INTENT(OUT)"_err_en_US;
} else if (dataObject->intent != common::Intent::In &&
!dataObject->attrs.test(DummyDataObject::Attr::Value)) {
msg =
"In defined assignment subroutine '%s', second dummy argument '%s' should have INTENT(IN) or VALUE attribute"_warn_en_US;
} else if (dataObject->attrs.test(DummyDataObject::Attr::Pointer)) {
msg =
"In defined assignment subroutine '%s', second dummy argument '%s' must not be a pointer"_err_en_US;
} else if (dataObject->attrs.test(DummyDataObject::Attr::Allocatable)) {
msg =
"In defined assignment subroutine '%s', second dummy argument '%s' must not be an allocatable"_err_en_US;
}
} else {
DIE("pos must be 0 or 1");
}
} else {
msg = "In defined assignment subroutine '%s', dummy argument '%s'"
" must be a data object"_err_en_US;
}
if (msg) {
if (msg->IsFatal()) {
SayWithDeclaration(symbol, std::move(*msg), symbol.name(), arg.name);
context_.SetError(symbol);
return false;
} else {
evaluate::AttachDeclaration(
Warn(common::UsageWarning::DefinedOperatorArgs, std::move(*msg),
symbol.name(), arg.name),
symbol);
}
}
return true;
}
// Report a conflicting attribute error if symbol has both of these attributes
bool CheckHelper::CheckConflicting(const Symbol &symbol, Attr a1, Attr a2) {
if (symbol.attrs().test(a1) && symbol.attrs().test(a2)) {
messages_.Say("'%s' may not have both the %s and %s attributes"_err_en_US,
symbol.name(), AttrToString(a1), AttrToString(a2));
return true;
} else {
return false;
}
}
void CheckHelper::WarnMissingFinal(const Symbol &symbol) {
const auto *object{symbol.detailsIf<ObjectEntityDetails>()};
if (!object || object->IsAssumedRank() ||
(!IsAutomaticallyDestroyed(symbol) &&
symbol.owner().kind() != Scope::Kind::DerivedType)) {
return;
}
const DeclTypeSpec *type{object->type()};
const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr};
const Symbol *derivedSym{derived ? &derived->typeSymbol() : nullptr};
int rank{object->shape().Rank()};
const Symbol *initialDerivedSym{derivedSym};
while (const auto *derivedDetails{
derivedSym ? derivedSym->detailsIf<DerivedTypeDetails>() : nullptr}) {
if (!derivedDetails->finals().empty() &&
!derivedDetails->GetFinalForRank(rank)) {
if (auto *msg{derivedSym == initialDerivedSym
? Warn(common::UsageWarning::Final, symbol.name(),
"'%s' of derived type '%s' does not have a FINAL subroutine for its rank (%d)"_warn_en_US,
symbol.name(), derivedSym->name(), rank)
: Warn(common::UsageWarning::Final, symbol.name(),
"'%s' of derived type '%s' extended from '%s' does not have a FINAL subroutine for its rank (%d)"_warn_en_US,
symbol.name(), initialDerivedSym->name(),
derivedSym->name(), rank)}) {
msg->Attach(derivedSym->name(),
"Declaration of derived type '%s'"_en_US, derivedSym->name());
}
return;
}
derived = derivedSym->GetParentTypeSpec();
derivedSym = derived ? &derived->typeSymbol() : nullptr;
}
}
const Procedure *CheckHelper::Characterize(const Symbol &symbol) {
auto it{characterizeCache_.find(symbol)};
if (it == characterizeCache_.end()) {
auto pair{characterizeCache_.emplace(SymbolRef{symbol},
Procedure::Characterize(symbol, context_.foldingContext()))};
it = pair.first;
}
return common::GetPtrFromOptional(it->second);
}
void CheckHelper::CheckVolatile(const Symbol &symbol,
const DerivedTypeSpec *derived) { // C866 - C868
if (IsIntentIn(symbol)) {
messages_.Say(
"VOLATILE attribute may not apply to an INTENT(IN) argument"_err_en_US);
}
if (IsProcedure(symbol)) {
messages_.Say("VOLATILE attribute may apply only to a variable"_err_en_US);
}
if (symbol.has<UseDetails>() || symbol.has<HostAssocDetails>()) {
const Symbol &ultimate{symbol.GetUltimate()};
if (evaluate::IsCoarray(ultimate)) {
messages_.Say(
"VOLATILE attribute may not apply to a coarray accessed by USE or host association"_err_en_US);
}
if (derived) {
if (FindCoarrayUltimateComponent(*derived)) {
messages_.Say(
"VOLATILE attribute may not apply to a type with a coarray ultimate component accessed by USE or host association"_err_en_US);
}
}
}
}
void CheckHelper::CheckContiguous(const Symbol &symbol) {
if (evaluate::IsVariable(symbol) &&
((IsPointer(symbol) && symbol.Rank() > 0) || IsAssumedShape(symbol) ||
evaluate::IsAssumedRank(symbol))) {
} else {
parser::MessageFixedText msg{symbol.owner().IsDerivedType()
? "CONTIGUOUS component '%s' should be an array with the POINTER attribute"_port_en_US
: "CONTIGUOUS entity '%s' should be an array pointer, assumed-shape, or assumed-rank"_port_en_US};
if (!context_.IsEnabled(common::LanguageFeature::RedundantContiguous)) {
msg.set_severity(parser::Severity::Error);
messages_.Say(std::move(msg), symbol.name());
} else {
Warn(common::LanguageFeature::RedundantContiguous, std::move(msg),
symbol.name());
}
}
}
void CheckHelper::CheckPointer(const Symbol &symbol) { // C852
CheckConflicting(symbol, Attr::POINTER, Attr::TARGET);
CheckConflicting(symbol, Attr::POINTER, Attr::ALLOCATABLE); // C751
CheckConflicting(symbol, Attr::POINTER, Attr::INTRINSIC);
// Prohibit constant pointers. The standard does not explicitly prohibit
// them, but the PARAMETER attribute requires a entity-decl to have an
// initialization that is a constant-expr, and the only form of
// initialization that allows a constant-expr is the one that's not a "=>"
// pointer initialization. See C811, C807, and section 8.5.13.
CheckConflicting(symbol, Attr::POINTER, Attr::PARAMETER);
if (symbol.Corank() > 0) {
messages_.Say(
"'%s' may not have the POINTER attribute because it is a coarray"_err_en_US,
symbol.name());
}
}
// C760 constraints on the passed-object dummy argument
// C757 constraints on procedure pointer components
void CheckHelper::CheckPassArg(
const Symbol &proc, const Symbol *interface0, const WithPassArg &details) {
if (proc.attrs().test(Attr::NOPASS)) {
return;
}
const auto &name{proc.name()};
const Symbol *interface {
interface0 ? FindInterface(*interface0) : nullptr
};
if (!interface) {
messages_.Say(name,
"Procedure component '%s' must have NOPASS attribute or explicit interface"_err_en_US,
name);
return;
}
const auto *subprogram{interface->detailsIf<SubprogramDetails>()};
if (!subprogram) {
messages_.Say(name,
"Procedure component '%s' has invalid interface '%s'"_err_en_US, name,
interface->name());
return;
}
std::optional<SourceName> passName{details.passName()};
const auto &dummyArgs{subprogram->dummyArgs()};
if (!passName) {
if (dummyArgs.empty()) {
messages_.Say(name,
proc.has<ProcEntityDetails>()
? "Procedure component '%s' with no dummy arguments"
" must have NOPASS attribute"_err_en_US
: "Procedure binding '%s' with no dummy arguments"
" must have NOPASS attribute"_err_en_US,
name);
context_.SetError(*interface);
return;
}
Symbol *argSym{dummyArgs[0]};
if (!argSym) {
messages_.Say(interface->name(),
"Cannot use an alternate return as the passed-object dummy "
"argument"_err_en_US);
return;
}
passName = dummyArgs[0]->name();
}
std::optional<int> passArgIndex{};
for (std::size_t i{0}; i < dummyArgs.size(); ++i) {
if (dummyArgs[i] && dummyArgs[i]->name() == *passName) {
passArgIndex = i;
break;
}
}
if (!passArgIndex) { // C758
messages_.Say(*passName,
"'%s' is not a dummy argument of procedure interface '%s'"_err_en_US,
*passName, interface->name());
return;
}
const Symbol &passArg{*dummyArgs[*passArgIndex]};
std::optional<parser::MessageFixedText> msg;
if (!passArg.has<ObjectEntityDetails>()) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" must be a data object"_err_en_US;
} else if (passArg.attrs().test(Attr::POINTER)) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" may not have the POINTER attribute"_err_en_US;
} else if (passArg.attrs().test(Attr::ALLOCATABLE)) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" may not have the ALLOCATABLE attribute"_err_en_US;
} else if (passArg.attrs().test(Attr::VALUE)) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" may not have the VALUE attribute"_err_en_US;
} else if (passArg.Rank() > 0) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" must be scalar"_err_en_US;
}
if (msg) {
messages_.Say(name, std::move(*msg), passName.value(), name);
return;
}
const DeclTypeSpec *type{passArg.GetType()};
if (!type) {
return; // an error already occurred
}
const Symbol &typeSymbol{*proc.owner().GetSymbol()};
const DerivedTypeSpec *derived{type->AsDerived()};
if (!derived || derived->typeSymbol() != typeSymbol) {
messages_.Say(name,
"Passed-object dummy argument '%s' of procedure '%s'"
" must be of type '%s' but is '%s'"_err_en_US,
passName.value(), name, typeSymbol.name(), type->AsFortran());
return;
}
if (IsExtensibleType(derived) != type->IsPolymorphic()) {
messages_.Say(name,
type->IsPolymorphic()
? "Passed-object dummy argument '%s' of procedure '%s'"
" may not be polymorphic because '%s' is not extensible"_err_en_US
: "Passed-object dummy argument '%s' of procedure '%s'"
" must be polymorphic because '%s' is extensible"_err_en_US,
passName.value(), name, typeSymbol.name());
return;
}
for (const auto &[paramName, paramValue] : derived->parameters()) {
if (paramValue.isLen() && !paramValue.isAssumed()) {
messages_.Say(name,
"Passed-object dummy argument '%s' of procedure '%s'"
" has non-assumed length parameter '%s'"_err_en_US,
passName.value(), name, paramName);
}
}
}
void CheckHelper::CheckProcBinding(
const Symbol &symbol, const ProcBindingDetails &binding) {
const Scope &dtScope{symbol.owner()};
CHECK(dtScope.kind() == Scope::Kind::DerivedType);
if (symbol.attrs().test(Attr::DEFERRED)) {
if (const Symbol *dtSymbol{dtScope.symbol()}) {
if (!dtSymbol->attrs().test(Attr::ABSTRACT)) { // C733
SayWithDeclaration(*dtSymbol,
"Procedure bound to non-ABSTRACT derived type '%s' may not be DEFERRED"_err_en_US,
dtSymbol->name());
}
}
if (symbol.attrs().test(Attr::NON_OVERRIDABLE)) {
messages_.Say(
"Type-bound procedure '%s' may not be both DEFERRED and NON_OVERRIDABLE"_err_en_US,
symbol.name());
}
}
if (binding.symbol().attrs().test(Attr::INTRINSIC) &&
!context_.intrinsics().IsSpecificIntrinsicFunction(
binding.symbol().name().ToString())) {
messages_.Say(
"Intrinsic procedure '%s' is not a specific intrinsic permitted for use in the definition of binding '%s'"_err_en_US,
binding.symbol().name(), symbol.name());
}
bool isInaccessibleDeferred{false};
if (const Symbol *
overridden{FindOverriddenBinding(symbol, isInaccessibleDeferred)}) {
if (isInaccessibleDeferred) {
SayWithDeclaration(*overridden,
"Override of PRIVATE DEFERRED '%s' must appear in its module"_err_en_US,
symbol.name());
}
if (overridden->attrs().test(Attr::NON_OVERRIDABLE)) {
SayWithDeclaration(*overridden,
"Override of NON_OVERRIDABLE '%s' is not permitted"_err_en_US,
symbol.name());
}
if (const auto *overriddenBinding{
overridden->detailsIf<ProcBindingDetails>()}) {
if (!IsPureProcedure(symbol) && IsPureProcedure(*overridden)) {
SayWithDeclaration(*overridden,
"An overridden pure type-bound procedure binding must also be pure"_err_en_US);
return;
}
if (!IsElementalProcedure(binding.symbol()) &&
IsElementalProcedure(*overridden)) {
SayWithDeclaration(*overridden,
"A type-bound procedure and its override must both, or neither, be ELEMENTAL"_err_en_US);
return;
}
bool isNopass{symbol.attrs().test(Attr::NOPASS)};
if (isNopass != overridden->attrs().test(Attr::NOPASS)) {
SayWithDeclaration(*overridden,
isNopass
? "A NOPASS type-bound procedure may not override a passed-argument procedure"_err_en_US
: "A passed-argument type-bound procedure may not override a NOPASS procedure"_err_en_US);
} else {
const auto *bindingChars{Characterize(symbol)};
const auto *overriddenChars{Characterize(*overridden)};
if (bindingChars && overriddenChars) {
if (isNopass) {
if (!bindingChars->CanOverride(*overriddenChars, std::nullopt)) {
SayWithDeclaration(*overridden,
"A NOPASS type-bound procedure and its override must have identical interfaces"_err_en_US);
}
} else if (!context_.HasError(binding.symbol())) {
auto passIndex{bindingChars->FindPassIndex(binding.passName())};
auto overriddenPassIndex{
overriddenChars->FindPassIndex(overriddenBinding->passName())};
if (passIndex && overriddenPassIndex) {
if (*passIndex != *overriddenPassIndex) {
SayWithDeclaration(*overridden,
"A type-bound procedure and its override must use the same PASS argument"_err_en_US);
} else if (!bindingChars->CanOverride(
*overriddenChars, passIndex)) {
SayWithDeclaration(*overridden,
"A type-bound procedure and its override must have compatible interfaces"_err_en_US);
}
}
}
}
}
if (symbol.attrs().test(Attr::PRIVATE)) {
if (FindModuleContaining(dtScope) ==
FindModuleContaining(overridden->owner())) {
// types declared in same madule
if (!overridden->attrs().test(Attr::PRIVATE)) {
SayWithDeclaration(*overridden,
"A PRIVATE procedure may not override a PUBLIC procedure"_err_en_US);
}
} else { // types declared in distinct madules
if (!CheckAccessibleSymbol(dtScope.parent(), *overridden)) {
SayWithDeclaration(*overridden,
"A PRIVATE procedure may not override an accessible procedure"_err_en_US);
}
}
}
} else {
SayWithDeclaration(*overridden,
"A type-bound procedure binding may not have the same name as a parent component"_err_en_US);
}
}
CheckPassArg(symbol, &binding.symbol(), binding);
}
void CheckHelper::Check(const Scope &scope) {
scope_ = &scope;
common::Restorer<const Symbol *> restorer{innermostSymbol_, innermostSymbol_};
if (const Symbol *symbol{scope.symbol()}) {
innermostSymbol_ = symbol;
}
if (scope.IsParameterizedDerivedTypeInstantiation()) {
auto restorer{common::ScopedSet(scopeIsUninstantiatedPDT_, false)};
auto restorer2{context_.foldingContext().messages().SetContext(
scope.instantiationContext().get())};
for (const auto &pair : scope) {
CheckPointerInitialization(*pair.second);
}
} else {
auto restorer{common::ScopedSet(
scopeIsUninstantiatedPDT_, scope.IsParameterizedDerivedType())};
for (const auto &set : scope.equivalenceSets()) {
CheckEquivalenceSet(set);
}
for (const auto &pair : scope) {
Check(*pair.second);
}
if (scope.IsSubmodule() && scope.symbol()) {
// Submodule names are not in their parent's scopes
Check(*scope.symbol());
}
for (const auto &pair : scope.commonBlocks()) {
CheckCommonBlock(*pair.second);
}
int mainProgCnt{0};
for (const Scope &child : scope.children()) {
Check(child);
// A program shall consist of exactly one main program (5.2.2).
if (child.kind() == Scope::Kind::MainProgram) {
++mainProgCnt;
if (mainProgCnt > 1) {
messages_.Say(child.sourceRange(),
"A source file cannot contain more than one main program"_err_en_US);
}
}
}
if (scope.kind() == Scope::Kind::BlockData) {
CheckBlockData(scope);
}
if (auto name{scope.GetName()}) {
auto iter{scope.find(*name)};
if (iter != scope.end()) {
const char *kind{nullptr};
switch (scope.kind()) {
case Scope::Kind::Module:
kind = scope.symbol()->get<ModuleDetails>().isSubmodule()
? "submodule"
: "module";
break;
case Scope::Kind::MainProgram:
kind = "main program";
break;
case Scope::Kind::BlockData:
kind = "BLOCK DATA subprogram";
break;
default:;
}
if (kind) {
Warn(common::LanguageFeature::BenignNameClash, iter->second->name(),
"Name '%s' declared in a %s should not have the same name as the %s"_port_en_US,
*name, kind, kind);
}
}
}
CheckGenericOps(scope);
}
}
void CheckHelper::CheckEquivalenceSet(const EquivalenceSet &set) {
auto iter{
std::find_if(set.begin(), set.end(), [](const EquivalenceObject &object) {
return FindCommonBlockContaining(object.symbol) != nullptr;
})};
if (iter != set.end()) {
const Symbol &commonBlock{DEREF(FindCommonBlockContaining(iter->symbol))};
for (auto &object : set) {
if (&object != &*iter) {
if (auto *details{object.symbol.detailsIf<ObjectEntityDetails>()}) {
if (details->commonBlock()) {
if (details->commonBlock() != &commonBlock) { // 8.10.3 paragraph 1
if (auto *msg{messages_.Say(object.symbol.name(),
"Two objects in the same EQUIVALENCE set may not be members of distinct COMMON blocks"_err_en_US)}) {
msg->Attach(iter->symbol.name(),
"Other object in EQUIVALENCE set"_en_US)
.Attach(details->commonBlock()->name(),
"COMMON block containing '%s'"_en_US,
object.symbol.name())
.Attach(commonBlock.name(),
"COMMON block containing '%s'"_en_US,
iter->symbol.name());
}
}
} else {
// Mark all symbols in the equivalence set with the same COMMON
// block to prevent spurious error messages about initialization
// in BLOCK DATA outside COMMON
details->set_commonBlock(commonBlock);
}
}
}
}
}
for (const EquivalenceObject &object : set) {
CheckEquivalenceObject(object);
}
}
static bool InCommonWithBind(const Symbol &symbol) {
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
const Symbol *commonBlock{details->commonBlock()};
return commonBlock && commonBlock->attrs().test(Attr::BIND_C);
} else {
return false;
}
}
void CheckHelper::CheckEquivalenceObject(const EquivalenceObject &object) {
parser::MessageFixedText msg;
const Symbol &symbol{object.symbol};
if (symbol.owner().IsDerivedType()) {
msg =
"Derived type component '%s' is not allowed in an equivalence set"_err_en_US;
} else if (IsDummy(symbol)) {
msg = "Dummy argument '%s' is not allowed in an equivalence set"_err_en_US;
} else if (symbol.IsFuncResult()) {
msg = "Function result '%s' is not allow in an equivalence set"_err_en_US;
} else if (IsPointer(symbol)) {
msg = "Pointer '%s' is not allowed in an equivalence set"_err_en_US;
} else if (IsAllocatable(symbol)) {
msg =
"Allocatable variable '%s' is not allowed in an equivalence set"_err_en_US;
} else if (symbol.Corank() > 0) {
msg = "Coarray '%s' is not allowed in an equivalence set"_err_en_US;
} else if (symbol.has<UseDetails>()) {
msg =
"Use-associated variable '%s' is not allowed in an equivalence set"_err_en_US;
} else if (symbol.attrs().test(Attr::BIND_C)) {
msg =
"Variable '%s' with BIND attribute is not allowed in an equivalence set"_err_en_US;
} else if (symbol.attrs().test(Attr::TARGET)) {
msg =
"Variable '%s' with TARGET attribute is not allowed in an equivalence set"_err_en_US;
} else if (IsNamedConstant(symbol)) {
msg = "Named constant '%s' is not allowed in an equivalence set"_err_en_US;
} else if (InCommonWithBind(symbol)) {
msg =
"Variable '%s' in common block with BIND attribute is not allowed in an equivalence set"_err_en_US;
} else if (!symbol.has<ObjectEntityDetails>()) {
msg = "'%s' in equivalence set is not a data object"_err_en_US;
} else if (const auto *type{symbol.GetType()}) {
const auto *derived{type->AsDerived()};
if (derived && !derived->IsVectorType()) {
if (const auto *comp{
FindUltimateComponent(*derived, IsAllocatableOrPointer)}) {
msg = IsPointer(*comp)
? "Derived type object '%s' with pointer ultimate component is not allowed in an equivalence set"_err_en_US
: "Derived type object '%s' with allocatable ultimate component is not allowed in an equivalence set"_err_en_US;
} else if (!derived->typeSymbol().get<DerivedTypeDetails>().sequence()) {
msg =
"Nonsequence derived type object '%s' is not allowed in an equivalence set"_err_en_US;
}
} else if (IsAutomatic(symbol)) {
msg =
"Automatic object '%s' is not allowed in an equivalence set"_err_en_US;
} else if (symbol.test(Symbol::Flag::CrayPointee)) {
messages_.Say(object.symbol.name(),
"Cray pointee '%s' may not be a member of an EQUIVALENCE group"_err_en_US,
object.symbol.name());
}
}
if (!msg.text().empty()) {
context_.Say(object.source, std::move(msg), symbol.name());
}
}
void CheckHelper::CheckBlockData(const Scope &scope) {
// BLOCK DATA subprograms should contain only named common blocks.
// C1415 presents a list of statements that shouldn't appear in
// BLOCK DATA, but so long as the subprogram contains no executable
// code and allocates no storage outside named COMMON, we're happy
// (e.g., an ENUM is strictly not allowed).
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (!(symbol.has<CommonBlockDetails>() || symbol.has<UseDetails>() ||
symbol.has<UseErrorDetails>() || symbol.has<DerivedTypeDetails>() ||
symbol.has<SubprogramDetails>() ||
symbol.has<ObjectEntityDetails>() ||
(symbol.has<ProcEntityDetails>() &&
!symbol.attrs().test(Attr::POINTER)))) {
messages_.Say(symbol.name(),
"'%s' may not appear in a BLOCK DATA subprogram"_err_en_US,
symbol.name());
}
}
}
// Check distinguishability of generic assignment and operators.
// For these, generics and generic bindings must be considered together.
void CheckHelper::CheckGenericOps(const Scope &scope) {
DistinguishabilityHelper helper{context_};
auto addSpecifics{[&](const Symbol &generic) {
const auto *details{generic.GetUltimate().detailsIf<GenericDetails>()};
if (!details) {
// Not a generic; ensure characteristics are defined if a function.
auto restorer{messages_.SetLocation(generic.name())};
if (IsFunction(generic) && !context_.HasError(generic)) {
if (const Symbol *result{FindFunctionResult(generic)};
result && !context_.HasError(*result)) {
Characterize(generic);
}
}
return;
}
GenericKind kind{details->kind()};
if (!kind.IsAssignment() && !kind.IsOperator()) {
return;
}
const SymbolVector &specifics{details->specificProcs()};
const std::vector<SourceName> &bindingNames{details->bindingNames()};
for (std::size_t i{0}; i < specifics.size(); ++i) {
const Symbol &specific{*specifics[i]};
auto restorer{messages_.SetLocation(bindingNames[i])};
if (const Procedure *proc{Characterize(specific)}) {
if (kind.IsAssignment()) {
if (!CheckDefinedAssignment(specific, *proc)) {
continue;
}
} else {
if (!CheckDefinedOperator(generic.name(), kind, specific, *proc)) {
continue;
}
}
helper.Add(generic, kind, specific, *proc);
}
}
}};
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
addSpecifics(symbol);
const Symbol &ultimate{symbol.GetUltimate()};
if (ultimate.has<DerivedTypeDetails>()) {
if (const Scope *typeScope{ultimate.scope()}) {
for (const auto &pair2 : *typeScope) {
addSpecifics(*pair2.second);
}
}
}
}
helper.Check(scope);
}
static bool IsSubprogramDefinition(const Symbol &symbol) {
const auto *subp{symbol.detailsIf<SubprogramDetails>()};
return subp && !subp->isInterface() && symbol.scope() &&
symbol.scope()->kind() == Scope::Kind::Subprogram;
}
static bool IsExternalProcedureDefinition(const Symbol &symbol) {
return IsBlockData(symbol) ||
(IsSubprogramDefinition(symbol) &&
(IsExternal(symbol) || symbol.GetBindName()));
}
static std::optional<std::string> DefinesGlobalName(const Symbol &symbol) {
if (const auto *module{symbol.detailsIf<ModuleDetails>()}) {
if (!module->isSubmodule() && !symbol.owner().IsIntrinsicModules()) {
return symbol.name().ToString();
}
} else if (IsBlockData(symbol)) {
return symbol.name().ToString();
} else {
const std::string *bindC{symbol.GetBindName()};
if (symbol.has<CommonBlockDetails>() ||
IsExternalProcedureDefinition(symbol) ||
(symbol.owner().IsGlobal() && IsExternal(symbol))) {
return bindC ? *bindC : symbol.name().ToString();
} else if (bindC &&
(symbol.has<ObjectEntityDetails>() || IsModuleProcedure(symbol))) {
return *bindC;
}
}
return std::nullopt;
}
// 19.2 p2
void CheckHelper::CheckGlobalName(const Symbol &symbol) {
if (auto global{DefinesGlobalName(symbol)}) {
auto pair{globalNames_.emplace(std::move(*global), symbol)};
if (!pair.second) {
const Symbol &other{*pair.first->second};
if (context_.HasError(symbol) || context_.HasError(other)) {
// don't pile on
} else if (symbol.has<CommonBlockDetails>() &&
other.has<CommonBlockDetails>() && symbol.name() == other.name()) {
// Two common blocks can have the same global name so long as
// they're not in the same scope.
} else if ((IsProcedure(symbol) || IsBlockData(symbol)) &&
(IsProcedure(other) || IsBlockData(other)) &&
(!IsExternalProcedureDefinition(symbol) ||
!IsExternalProcedureDefinition(other))) {
// both are procedures/BLOCK DATA, not both definitions
} else if (symbol.has<ModuleDetails>()) {
Warn(common::LanguageFeature::BenignNameClash, symbol.name(),
"Module '%s' conflicts with a global name"_port_en_US,
pair.first->first);
} else if (other.has<ModuleDetails>()) {
Warn(common::LanguageFeature::BenignNameClash, symbol.name(),
"Global name '%s' conflicts with a module"_port_en_US,
pair.first->first);
} else if (auto *msg{messages_.Say(symbol.name(),
"Two entities have the same global name '%s'"_err_en_US,
pair.first->first)}) {
msg->Attach(other.name(), "Conflicting declaration"_en_US);
context_.SetError(symbol);
context_.SetError(other);
}
}
}
}
void CheckHelper::CheckProcedureAssemblyName(const Symbol &symbol) {
if (!IsProcedure(symbol) || symbol != symbol.GetUltimate())
return;
const std::string *bindName{symbol.GetBindName()};
const bool hasExplicitBindingLabel{
symbol.GetIsExplicitBindName() && bindName};
if (hasExplicitBindingLabel || IsExternal(symbol)) {
const std::string assemblyName{hasExplicitBindingLabel
? *bindName
: common::GetExternalAssemblyName(
symbol.name().ToString(), context_.underscoring())};
auto pair{procedureAssemblyNames_.emplace(std::move(assemblyName), symbol)};
if (!pair.second) {
const Symbol &other{*pair.first->second};
const bool otherHasExplicitBindingLabel{
other.GetIsExplicitBindName() && other.GetBindName()};
if (otherHasExplicitBindingLabel != hasExplicitBindingLabel) {
// The BIND(C,NAME="...") binding label is the same as the name that
// will be used in LLVM IR for an external procedure declared without
// BIND(C) in the same file. While this is not forbidden by the
// standard, this name collision would lead to a crash when producing
// the IR.
if (auto *msg{messages_.Say(symbol.name(),
"%s procedure assembly name conflicts with %s procedure assembly name"_err_en_US,
hasExplicitBindingLabel ? "BIND(C)" : "Non BIND(C)",
hasExplicitBindingLabel ? "non BIND(C)" : "BIND(C)")}) {
msg->Attach(other.name(), "Conflicting declaration"_en_US);
}
context_.SetError(symbol);
context_.SetError(other);
}
// Otherwise, the global names also match and the conflict is analyzed
// by CheckGlobalName.
}
}
}
parser::Messages CheckHelper::WhyNotInteroperableDerivedType(
const Symbol &symbol) {
parser::Messages msgs;
if (examinedByWhyNotInteroperable_.find(symbol) !=
examinedByWhyNotInteroperable_.end()) {
return msgs;
}
examinedByWhyNotInteroperable_.insert(symbol);
if (const auto *derived{symbol.detailsIf<DerivedTypeDetails>()}) {
if (derived->sequence()) { // C1801
msgs.Say(symbol.name(),
"An interoperable derived type cannot have the SEQUENCE attribute"_err_en_US);
} else if (!derived->paramNameOrder().empty()) { // C1802
msgs.Say(symbol.name(),
"An interoperable derived type cannot have a type parameter"_err_en_US);
} else if (const auto *parent{
symbol.scope()->GetDerivedTypeParent()}) { // C1803
if (symbol.attrs().test(Attr::BIND_C)) {
msgs.Say(symbol.name(),
"A derived type with the BIND attribute cannot be an extended derived type"_err_en_US);
} else {
bool interoperableParent{true};
if (parent->symbol()) {
auto bad{WhyNotInteroperableDerivedType(*parent->symbol())};
if (bad.AnyFatalError()) {
auto &msg{msgs.Say(symbol.name(),
"The parent of an interoperable type is not interoperable"_err_en_US)};
bad.AttachTo(msg, parser::Severity::None);
interoperableParent = false;
}
}
if (interoperableParent) {
msgs.Say(symbol.name(),
"An interoperable type should not be an extended derived type"_warn_en_US);
}
}
}
const Symbol *parentComponent{symbol.scope()
? derived->GetParentComponent(*symbol.scope())
: nullptr};
for (const auto &pair : *symbol.scope()) {
const Symbol &component{*pair.second};
if (&component == parentComponent) {
continue; // was checked above
}
if (IsProcedure(component)) { // C1804
msgs.Say(component.name(),
"An interoperable derived type cannot have a type bound procedure"_err_en_US);
} else if (IsAllocatableOrPointer(component)) { // C1806
msgs.Say(component.name(),
"An interoperable derived type cannot have a pointer or allocatable component"_err_en_US);
} else if (const auto *type{component.GetType()}) {
if (const auto *derived{type->AsDerived()}) {
auto bad{WhyNotInteroperableDerivedType(derived->typeSymbol())};
if (bad.AnyFatalError()) {
auto &msg{msgs.Say(component.name(),
"Component '%s' of an interoperable derived type must have an interoperable type but does not"_err_en_US,
component.name())};
bad.AttachTo(msg, parser::Severity::None);
} else if (!derived->typeSymbol().GetUltimate().attrs().test(
Attr::BIND_C)) {
auto &msg{
msgs.Say(component.name(),
"Derived type of component '%s' of an interoperable derived type should have the BIND attribute"_warn_en_US,
component.name())
.Attach(derived->typeSymbol().name(),
"Non-BIND(C) component type"_en_US)};
bad.AttachTo(msg, parser::Severity::None);
} else {
msgs.Annex(std::move(bad));
}
} else if (auto dyType{evaluate::DynamicType::From(*type)}; dyType &&
!evaluate::IsInteroperableIntrinsicType(
*dyType, &context_.languageFeatures())
.value_or(false)) {
if (type->category() == DeclTypeSpec::Logical) {
if (context_.ShouldWarn(common::UsageWarning::LogicalVsCBool)) {
msgs.Say(common::UsageWarning::LogicalVsCBool, component.name(),
"A LOGICAL component of an interoperable type should have the interoperable KIND=C_BOOL"_port_en_US);
}
} else if (type->category() == DeclTypeSpec::Character && dyType &&
dyType->kind() == 1) {
if (context_.ShouldWarn(common::UsageWarning::BindCCharLength)) {
msgs.Say(common::UsageWarning::BindCCharLength, component.name(),
"A CHARACTER component of an interoperable type should have length 1"_port_en_US);
}
} else {
msgs.Say(component.name(),
"Each component of an interoperable derived type must have an interoperable type"_err_en_US);
}
}
}
if (auto extents{
evaluate::GetConstantExtents(foldingContext_, &component)};
extents && evaluate::GetSize(*extents) == 0) {
msgs.Say(component.name(),
"An array component of an interoperable type must have at least one element"_err_en_US);
}
}
if (derived->componentNames().empty()) { // F'2023 C1805
if (context_.ShouldWarn(common::LanguageFeature::EmptyBindCDerivedType)) {
msgs.Say(common::LanguageFeature::EmptyBindCDerivedType, symbol.name(),
"A derived type with the BIND attribute should not be empty"_warn_en_US);
}
}
}
if (msgs.AnyFatalError()) {
examinedByWhyNotInteroperable_.erase(symbol);
}
return msgs;
}
parser::Messages CheckHelper::WhyNotInteroperableObject(const Symbol &symbol) {
parser::Messages msgs;
if (examinedByWhyNotInteroperable_.find(symbol) !=
examinedByWhyNotInteroperable_.end()) {
return msgs;
}
bool isExplicitBindC{symbol.attrs().test(Attr::BIND_C)};
examinedByWhyNotInteroperable_.insert(symbol);
CHECK(symbol.has<ObjectEntityDetails>());
if (isExplicitBindC && !symbol.owner().IsModule()) {
msgs.Say(symbol.name(),
"A variable with BIND(C) attribute may only appear in the specification part of a module"_err_en_US);
}
auto shape{evaluate::GetShape(foldingContext_, symbol)};
if (shape) {
if (evaluate::GetRank(*shape) == 0) { // 18.3.4
if (IsAllocatableOrPointer(symbol) && !IsDummy(symbol)) {
msgs.Say(symbol.name(),
"A scalar interoperable variable may not be ALLOCATABLE or POINTER"_err_en_US);
}
} else if (auto extents{
evaluate::AsConstantExtents(foldingContext_, *shape)}) {
if (evaluate::GetSize(*extents) == 0) {
msgs.Say(symbol.name(),
"Interoperable array must have at least one element"_err_en_US);
}
} else if (!evaluate::IsExplicitShape(symbol) &&
!IsAssumedSizeArray(symbol) &&
!(IsDummy(symbol) && !symbol.attrs().test(Attr::VALUE))) {
msgs.Say(symbol.name(),
"BIND(C) array must have explicit shape or be assumed-size unless a dummy argument without the VALUE attribute"_err_en_US);
}
}
if (const auto *type{symbol.GetType()}) {
const auto *derived{type->AsDerived()};
if (derived && !derived->typeSymbol().attrs().test(Attr::BIND_C)) {
if (!context_.IsEnabled(
common::LanguageFeature::NonBindCInteroperability)) {
msgs.Say(symbol.name(),
"The derived type of an interoperable object must be BIND(C)"_err_en_US)
.Attach(derived->typeSymbol().name(), "Non-BIND(C) type"_en_US);
} else if (auto bad{
WhyNotInteroperableDerivedType(derived->typeSymbol())};
bad.AnyFatalError()) {
bad.AttachTo(
msgs.Say(symbol.name(),
"The derived type of an interoperable object must be interoperable, but is not"_err_en_US)
.Attach(derived->typeSymbol().name(),
"Non-interoperable type"_en_US),
parser::Severity::None);
} else {
msgs.Say(symbol.name(),
"The derived type of an interoperable object should be BIND(C)"_warn_en_US)
.Attach(derived->typeSymbol().name(), "Non-BIND(C) type"_en_US);
}
}
if (type->IsAssumedType()) { // ok
} else if (IsAssumedLengthCharacter(symbol)) {
} else if (IsAllocatableOrPointer(symbol) &&
type->category() == DeclTypeSpec::Character &&
type->characterTypeSpec().length().isDeferred()) {
// ok; F'2023 18.3.7 p2(6)
} else if (derived) { // type has been checked
} else if (auto dyType{evaluate::DynamicType::From(*type)}; dyType &&
evaluate::IsInteroperableIntrinsicType(*dyType,
InModuleFile() ? nullptr : &context_.languageFeatures())
.value_or(false)) {
// F'2023 18.3.7 p2(4,5)
// N.B. Language features are not passed to IsInteroperableIntrinsicType
// when processing a module file, since the module file might have been
// compiled with CUDA while the client is not.
} else if (type->category() == DeclTypeSpec::Logical) {
if (context_.ShouldWarn(common::UsageWarning::LogicalVsCBool)) {
if (IsDummy(symbol)) {
msgs.Say(common::UsageWarning::LogicalVsCBool, symbol.name(),
"A BIND(C) LOGICAL dummy argument should have the interoperable KIND=C_BOOL"_port_en_US);
} else {
msgs.Say(common::UsageWarning::LogicalVsCBool, symbol.name(),
"A BIND(C) LOGICAL object should have the interoperable KIND=C_BOOL"_port_en_US);
}
}
} else if (symbol.attrs().test(Attr::VALUE)) {
msgs.Say(symbol.name(),
"A BIND(C) VALUE dummy argument must have an interoperable type"_err_en_US);
} else {
msgs.Say(symbol.name(),
"A BIND(C) object must have an interoperable type"_err_en_US);
}
}
if (IsOptional(symbol) && !symbol.attrs().test(Attr::VALUE)) {
msgs.Say(symbol.name(),
"An interoperable procedure with an OPTIONAL dummy argument might not be portable"_port_en_US);
}
if (IsDescriptor(symbol) && IsPointer(symbol) &&
symbol.attrs().test(Attr::CONTIGUOUS)) {
msgs.Say(symbol.name(),
"An interoperable pointer must not be CONTIGUOUS"_err_en_US);
}
if (msgs.AnyFatalError()) {
examinedByWhyNotInteroperable_.erase(symbol);
}
return msgs;
}
parser::Messages CheckHelper::WhyNotInteroperableFunctionResult(
const Symbol &symbol) {
parser::Messages msgs;
if (IsPointer(symbol) || IsAllocatable(symbol)) {
msgs.Say(symbol.name(),
"Interoperable function result may not have ALLOCATABLE or POINTER attribute"_err_en_US);
}
if (const DeclTypeSpec * type{symbol.GetType()};
type && type->category() == DeclTypeSpec::Character) {
bool isConstOne{false}; // 18.3.1(1)
if (const auto &len{type->characterTypeSpec().length().GetExplicit()}) {
if (auto constLen{evaluate::ToInt64(*len)}) {
isConstOne = constLen == 1;
}
}
if (!isConstOne) {
msgs.Say(symbol.name(),
"Interoperable character function result must have length one"_err_en_US);
}
}
if (symbol.Rank() > 0) {
msgs.Say(symbol.name(),
"Interoperable function result must be scalar"_err_en_US);
}
if (symbol.Corank()) {
msgs.Say(symbol.name(),
"Interoperable function result may not be a coarray"_err_en_US);
}
return msgs;
}
parser::Messages CheckHelper::WhyNotInteroperableProcedure(
const Symbol &symbol, bool isError) {
parser::Messages msgs;
if (examinedByWhyNotInteroperable_.find(symbol) !=
examinedByWhyNotInteroperable_.end()) {
return msgs;
}
isError |= symbol.attrs().test(Attr::BIND_C);
examinedByWhyNotInteroperable_.insert(symbol);
if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
if (isError) {
if (!proc->procInterface() ||
!proc->procInterface()->attrs().test(Attr::BIND_C)) {
msgs.Say(symbol.name(),
"An interface name with the BIND attribute must appear if the BIND attribute appears in a procedure declaration"_err_en_US);
}
} else if (!proc->procInterface()) {
msgs.Say(symbol.name(),
"An interoperable procedure should have an interface"_port_en_US);
} else if (!proc->procInterface()->attrs().test(Attr::BIND_C)) {
auto bad{WhyNotInteroperableProcedure(
*proc->procInterface(), /*isError=*/false)};
if (bad.AnyFatalError()) {
bad.AttachTo(msgs.Say(symbol.name(),
"An interoperable procedure must have an interoperable interface"_err_en_US));
} else {
msgs.Say(symbol.name(),
"An interoperable procedure should have an interface with the BIND attribute"_warn_en_US);
}
}
} else if (const auto *subp{symbol.detailsIf<SubprogramDetails>()}) {
for (const Symbol *dummy : subp->dummyArgs()) {
if (dummy) {
parser::Messages dummyMsgs;
if (dummy->has<ProcEntityDetails>() ||
dummy->has<SubprogramDetails>()) {
dummyMsgs = WhyNotInteroperableProcedure(*dummy, /*isError=*/false);
if (dummyMsgs.empty() && !dummy->attrs().test(Attr::BIND_C)) {
dummyMsgs.Say(dummy->name(),
"A dummy procedure of an interoperable procedure should be BIND(C)"_warn_en_US);
}
} else if (dummy->has<ObjectEntityDetails>()) {
dummyMsgs = WhyNotInteroperableObject(*dummy);
} else {
CheckBindC(*dummy);
}
msgs.Annex(std::move(dummyMsgs));
} else {
msgs.Say(symbol.name(),
"A subprogram interface with the BIND attribute may not have an alternate return argument"_err_en_US);
}
}
if (subp->isFunction()) {
if (subp->result().has<ObjectEntityDetails>()) {
msgs.Annex(WhyNotInteroperableFunctionResult(subp->result()));
} else {
msgs.Say(subp->result().name(),
"The result of an interoperable function must be a data object"_err_en_US);
}
}
}
if (msgs.AnyFatalError()) {
examinedByWhyNotInteroperable_.erase(symbol);
}
return msgs;
}
void CheckHelper::CheckBindC(const Symbol &symbol) {
bool isExplicitBindC{symbol.attrs().test(Attr::BIND_C)};
if (isExplicitBindC) {
CheckConflicting(symbol, Attr::BIND_C, Attr::ELEMENTAL);
CheckConflicting(symbol, Attr::BIND_C, Attr::INTRINSIC);
CheckConflicting(symbol, Attr::BIND_C, Attr::PARAMETER);
} else {
// symbol must be interoperable (e.g., dummy argument of interoperable
// procedure interface) but is not itself BIND(C).
}
parser::Messages whyNot;
if (const std::string * bindName{symbol.GetBindName()};
bindName) { // has a binding name
if (!bindName->empty()) {
bool ok{bindName->front() == '_' || parser::IsLetter(bindName->front())};
for (char ch : *bindName) {
ok &= ch == '_' || parser::IsLetter(ch) || parser::IsDecimalDigit(ch);
}
if (!ok) {
messages_.Say(symbol.name(),
"Symbol has a BIND(C) name that is not a valid C language identifier"_err_en_US);
context_.SetError(symbol);
}
}
}
if (symbol.GetIsExplicitBindName()) { // BIND(C,NAME=...); C1552, C1529
auto defClass{ClassifyProcedure(symbol)};
if (IsProcedurePointer(symbol)) {
messages_.Say(symbol.name(),
"A procedure pointer may not have a BIND attribute with a name"_err_en_US);
context_.SetError(symbol);
} else if (defClass == ProcedureDefinitionClass::None ||
IsExternal(symbol)) {
} else if (symbol.attrs().test(Attr::ABSTRACT)) {
messages_.Say(symbol.name(),
"An ABSTRACT interface may not have a BIND attribute with a name"_err_en_US);
context_.SetError(symbol);
} else if (defClass == ProcedureDefinitionClass::Internal ||
defClass == ProcedureDefinitionClass::Dummy) {
messages_.Say(symbol.name(),
"An internal or dummy procedure may not have a BIND(C,NAME=) binding label"_err_en_US);
context_.SetError(symbol);
}
}
if (symbol.has<ObjectEntityDetails>()) {
whyNot = WhyNotInteroperableObject(symbol);
} else if (symbol.has<ProcEntityDetails>() ||
symbol.has<SubprogramDetails>()) {
whyNot = WhyNotInteroperableProcedure(symbol, /*isError=*/isExplicitBindC);
} else if (symbol.has<DerivedTypeDetails>()) {
whyNot = WhyNotInteroperableDerivedType(symbol);
}
if (!whyNot.empty()) {
bool anyFatal{whyNot.AnyFatalError()};
if (anyFatal ||
(!InModuleFile() &&
context_.ShouldWarn(
common::LanguageFeature::NonBindCInteroperability))) {
context_.messages().Annex(std::move(whyNot));
}
if (anyFatal) {
context_.SetError(symbol);
}
}
}
bool CheckHelper::CheckDioDummyIsData(
const Symbol &subp, const Symbol *arg, std::size_t position) {
if (arg && arg->detailsIf<ObjectEntityDetails>()) {
return true;
} else {
if (arg) {
messages_.Say(arg->name(),
"Dummy argument '%s' must be a data object"_err_en_US, arg->name());
} else {
messages_.Say(subp.name(),
"Dummy argument %d of '%s' must be a data object"_err_en_US, position,
subp.name());
}
return false;
}
}
void CheckHelper::CheckAlreadySeenDefinedIo(const DerivedTypeSpec &derivedType,
common::DefinedIo ioKind, const Symbol &proc, const Symbol &generic) {
// Check for conflict between non-type-bound defined I/O and type-bound
// generics. It's okay to have two or more distinct defined I/O procedures for
// the same type if they're coming from distinct non-type-bound interfaces.
// (The non-type-bound interfaces would have been merged into a single generic
// -- with errors where indistinguishable -- when both were visible from the
// same scope.)
if (generic.owner().IsDerivedType()) {
return;
}
if (const Scope * dtScope{derivedType.scope()}) {
if (auto iter{dtScope->find(generic.name())}; iter != dtScope->end()) {
for (auto specRef : iter->second->get<GenericDetails>().specificProcs()) {
const Symbol &specific{specRef->get<ProcBindingDetails>().symbol()};
if (specific == proc) { // unambiguous, accept
continue;
}
if (const auto *specDT{GetDtvArgDerivedType(specific)};
specDT && evaluate::AreSameDerivedType(derivedType, *specDT)) {
SayWithDeclaration(*specRef, proc.name(),
"Derived type '%s' has conflicting type-bound input/output procedure '%s'"_err_en_US,
derivedType.name(), GenericKind::AsFortran(ioKind));
return;
}
}
}
}
}
void CheckHelper::CheckDioDummyIsDerived(const Symbol &subp, const Symbol &arg,
common::DefinedIo ioKind, const Symbol &generic) {
if (const DeclTypeSpec *type{arg.GetType()}) {
if (const DerivedTypeSpec *derivedType{type->AsDerived()}) {
CheckAlreadySeenDefinedIo(*derivedType, ioKind, subp, generic);
bool isPolymorphic{type->IsPolymorphic()};
if (isPolymorphic != IsExtensibleType(derivedType)) {
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure must be %s when the derived type is %s"_err_en_US,
arg.name(), isPolymorphic ? "TYPE()" : "CLASS()",
isPolymorphic ? "not extensible" : "extensible");
}
} else {
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure must have a"
" derived type"_err_en_US,
arg.name());
}
}
}
void CheckHelper::CheckDioDummyIsDefaultInteger(
const Symbol &subp, const Symbol &arg) {
if (const DeclTypeSpec *type{arg.GetType()};
type && type->IsNumeric(TypeCategory::Integer)) {
if (const auto kind{evaluate::ToInt64(type->numericTypeSpec().kind())};
kind && *kind == context_.GetDefaultKind(TypeCategory::Integer)) {
return;
}
}
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure"
" must be an INTEGER of default KIND"_err_en_US,
arg.name());
}
void CheckHelper::CheckDioDummyIsScalar(const Symbol &subp, const Symbol &arg) {
if (arg.Rank() > 0 || arg.Corank() > 0) {
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure"
" must be a scalar"_err_en_US,
arg.name());
}
}
void CheckHelper::CheckDioDtvArg(const Symbol &subp, const Symbol *arg,
common::DefinedIo ioKind, const Symbol &generic) {
// Dtv argument looks like: dtv-type-spec, INTENT(INOUT) :: dtv
if (CheckDioDummyIsData(subp, arg, 0)) {
CheckDioDummyIsDerived(subp, *arg, ioKind, generic);
CheckDioDummyAttrs(subp, *arg,
ioKind == common::DefinedIo::ReadFormatted ||
ioKind == common::DefinedIo::ReadUnformatted
? Attr::INTENT_INOUT
: Attr::INTENT_IN);
}
}
// If an explicit INTRINSIC name is a function, so must all the specifics be,
// and similarly for subroutines
void CheckHelper::CheckGenericVsIntrinsic(
const Symbol &symbol, const GenericDetails &generic) {
if (symbol.attrs().test(Attr::INTRINSIC)) {
const evaluate::IntrinsicProcTable &table{
context_.foldingContext().intrinsics()};
bool isSubroutine{table.IsIntrinsicSubroutine(symbol.name().ToString())};
if (isSubroutine || table.IsIntrinsicFunction(symbol.name().ToString())) {
for (const SymbolRef &ref : generic.specificProcs()) {
const Symbol &ultimate{ref->GetUltimate()};
bool specificFunc{ultimate.test(Symbol::Flag::Function)};
bool specificSubr{ultimate.test(Symbol::Flag::Subroutine)};
if (!specificFunc && !specificSubr) {
if (const auto *proc{ultimate.detailsIf<SubprogramDetails>()}) {
if (proc->isFunction()) {
specificFunc = true;
} else {
specificSubr = true;
}
}
}
if ((specificFunc || specificSubr) &&
isSubroutine != specificSubr) { // C848
messages_.Say(symbol.name(),
"Generic interface '%s' with explicit intrinsic %s of the same name may not have specific procedure '%s' that is a %s"_err_en_US,
symbol.name(), isSubroutine ? "subroutine" : "function",
ref->name(), isSubroutine ? "function" : "subroutine");
}
}
}
}
}
void CheckHelper::CheckDefaultIntegerArg(
const Symbol &subp, const Symbol *arg, Attr intent) {
// Argument looks like: INTEGER, INTENT(intent) :: arg
if (CheckDioDummyIsData(subp, arg, 1)) {
CheckDioDummyIsDefaultInteger(subp, *arg);
CheckDioDummyIsScalar(subp, *arg);
CheckDioDummyAttrs(subp, *arg, intent);
}
}
void CheckHelper::CheckDioAssumedLenCharacterArg(const Symbol &subp,
const Symbol *arg, std::size_t argPosition, Attr intent) {
// Argument looks like: CHARACTER (LEN=*), INTENT(intent) :: (iotype OR iomsg)
if (CheckDioDummyIsData(subp, arg, argPosition)) {
CheckDioDummyAttrs(subp, *arg, intent);
const DeclTypeSpec *type{arg ? arg->GetType() : nullptr};
const IntrinsicTypeSpec *intrinsic{type ? type->AsIntrinsic() : nullptr};
const auto kind{
intrinsic ? evaluate::ToInt64(intrinsic->kind()) : std::nullopt};
if (!IsAssumedLengthCharacter(*arg) ||
(!kind ||
*kind !=
context_.defaultKinds().GetDefaultKind(
TypeCategory::Character))) {
messages_.Say(arg->name(),
"Dummy argument '%s' of a defined input/output procedure"
" must be assumed-length CHARACTER of default kind"_err_en_US,
arg->name());
}
}
}
void CheckHelper::CheckDioVlistArg(
const Symbol &subp, const Symbol *arg, std::size_t argPosition) {
// Vlist argument looks like: INTEGER, INTENT(IN) :: v_list(:)
if (CheckDioDummyIsData(subp, arg, argPosition)) {
CheckDioDummyIsDefaultInteger(subp, *arg);
CheckDioDummyAttrs(subp, *arg, Attr::INTENT_IN);
const auto *objectDetails{arg->detailsIf<ObjectEntityDetails>()};
if (!objectDetails || !objectDetails->shape().CanBeDeferredShape()) {
messages_.Say(arg->name(),
"Dummy argument '%s' of a defined input/output procedure must be"
" deferred shape"_err_en_US,
arg->name());
}
}
}
void CheckHelper::CheckDioArgCount(
const Symbol &subp, common::DefinedIo ioKind, std::size_t argCount) {
const std::size_t requiredArgCount{
(std::size_t)(ioKind == common::DefinedIo::ReadFormatted ||
ioKind == common::DefinedIo::WriteFormatted
? 6
: 4)};
if (argCount != requiredArgCount) {
SayWithDeclaration(subp,
"Defined input/output procedure '%s' must have"
" %d dummy arguments rather than %d"_err_en_US,
subp.name(), requiredArgCount, argCount);
context_.SetError(subp);
}
}
void CheckHelper::CheckDioDummyAttrs(
const Symbol &subp, const Symbol &arg, Attr goodIntent) {
// Defined I/O procedures can't have attributes other than INTENT
Attrs attrs{arg.attrs()};
if (!attrs.test(goodIntent)) {
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure"
" must have intent '%s'"_err_en_US,
arg.name(), AttrToString(goodIntent));
}
attrs = attrs - Attr::INTENT_IN - Attr::INTENT_OUT - Attr::INTENT_INOUT;
if (!attrs.empty()) {
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure may not have"
" any attributes"_err_en_US,
arg.name());
}
}
// Enforce semantics for defined input/output procedures (12.6.4.8.2) and C777
void CheckHelper::CheckDefinedIoProc(const Symbol &symbol,
const GenericDetails &details, common::DefinedIo ioKind) {
for (auto ref : details.specificProcs()) {
const Symbol &ultimate{ref->GetUltimate()};
const auto *binding{ultimate.detailsIf<ProcBindingDetails>()};
const Symbol &specific{*(binding ? &binding->symbol() : &ultimate)};
if (ultimate.attrs().test(Attr::NOPASS)) { // C774
messages_.Say("Defined input/output procedure '%s' may not have NOPASS "
"attribute"_err_en_US,
ultimate.name());
context_.SetError(ultimate);
}
if (const auto *subpDetails{specific.detailsIf<SubprogramDetails>()}) {
const std::vector<Symbol *> &dummyArgs{subpDetails->dummyArgs()};
CheckDioArgCount(specific, ioKind, dummyArgs.size());
int argCount{0};
for (auto *arg : dummyArgs) {
switch (argCount++) {
case 0:
// dtv-type-spec, INTENT(INOUT) :: dtv
CheckDioDtvArg(specific, arg, ioKind, symbol);
break;
case 1:
// INTEGER, INTENT(IN) :: unit
CheckDefaultIntegerArg(specific, arg, Attr::INTENT_IN);
break;
case 2:
if (ioKind == common::DefinedIo::ReadFormatted ||
ioKind == common::DefinedIo::WriteFormatted) {
// CHARACTER (LEN=*), INTENT(IN) :: iotype
CheckDioAssumedLenCharacterArg(
specific, arg, argCount, Attr::INTENT_IN);
} else {
// INTEGER, INTENT(OUT) :: iostat
CheckDefaultIntegerArg(specific, arg, Attr::INTENT_OUT);
}
break;
case 3:
if (ioKind == common::DefinedIo::ReadFormatted ||
ioKind == common::DefinedIo::WriteFormatted) {
// INTEGER, INTENT(IN) :: v_list(:)
CheckDioVlistArg(specific, arg, argCount);
} else {
// CHARACTER (LEN=*), INTENT(INOUT) :: iomsg
CheckDioAssumedLenCharacterArg(
specific, arg, argCount, Attr::INTENT_INOUT);
}
break;
case 4:
// INTEGER, INTENT(OUT) :: iostat
CheckDefaultIntegerArg(specific, arg, Attr::INTENT_OUT);
break;
case 5:
// CHARACTER (LEN=*), INTENT(INOUT) :: iomsg
CheckDioAssumedLenCharacterArg(
specific, arg, argCount, Attr::INTENT_INOUT);
break;
default:;
}
}
}
}
}
void CheckHelper::CheckSymbolType(const Symbol &symbol) {
const Symbol *result{FindFunctionResult(symbol)};
const Symbol &relevant{result ? *result : symbol};
if (IsAllocatable(relevant)) { // always ok
} else if (IsProcedurePointer(symbol) && result && IsPointer(*result)) {
// procedure pointer returning allocatable or pointer: ok
} else if (IsPointer(relevant) && !IsProcedure(relevant)) {
// object pointers are always ok
} else if (auto dyType{evaluate::DynamicType::From(relevant)}) {
if (dyType->IsPolymorphic() && !dyType->IsAssumedType() &&
!(IsDummy(symbol) && !IsProcedure(relevant))) { // C708
messages_.Say(
"CLASS entity '%s' must be a dummy argument, allocatable, or object pointer"_err_en_US,
symbol.name());
}
if (dyType->HasDeferredTypeParameter()) { // C702
messages_.Say(
"'%s' has a type %s with a deferred type parameter but is neither an allocatable nor an object pointer"_err_en_US,
symbol.name(), dyType->AsFortran());
}
}
}
void CheckHelper::CheckModuleProcedureDef(const Symbol &symbol) {
auto procClass{ClassifyProcedure(symbol)};
if (const auto *subprogram{symbol.detailsIf<SubprogramDetails>()};
subprogram &&
(procClass == ProcedureDefinitionClass::Module &&
symbol.attrs().test(Attr::MODULE)) &&
!subprogram->bindName() && !subprogram->isInterface()) {
const Symbol &interface {
subprogram->moduleInterface() ? *subprogram->moduleInterface() : symbol
};
if (const Symbol *
module{interface.owner().kind() == Scope::Kind::Module
? interface.owner().symbol()
: nullptr};
module && module->has<ModuleDetails>()) {
std::pair<SourceName, const Symbol *> key{symbol.name(), module};
auto iter{moduleProcs_.find(key)};
if (iter == moduleProcs_.end()) {
moduleProcs_.emplace(std::move(key), symbol);
} else if (
auto *msg{messages_.Say(symbol.name(),
"Module procedure '%s' in '%s' has multiple definitions"_err_en_US,
symbol.name(), GetModuleOrSubmoduleName(*module))}) {
msg->Attach(iter->second->name(), "Previous definition of '%s'"_en_US,
symbol.name());
}
}
}
}
void SubprogramMatchHelper::Check(
const Symbol &symbol1, const Symbol &symbol2) {
const auto details1{symbol1.get<SubprogramDetails>()};
const auto details2{symbol2.get<SubprogramDetails>()};
if (details1.isFunction() != details2.isFunction()) {
Say(symbol1, symbol2,
details1.isFunction()
? "Module function '%s' was declared as a subroutine in the"
" corresponding interface body"_err_en_US
: "Module subroutine '%s' was declared as a function in the"
" corresponding interface body"_err_en_US);
return;
}
const auto &args1{details1.dummyArgs()};
const auto &args2{details2.dummyArgs()};
int nargs1{static_cast<int>(args1.size())};
int nargs2{static_cast<int>(args2.size())};
if (nargs1 != nargs2) {
Say(symbol1, symbol2,
"Module subprogram '%s' has %d args but the corresponding interface"
" body has %d"_err_en_US,
nargs1, nargs2);
return;
}
bool nonRecursive1{symbol1.attrs().test(Attr::NON_RECURSIVE)};
if (nonRecursive1 != symbol2.attrs().test(Attr::NON_RECURSIVE)) { // C1551
Say(symbol1, symbol2,
nonRecursive1
? "Module subprogram '%s' has NON_RECURSIVE prefix but"
" the corresponding interface body does not"_err_en_US
: "Module subprogram '%s' does not have NON_RECURSIVE prefix but "
"the corresponding interface body does"_err_en_US);
}
const std::string *bindName1{details1.bindName()};
const std::string *bindName2{details2.bindName()};
if (!bindName1 && !bindName2) {
// OK - neither has a binding label
} else if (!bindName1) {
Say(symbol1, symbol2,
"Module subprogram '%s' does not have a binding label but the"
" corresponding interface body does"_err_en_US);
} else if (!bindName2) {
Say(symbol1, symbol2,
"Module subprogram '%s' has a binding label but the"
" corresponding interface body does not"_err_en_US);
} else if (*bindName1 != *bindName2) {
Say(symbol1, symbol2,
"Module subprogram '%s' has binding label '%s' but the corresponding"
" interface body has '%s'"_err_en_US,
*details1.bindName(), *details2.bindName());
}
const Procedure *proc1{checkHelper.Characterize(symbol1)};
const Procedure *proc2{checkHelper.Characterize(symbol2)};
if (!proc1 || !proc2) {
return;
}
if (proc1->attrs.test(Procedure::Attr::Pure) !=
proc2->attrs.test(Procedure::Attr::Pure)) {
Say(symbol1, symbol2,
"Module subprogram '%s' and its corresponding interface body are not both PURE"_err_en_US);
}
if (proc1->attrs.test(Procedure::Attr::Elemental) !=
proc2->attrs.test(Procedure::Attr::Elemental)) {
Say(symbol1, symbol2,
"Module subprogram '%s' and its corresponding interface body are not both ELEMENTAL"_err_en_US);
}
if (proc1->attrs.test(Procedure::Attr::BindC) !=
proc2->attrs.test(Procedure::Attr::BindC)) {
Say(symbol1, symbol2,
"Module subprogram '%s' and its corresponding interface body are not both BIND(C)"_err_en_US);
}
if (proc1->functionResult && proc2->functionResult) {
std::string whyNot;
if (!proc1->functionResult->IsCompatibleWith(
*proc2->functionResult, &whyNot)) {
Say(symbol1, symbol2,
"Result of function '%s' is not compatible with the result of the corresponding interface body: %s"_err_en_US,
whyNot);
}
}
for (int i{0}; i < nargs1; ++i) {
const Symbol *arg1{args1[i]};
const Symbol *arg2{args2[i]};
if (arg1 && !arg2) {
Say(symbol1, symbol2,
"Dummy argument %2$d of '%1$s' is not an alternate return indicator"
" but the corresponding argument in the interface body is"_err_en_US,
i + 1);
} else if (!arg1 && arg2) {
Say(symbol1, symbol2,
"Dummy argument %2$d of '%1$s' is an alternate return indicator but"
" the corresponding argument in the interface body is not"_err_en_US,
i + 1);
} else if (arg1 && arg2) {
SourceName name1{arg1->name()};
SourceName name2{arg2->name()};
if (name1 != name2) {
Say(*arg1, *arg2,
"Dummy argument name '%s' does not match corresponding name '%s'"
" in interface body"_err_en_US,
name2);
} else {
CheckDummyArg(
*arg1, *arg2, proc1->dummyArguments[i], proc2->dummyArguments[i]);
}
}
}
}
void SubprogramMatchHelper::CheckDummyArg(const Symbol &symbol1,
const Symbol &symbol2, const DummyArgument &arg1,
const DummyArgument &arg2) {
common::visit(
common::visitors{
[&](const DummyDataObject &obj1, const DummyDataObject &obj2) {
CheckDummyDataObject(symbol1, symbol2, obj1, obj2);
},
[&](const DummyProcedure &proc1, const DummyProcedure &proc2) {
CheckDummyProcedure(symbol1, symbol2, proc1, proc2);
},
[&](const DummyDataObject &, const auto &) {
Say(symbol1, symbol2,
"Dummy argument '%s' is a data object; the corresponding"
" argument in the interface body is not"_err_en_US);
},
[&](const DummyProcedure &, const auto &) {
Say(symbol1, symbol2,
"Dummy argument '%s' is a procedure; the corresponding"
" argument in the interface body is not"_err_en_US);
},
[&](const auto &, const auto &) {
llvm_unreachable("Dummy arguments are not data objects or"
"procedures");
},
},
arg1.u, arg2.u);
}
void SubprogramMatchHelper::CheckDummyDataObject(const Symbol &symbol1,
const Symbol &symbol2, const DummyDataObject &obj1,
const DummyDataObject &obj2) {
if (!CheckSameIntent(symbol1, symbol2, obj1.intent, obj2.intent)) {
} else if (!CheckSameAttrs(symbol1, symbol2, obj1.attrs, obj2.attrs)) {
} else if (!obj1.type.type().IsEquivalentTo(obj2.type.type())) {
Say(symbol1, symbol2,
"Dummy argument '%s' has type %s; the corresponding argument in the interface body has distinct type %s"_err_en_US,
obj1.type.type().AsFortran(), obj2.type.type().AsFortran());
} else if (!ShapesAreCompatible(obj1, obj2)) {
Say(symbol1, symbol2,
"The shape of dummy argument '%s' does not match the shape of the"
" corresponding argument in the interface body"_err_en_US);
}
// TODO: coshape
}
void SubprogramMatchHelper::CheckDummyProcedure(const Symbol &symbol1,
const Symbol &symbol2, const DummyProcedure &proc1,
const DummyProcedure &proc2) {
if (!CheckSameIntent(symbol1, symbol2, proc1.intent, proc2.intent)) {
} else if (!CheckSameAttrs(symbol1, symbol2, proc1.attrs, proc2.attrs)) {
} else if (proc1 != proc2) {
Say(symbol1, symbol2,
"Dummy procedure '%s' does not match the corresponding argument in"
" the interface body"_err_en_US);
}
}
bool SubprogramMatchHelper::CheckSameIntent(const Symbol &symbol1,
const Symbol &symbol2, common::Intent intent1, common::Intent intent2) {
if (intent1 == intent2) {
return true;
} else {
Say(symbol1, symbol2,
"The intent of dummy argument '%s' does not match the intent"
" of the corresponding argument in the interface body"_err_en_US);
return false;
}
}
// Report an error referring to first symbol with declaration of second symbol
template <typename... A>
void SubprogramMatchHelper::Say(const Symbol &symbol1, const Symbol &symbol2,
parser::MessageFixedText &&text, A &&...args) {
auto &message{context().Say(symbol1.name(), std::move(text), symbol1.name(),
std::forward<A>(args)...)};
evaluate::AttachDeclaration(message, symbol2);
}
template <typename ATTRS>
bool SubprogramMatchHelper::CheckSameAttrs(
const Symbol &symbol1, const Symbol &symbol2, ATTRS attrs1, ATTRS attrs2) {
if (attrs1 == attrs2) {
return true;
}
attrs1.IterateOverMembers([&](auto attr) {
if (!attrs2.test(attr)) {
Say(symbol1, symbol2,
"Dummy argument '%s' has the %s attribute; the corresponding"
" argument in the interface body does not"_err_en_US,
AsFortran(attr));
}
});
attrs2.IterateOverMembers([&](auto attr) {
if (!attrs1.test(attr)) {
Say(symbol1, symbol2,
"Dummy argument '%s' does not have the %s attribute; the"
" corresponding argument in the interface body does"_err_en_US,
AsFortran(attr));
}
});
return false;
}
bool SubprogramMatchHelper::ShapesAreCompatible(
const DummyDataObject &obj1, const DummyDataObject &obj2) {
return characteristics::ShapesAreCompatible(
FoldShape(obj1.type.shape()), FoldShape(obj2.type.shape()));
}
evaluate::Shape SubprogramMatchHelper::FoldShape(const evaluate::Shape &shape) {
evaluate::Shape result;
for (const auto &extent : shape) {
result.emplace_back(
evaluate::Fold(context().foldingContext(), common::Clone(extent)));
}
return result;
}
void DistinguishabilityHelper::Add(const Symbol &generic, GenericKind kind,
const Symbol &ultimateSpecific, const Procedure &procedure) {
if (!context_.HasError(ultimateSpecific)) {
nameToSpecifics_[generic.name()].emplace(
&ultimateSpecific, ProcedureInfo{kind, procedure});
}
}
void DistinguishabilityHelper::Check(const Scope &scope) {
if (FindModuleFileContaining(scope)) {
// Distinguishability was checked when the module was created;
// don't let optional warnings then become errors now.
return;
}
for (const auto &[name, info] : nameToSpecifics_) {
for (auto iter1{info.begin()}; iter1 != info.end(); ++iter1) {
const auto &[ultimate, procInfo]{*iter1};
const auto &[kind, proc]{procInfo};
for (auto iter2{iter1}; ++iter2 != info.end();) {
auto distinguishable{kind.IsName()
? evaluate::characteristics::Distinguishable
: evaluate::characteristics::DistinguishableOpOrAssign};
std::optional<bool> distinct{distinguishable(
context_.languageFeatures(), proc, iter2->second.procedure)};
if (!distinct.value_or(false)) {
SayNotDistinguishable(GetTopLevelUnitContaining(scope), name, kind,
*ultimate, *iter2->first, distinct.has_value());
}
}
}
}
}
void DistinguishabilityHelper::SayNotDistinguishable(const Scope &scope,
const SourceName &name, GenericKind kind, const Symbol &proc1,
const Symbol &proc2, bool isHardConflict) {
bool isUseAssociated{!scope.sourceRange().Contains(name)};
// The rules for distinguishing specific procedures (F'2023 15.4.3.4.5)
// are inadequate for some real-world cases like pFUnit.
// When there are optional dummy arguments or unlimited polymorphic
// dummy data object arguments, the best that we can do is emit an optional
// portability warning. Also, named generics created by USE association
// merging shouldn't receive hard errors for ambiguity.
// (Non-named generics might be defined I/O procedures or defined
// assignments that need to be used by the runtime.)
bool isWarning{!isHardConflict || (isUseAssociated && kind.IsName())};
if (isWarning &&
(!context_.ShouldWarn(
common::LanguageFeature::IndistinguishableSpecifics) ||
FindModuleFileContaining(scope))) {
return;
}
std::string name1{proc1.name().ToString()};
std::string name2{proc2.name().ToString()};
if (kind.IsOperator() || kind.IsAssignment()) {
// proc1 and proc2 may come from different scopes so qualify their names
if (proc1.owner().IsDerivedType()) {
name1 = proc1.owner().GetName()->ToString() + '%' + name1;
}
if (proc2.owner().IsDerivedType()) {
name2 = proc2.owner().GetName()->ToString() + '%' + name2;
}
}
parser::Message *msg;
if (!isUseAssociated) {
CHECK(isWarning == !isHardConflict);
msg = &context_.Say(name,
isHardConflict
? "Generic '%s' may not have specific procedures '%s' and '%s' as their interfaces are not distinguishable"_err_en_US
: "Generic '%s' should not have specific procedures '%s' and '%s' as their interfaces are not distinguishable by the rules in the standard"_port_en_US,
MakeOpName(name), name1, name2);
} else {
msg = &context_.Say(*GetTopLevelUnitContaining(proc1).GetName(),
isHardConflict
? (isWarning
? "USE-associated generic '%s' should not have specific procedures '%s' and '%s' as their interfaces are not distinguishable"_warn_en_US
: "USE-associated generic '%s' may not have specific procedures '%s' and '%s' as their interfaces are not distinguishable"_err_en_US)
: "USE-associated generic '%s' should not have specific procedures '%s' and '%s' as their interfaces are not distinguishable by the rules in the standard"_port_en_US,
MakeOpName(name), name1, name2);
}
AttachDeclaration(*msg, scope, proc1);
AttachDeclaration(*msg, scope, proc2);
}
// `evaluate::AttachDeclaration` doesn't handle the generic case where `proc`
// comes from a different module but is not necessarily use-associated.
void DistinguishabilityHelper::AttachDeclaration(
parser::Message &msg, const Scope &scope, const Symbol &proc) {
const Scope &unit{GetTopLevelUnitContaining(proc)};
if (unit == scope) {
evaluate::AttachDeclaration(msg, proc);
} else {
msg.Attach(unit.GetName().value(),
"'%s' is USE-associated from module '%s'"_en_US, proc.name(),
unit.GetName().value());
}
}
void CheckDeclarations(SemanticsContext &context) {
CheckHelper{context}.Check();
}
} // namespace Fortran::semantics