//===-- lib/Semantics/expression.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Semantics/expression.h"
#include "check-call.h"
#include "pointer-assignment.h"
#include "resolve-names-utils.h"
#include "resolve-names.h"
#include "flang/Common/Fortran.h"
#include "flang/Common/idioms.h"
#include "flang/Evaluate/common.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Parser/characters.h"
#include "flang/Parser/dump-parse-tree.h"
#include "flang/Parser/parse-tree-visitor.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <functional>
#include <optional>
#include <set>
#include <vector>
// Typedef for optional generic expressions (ubiquitous in this file)
using MaybeExpr =
std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
// Much of the code that implements semantic analysis of expressions is
// tightly coupled with their typed representations in lib/Evaluate,
// and appears here in namespace Fortran::evaluate for convenience.
namespace Fortran::evaluate {
using common::LanguageFeature;
using common::NumericOperator;
using common::TypeCategory;
static inline std::string ToUpperCase(std::string_view str) {
return parser::ToUpperCaseLetters(str);
}
struct DynamicTypeWithLength : public DynamicType {
explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
std::optional<Expr<SubscriptInteger>> LEN() const;
std::optional<Expr<SubscriptInteger>> length;
};
std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
if (length) {
return length;
} else {
return GetCharLength();
}
}
static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
const std::optional<parser::TypeSpec> &spec, FoldingContext &context) {
if (spec) {
if (const semantics::DeclTypeSpec *typeSpec{spec->declTypeSpec}) {
// Name resolution sets TypeSpec::declTypeSpec only when it's valid
// (viz., an intrinsic type with valid known kind or a non-polymorphic
// & non-ABSTRACT derived type).
if (const semantics::IntrinsicTypeSpec *intrinsic{
typeSpec->AsIntrinsic()}) {
TypeCategory category{intrinsic->category()};
if (auto optKind{ToInt64(intrinsic->kind())}) {
int kind{static_cast<int>(*optKind)};
if (category == TypeCategory::Character) {
const semantics::CharacterTypeSpec &cts{
typeSpec->characterTypeSpec()};
const semantics::ParamValue &len{cts.length()};
// N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
// type guards, but not in array constructors.
DynamicTypeWithLength type{DynamicType{kind, len}};
if (auto lenExpr{type.LEN()}) {
type.length = Fold(context,
AsExpr(Extremum<SubscriptInteger>{Ordering::Greater,
Expr<SubscriptInteger>{0}, std::move(*lenExpr)}));
}
return type;
} else {
return DynamicTypeWithLength{DynamicType{category, kind}};
}
}
} else if (const semantics::DerivedTypeSpec *derived{
typeSpec->AsDerived()}) {
return DynamicTypeWithLength{DynamicType{*derived}};
}
}
}
return std::nullopt;
}
// Utilities to set a source location, if we have one, on an actual argument,
// when it is statically present.
static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) {
x.set_sourceLocation(at);
}
static void SetArgSourceLocation(
std::optional<ActualArgument> &x, parser::CharBlock at) {
if (x) {
x->set_sourceLocation(at);
}
}
static void SetArgSourceLocation(
std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) {
if (x && at) {
x->set_sourceLocation(*at);
}
}
class ArgumentAnalyzer {
public:
explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
: context_{context}, source_{context.GetContextualMessages().at()},
isProcedureCall_{false} {}
ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
bool isProcedureCall = false)
: context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
bool fatalErrors() const { return fatalErrors_; }
ActualArguments &&GetActuals() {
CHECK(!fatalErrors_);
return std::move(actuals_);
}
const Expr<SomeType> &GetExpr(std::size_t i) const {
return DEREF(actuals_.at(i).value().UnwrapExpr());
}
Expr<SomeType> &&MoveExpr(std::size_t i) {
return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
}
void Analyze(const common::Indirection<parser::Expr> &x) {
Analyze(x.value());
}
void Analyze(const parser::Expr &x) {
actuals_.emplace_back(AnalyzeExpr(x));
SetArgSourceLocation(actuals_.back(), x.source);
fatalErrors_ |= !actuals_.back();
}
void Analyze(const parser::Variable &);
void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
void ConvertBOZ(std::optional<DynamicType> *thisType, std::size_t,
std::optional<DynamicType> otherType);
bool IsIntrinsicRelational(
RelationalOperator, const DynamicType &, const DynamicType &) const;
bool IsIntrinsicLogical() const;
bool IsIntrinsicNumeric(NumericOperator) const;
bool IsIntrinsicConcat() const;
bool CheckConformance();
bool CheckAssignmentConformance();
bool CheckForNullPointer(const char *where = "as an operand here");
bool CheckForAssumedRank(const char *where = "as an operand here");
// Find and return a user-defined operator or report an error.
// The provided message is used if there is no such operator.
// If a definedOpSymbolPtr is provided, the caller must check
// for its accessibility.
MaybeExpr TryDefinedOp(
const char *, parser::MessageFixedText, bool isUserOp = false);
template <typename E>
MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) {
return TryDefinedOp(
context_.context().languageFeatures().GetNames(opr), msg);
}
// Find and return a user-defined assignment
std::optional<ProcedureRef> TryDefinedAssignment();
std::optional<ProcedureRef> GetDefinedAssignmentProc();
std::optional<DynamicType> GetType(std::size_t) const;
void Dump(llvm::raw_ostream &);
private:
MaybeExpr TryDefinedOp(
const std::vector<const char *> &, parser::MessageFixedText);
MaybeExpr TryBoundOp(const Symbol &, int passIndex);
std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
std::optional<ActualArgument> AnalyzeVariable(const parser::Variable &);
MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &);
bool AreConformable() const;
const Symbol *FindBoundOp(parser::CharBlock, int passIndex,
const Symbol *&generic, bool isSubroutine);
void AddAssignmentConversion(
const DynamicType &lhsType, const DynamicType &rhsType);
bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
int GetRank(std::size_t) const;
bool IsBOZLiteral(std::size_t i) const {
return evaluate::IsBOZLiteral(GetExpr(i));
}
void SayNoMatch(const std::string &, bool isAssignment = false);
std::string TypeAsFortran(std::size_t);
bool AnyUntypedOrMissingOperand();
ExpressionAnalyzer &context_;
ActualArguments actuals_;
parser::CharBlock source_;
bool fatalErrors_{false};
const bool isProcedureCall_; // false for user-defined op or assignment
};
// Wraps a data reference in a typed Designator<>, and a procedure
// or procedure pointer reference in a ProcedureDesignator.
MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
const Symbol &last{ref.GetLastSymbol()};
const Symbol &specific{BypassGeneric(last)};
const Symbol &symbol{specific.GetUltimate()};
if (semantics::IsProcedure(symbol)) {
if (symbol.attrs().test(semantics::Attr::ABSTRACT)) {
Say("Abstract procedure interface '%s' may not be used as a designator"_err_en_US,
last.name());
}
if (auto *component{std::get_if<Component>(&ref.u)}) {
if (!CheckDataRef(ref)) {
return std::nullopt;
}
return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
} else if (!std::holds_alternative<SymbolRef>(ref.u)) {
DIE("unexpected alternative in DataRef");
} else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
if (symbol.has<semantics::GenericDetails>()) {
Say("'%s' is not a specific procedure"_err_en_US, last.name());
} else if (IsProcedurePointer(specific)) {
// For procedure pointers, retain associations so that data accesses
// from client modules will work.
return Expr<SomeType>{ProcedureDesignator{specific}};
} else {
return Expr<SomeType>{ProcedureDesignator{symbol}};
}
} else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
symbol.name().ToString())};
interface && !interface->isRestrictedSpecific) {
SpecificIntrinsic intrinsic{
symbol.name().ToString(), std::move(*interface)};
intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
} else {
Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US,
last.name());
}
return std::nullopt;
} else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) {
return result;
} else if (semantics::HadUseError(
context_, GetContextualMessages().at(), &symbol)) {
return std::nullopt;
} else {
if (!context_.HasError(last) && !context_.HasError(symbol)) {
AttachDeclaration(
Say("'%s' is not an object that can appear in an expression"_err_en_US,
last.name()),
symbol);
context_.SetError(last);
}
return std::nullopt;
}
}
// Some subscript semantic checks must be deferred until all of the
// subscripts are in hand.
MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
int symbolRank{symbol.Rank()};
int subscripts{static_cast<int>(ref.size())};
if (subscripts == 0) {
return std::nullopt; // error recovery
} else if (subscripts != symbolRank) {
if (symbolRank != 0) {
Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
symbolRank, symbol.name(), subscripts);
}
return std::nullopt;
} else if (symbol.has<semantics::ObjectEntityDetails>() ||
symbol.has<semantics::AssocEntityDetails>()) {
// C928 & C1002
if (Triplet *last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
if (!last->upper() && IsAssumedSizeArray(symbol)) {
Say("Assumed-size array '%s' must have explicit final "
"subscript upper bound value"_err_en_US,
symbol.name());
return std::nullopt;
}
}
} else {
// Shouldn't get here from Analyze(ArrayElement) without a valid base,
// which, if not an object, must be a construct entity from
// SELECT TYPE/RANK or ASSOCIATE.
CHECK(symbol.has<semantics::AssocEntityDetails>());
}
if (!semantics::IsNamedConstant(symbol) && !inDataStmtObject_) {
// Subscripts of named constants are checked in folding.
// Subscripts of DATA statement objects are checked in data statement
// conversion to initializers.
CheckSubscripts(ref);
}
return Designate(DataRef{std::move(ref)});
}
// Applies subscripts to a data reference.
MaybeExpr ExpressionAnalyzer::ApplySubscripts(
DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
if (subscripts.empty()) {
return std::nullopt; // error recovery
}
return common::visit(
common::visitors{
[&](SymbolRef &&symbol) {
return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
},
[&](Component &&c) {
return CompleteSubscripts(
ArrayRef{std::move(c), std::move(subscripts)});
},
[&](auto &&) -> MaybeExpr {
DIE("bad base for ArrayRef");
return std::nullopt;
},
},
std::move(dataRef.u));
}
void ExpressionAnalyzer::CheckSubscripts(ArrayRef &ref) {
// Fold subscript expressions and check for an empty triplet.
const Symbol &arraySymbol{ref.base().GetLastSymbol()};
Shape lb{GetLBOUNDs(foldingContext_, NamedEntity{arraySymbol})};
CHECK(lb.size() >= ref.subscript().size());
Shape ub{GetUBOUNDs(foldingContext_, NamedEntity{arraySymbol})};
CHECK(ub.size() >= ref.subscript().size());
bool anyPossiblyEmptyDim{false};
int dim{0};
for (Subscript &ss : ref.subscript()) {
if (Triplet * triplet{std::get_if<Triplet>(&ss.u)}) {
auto expr{Fold(triplet->stride())};
auto stride{ToInt64(expr)};
triplet->set_stride(std::move(expr));
std::optional<ConstantSubscript> lower, upper;
if (auto expr{triplet->lower()}) {
*expr = Fold(std::move(*expr));
lower = ToInt64(*expr);
triplet->set_lower(std::move(*expr));
} else {
lower = ToInt64(lb[dim]);
}
if (auto expr{triplet->upper()}) {
*expr = Fold(std::move(*expr));
upper = ToInt64(*expr);
triplet->set_upper(std::move(*expr));
} else {
upper = ToInt64(ub[dim]);
}
if (stride) {
if (*stride == 0) {
Say("Stride of triplet must not be zero"_err_en_US);
return;
}
if (lower && upper) {
if (*stride > 0) {
anyPossiblyEmptyDim |= *lower > *upper;
} else {
anyPossiblyEmptyDim |= *lower < *upper;
}
} else {
anyPossiblyEmptyDim = true;
}
} else { // non-constant stride
if (lower && upper && *lower == *upper) {
// stride is not relevant
} else {
anyPossiblyEmptyDim = true;
}
}
} else { // not triplet
auto &expr{std::get<IndirectSubscriptIntegerExpr>(ss.u).value()};
expr = Fold(std::move(expr));
anyPossiblyEmptyDim |= expr.Rank() > 0; // vector subscript
}
++dim;
}
if (anyPossiblyEmptyDim) {
return;
}
dim = 0;
for (Subscript &ss : ref.subscript()) {
auto dimLB{ToInt64(lb[dim])};
auto dimUB{ToInt64(ub[dim])};
if (dimUB && dimLB && *dimUB < *dimLB) {
AttachDeclaration(
Say("Empty array dimension %d cannot be subscripted as an element or non-empty array section"_err_en_US,
dim + 1),
arraySymbol);
break;
}
std::optional<ConstantSubscript> val[2];
int vals{0};
if (auto *triplet{std::get_if<Triplet>(&ss.u)}) {
auto stride{ToInt64(triplet->stride())};
std::optional<ConstantSubscript> lower, upper;
if (const auto *lowerExpr{triplet->GetLower()}) {
lower = ToInt64(*lowerExpr);
} else if (lb[dim]) {
lower = ToInt64(*lb[dim]);
}
if (const auto *upperExpr{triplet->GetUpper()}) {
upper = ToInt64(*upperExpr);
} else if (ub[dim]) {
upper = ToInt64(*ub[dim]);
}
if (lower) {
val[vals++] = *lower;
if (upper && *upper != lower && (stride && *stride != 0)) {
// Normalize upper bound for non-unit stride
// 1:10:2 -> 1:9:2, 10:1:-2 -> 10:2:-2
val[vals++] = *lower + *stride * ((*upper - *lower) / *stride);
}
}
} else {
val[vals++] =
ToInt64(std::get<IndirectSubscriptIntegerExpr>(ss.u).value());
}
for (int j{0}; j < vals; ++j) {
if (val[j]) {
std::optional<parser::MessageFixedText> msg;
std::optional<ConstantSubscript> bound;
if (dimLB && *val[j] < *dimLB) {
msg =
"Subscript %jd is less than lower bound %jd for dimension %d of array"_err_en_US;
bound = *dimLB;
} else if (dimUB && *val[j] > *dimUB) {
msg =
"Subscript %jd is greater than upper bound %jd for dimension %d of array"_err_en_US;
bound = *dimUB;
if (dim + 1 == arraySymbol.Rank() && IsDummy(arraySymbol) &&
*bound == 1) {
// Old-school overindexing of a dummy array isn't fatal when
// it's on the last dimension and the extent is 1.
msg->set_severity(parser::Severity::Warning);
}
}
if (msg) {
AttachDeclaration(
Say(std::move(*msg), static_cast<std::intmax_t>(*val[j]),
static_cast<std::intmax_t>(bound.value()), dim + 1),
arraySymbol);
}
}
}
++dim;
}
}
// C919a - only one part-ref of a data-ref may have rank > 0
bool ExpressionAnalyzer::CheckRanks(const DataRef &dataRef) {
return common::visit(
common::visitors{
[this](const Component &component) {
const Symbol &symbol{component.GetLastSymbol()};
if (int componentRank{symbol.Rank()}; componentRank > 0) {
if (int baseRank{component.base().Rank()}; baseRank > 0) {
Say("Reference to whole rank-%d component '%s' of rank-%d array of derived type is not allowed"_err_en_US,
componentRank, symbol.name(), baseRank);
return false;
}
} else {
return CheckRanks(component.base());
}
return true;
},
[this](const ArrayRef &arrayRef) {
if (const auto *component{arrayRef.base().UnwrapComponent()}) {
int subscriptRank{0};
for (const Subscript &subscript : arrayRef.subscript()) {
subscriptRank += subscript.Rank();
}
if (subscriptRank > 0) {
if (int componentBaseRank{component->base().Rank()};
componentBaseRank > 0) {
Say("Subscripts of component '%s' of rank-%d derived type array have rank %d but must all be scalar"_err_en_US,
component->GetLastSymbol().name(), componentBaseRank,
subscriptRank);
return false;
}
} else {
return CheckRanks(component->base());
}
}
return true;
},
[](const SymbolRef &) { return true; },
[](const CoarrayRef &) { return true; },
},
dataRef.u);
}
// C911 - if the last name in a data-ref has an abstract derived type,
// it must also be polymorphic.
bool ExpressionAnalyzer::CheckPolymorphic(const DataRef &dataRef) {
if (auto type{DynamicType::From(dataRef.GetLastSymbol())}) {
if (type->category() == TypeCategory::Derived && !type->IsPolymorphic()) {
const Symbol &typeSymbol{
type->GetDerivedTypeSpec().typeSymbol().GetUltimate()};
if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) {
AttachDeclaration(
Say("Reference to object with abstract derived type '%s' must be polymorphic"_err_en_US,
typeSymbol.name()),
typeSymbol);
return false;
}
}
}
return true;
}
bool ExpressionAnalyzer::CheckDataRef(const DataRef &dataRef) {
// Always check both, don't short-circuit
bool ranksOk{CheckRanks(dataRef)};
bool polyOk{CheckPolymorphic(dataRef)};
return ranksOk && polyOk;
}
// Parse tree correction after a substring S(j:k) was misparsed as an
// array section. Fortran substrings must have a range, not a
// single index.
static std::optional<parser::Substring> FixMisparsedSubstringDataRef(
parser::DataRef &dataRef) {
if (auto *ae{
std::get_if<common::Indirection<parser::ArrayElement>>(&dataRef.u)}) {
// ...%a(j:k) and "a" is a character scalar
parser::ArrayElement &arrElement{ae->value()};
if (arrElement.subscripts.size() == 1) {
if (auto *triplet{std::get_if<parser::SubscriptTriplet>(
&arrElement.subscripts.front().u)}) {
if (!std::get<2 /*stride*/>(triplet->t).has_value()) {
if (const Symbol *symbol{
parser::GetLastName(arrElement.base).symbol}) {
const Symbol &ultimate{symbol->GetUltimate()};
if (const semantics::DeclTypeSpec *type{ultimate.GetType()}) {
if (ultimate.Rank() == 0 &&
type->category() == semantics::DeclTypeSpec::Character) {
// The ambiguous S(j:k) was parsed as an array section
// reference, but it's now clear that it's a substring.
// Fix the parse tree in situ.
return arrElement.ConvertToSubstring();
}
}
}
}
}
}
}
return std::nullopt;
}
// When a designator is a misparsed type-param-inquiry of a misparsed
// substring -- it looks like a structure component reference of an array
// slice -- fix the substring and then convert to an intrinsic function
// call to KIND() or LEN(). And when the designator is a misparsed
// substring, convert it into a substring reference in place.
MaybeExpr ExpressionAnalyzer::FixMisparsedSubstring(
const parser::Designator &d) {
auto &mutate{const_cast<parser::Designator &>(d)};
if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
if (auto *sc{std::get_if<common::Indirection<parser::StructureComponent>>(
&dataRef->u)}) {
parser::StructureComponent &structComponent{sc->value()};
parser::CharBlock which{structComponent.component.source};
if (which == "kind" || which == "len") {
if (auto substring{
FixMisparsedSubstringDataRef(structComponent.base)}) {
// ...%a(j:k)%kind or %len and "a" is a character scalar
mutate.u = std::move(*substring);
if (MaybeExpr substringExpr{Analyze(d)}) {
return MakeFunctionRef(which,
ActualArguments{ActualArgument{std::move(*substringExpr)}});
}
}
}
} else if (auto substring{FixMisparsedSubstringDataRef(*dataRef)}) {
mutate.u = std::move(*substring);
}
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
auto restorer{GetContextualMessages().SetLocation(d.source)};
if (auto substringInquiry{FixMisparsedSubstring(d)}) {
return substringInquiry;
}
// These checks have to be deferred to these "top level" data-refs where
// we can be sure that there are no following subscripts (yet).
MaybeExpr result{Analyze(d.u)};
if (result) {
std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))};
if (!dataRef) {
dataRef = ExtractDataRef(std::move(result), /*intoSubstring=*/true);
}
if (!dataRef) {
dataRef = ExtractDataRef(std::move(result),
/*intoSubstring=*/false, /*intoComplexPart=*/true);
}
if (dataRef && !CheckDataRef(*dataRef)) {
result.reset();
}
}
return result;
}
// A utility subroutine to repackage optional expressions of various levels
// of type specificity as fully general MaybeExpr values.
template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
return AsGenericExpr(std::move(x));
}
template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
if (x) {
return AsMaybeExpr(std::move(*x));
}
return std::nullopt;
}
// Type kind parameter values for literal constants.
int ExpressionAnalyzer::AnalyzeKindParam(
const std::optional<parser::KindParam> &kindParam, int defaultKind) {
if (!kindParam) {
return defaultKind;
}
std::int64_t kind{common::visit(
common::visitors{
[](std::uint64_t k) { return static_cast<std::int64_t>(k); },
[&](const parser::Scalar<
parser::Integer<parser::Constant<parser::Name>>> &n) {
if (MaybeExpr ie{Analyze(n)}) {
return ToInt64(*ie).value_or(defaultKind);
}
return static_cast<std::int64_t>(defaultKind);
},
},
kindParam->u)};
if (kind != static_cast<int>(kind)) {
Say("Unsupported type kind value (%jd)"_err_en_US,
static_cast<std::intmax_t>(kind));
kind = defaultKind;
}
return static_cast<int>(kind);
}
// Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
struct IntTypeVisitor {
using Result = MaybeExpr;
using Types = IntegerTypes;
template <typename T> Result Test() {
if (T::kind >= kind) {
const char *p{digits.begin()};
using Int = typename T::Scalar;
typename Int::ValueWithOverflow num{0, false};
if (isNegated) {
auto unsignedNum{Int::Read(p, 10, false /*unsigned*/)};
num.value = unsignedNum.value.Negate().value;
num.overflow = unsignedNum.overflow || num.value > Int{0};
if (!num.overflow && num.value.Negate().overflow) {
analyzer.Warn(LanguageFeature::BigIntLiterals, digits,
"negated maximum INTEGER(KIND=%d) literal"_port_en_US, T::kind);
}
} else {
num = Int::Read(p, 10, true /*signed*/);
}
if (!num.overflow) {
if (T::kind > kind) {
if (!isDefaultKind ||
!analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
return std::nullopt;
} else {
analyzer.Warn(LanguageFeature::BigIntLiterals, digits,
"Integer literal is too large for default INTEGER(KIND=%d); "
"assuming INTEGER(KIND=%d)"_port_en_US,
kind, T::kind);
}
}
return Expr<SomeType>{
Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(num.value)}}}};
}
}
return std::nullopt;
}
ExpressionAnalyzer &analyzer;
parser::CharBlock digits;
std::int64_t kind;
bool isDefaultKind;
bool isNegated;
};
template <typename PARSED>
MaybeExpr ExpressionAnalyzer::IntLiteralConstant(
const PARSED &x, bool isNegated) {
const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
bool isDefaultKind{!kindParam};
int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
auto digits{std::get<parser::CharBlock>(x.t)};
if (MaybeExpr result{common::SearchTypes(
IntTypeVisitor{*this, digits, kind, isDefaultKind, isNegated})}) {
return result;
} else if (isDefaultKind) {
Say(digits,
"Integer literal is too large for any allowable "
"kind of INTEGER"_err_en_US);
} else {
Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
kind);
}
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(
const parser::IntLiteralConstant &x, bool isNegated) {
auto restorer{
GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
return IntLiteralConstant(x, isNegated);
}
MaybeExpr ExpressionAnalyzer::Analyze(
const parser::SignedIntLiteralConstant &x) {
auto restorer{GetContextualMessages().SetLocation(x.source)};
return IntLiteralConstant(x);
}
template <typename TYPE>
Constant<TYPE> ReadRealLiteral(
parser::CharBlock source, FoldingContext &context) {
const char *p{source.begin()};
auto valWithFlags{
Scalar<TYPE>::Read(p, context.targetCharacteristics().roundingMode())};
CHECK(p == source.end());
RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
auto value{valWithFlags.value};
if (context.targetCharacteristics().areSubnormalsFlushedToZero()) {
value = value.FlushSubnormalToZero();
}
return {value};
}
struct RealTypeVisitor {
using Result = std::optional<Expr<SomeReal>>;
using Types = RealTypes;
RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
: kind{k}, literal{lit}, context{ctx} {}
template <typename T> Result Test() {
if (kind == T::kind) {
return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
}
return std::nullopt;
}
int kind;
parser::CharBlock literal;
FoldingContext &context;
};
// Reads a real literal constant and encodes it with the right kind.
MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
// Use a local message context around the real literal for better
// provenance on any messages.
auto restorer{GetContextualMessages().SetLocation(x.real.source)};
// If a kind parameter appears, it defines the kind of the literal and the
// letter used in an exponent part must be 'E' (e.g., the 'E' in
// "6.02214E+23"). In the absence of an explicit kind parameter, any
// exponent letter determines the kind. Otherwise, defaults apply.
auto &defaults{context_.defaultKinds()};
int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
const char *end{x.real.source.end()};
char expoLetter{' '};
std::optional<int> letterKind;
for (const char *p{x.real.source.begin()}; p < end; ++p) {
if (parser::IsLetter(*p)) {
expoLetter = *p;
switch (expoLetter) {
case 'e':
letterKind = defaults.GetDefaultKind(TypeCategory::Real);
break;
case 'd':
letterKind = defaults.doublePrecisionKind();
break;
case 'q':
letterKind = defaults.quadPrecisionKind();
break;
default:
Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
}
break;
}
}
if (letterKind) {
defaultKind = *letterKind;
}
// C716 requires 'E' as an exponent.
// Extension: allow exponent-letter matching the kind-param.
auto kind{AnalyzeKindParam(x.kind, defaultKind)};
if (letterKind && expoLetter != 'e') {
if (kind != *letterKind) {
Warn(common::LanguageFeature::ExponentMatchingKindParam,
"Explicit kind parameter on real constant disagrees with exponent letter '%c'"_warn_en_US,
expoLetter);
} else if (x.kind) {
Warn(common::LanguageFeature::ExponentMatchingKindParam,
"Explicit kind parameter together with non-'E' exponent letter is not standard"_port_en_US);
}
}
auto result{common::SearchTypes(
RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
if (!result) { // C717
Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
}
return AsMaybeExpr(std::move(result));
}
MaybeExpr ExpressionAnalyzer::Analyze(
const parser::SignedRealLiteralConstant &x) {
if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
if (sign == parser::Sign::Negative) {
return AsGenericExpr(-std::move(realExpr));
}
}
return result;
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(
const parser::SignedComplexLiteralConstant &x) {
auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
if (!result) {
return std::nullopt;
} else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
} else {
return result;
}
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
return Analyze(x.u);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
return AnalyzeComplex(Analyze(std::get<0>(z.t)), Analyze(std::get<1>(z.t)),
"complex literal constant");
}
// CHARACTER literal processing.
MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
return std::nullopt;
}
switch (kind) {
case 1:
return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
string, true)});
case 2:
return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
string, true)});
case 4:
return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
string, true)});
default:
CRASH_NO_CASE;
}
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
int kind{
AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
auto value{std::get<std::string>(x.t)};
return AnalyzeString(std::move(value), kind);
}
MaybeExpr ExpressionAnalyzer::Analyze(
const parser::HollerithLiteralConstant &x) {
int kind{GetDefaultKind(TypeCategory::Character)};
auto result{AnalyzeString(std::string{x.v}, kind)};
if (auto *constant{UnwrapConstantValue<Ascii>(result)}) {
constant->set_wasHollerith(true);
}
return result;
}
// .TRUE. and .FALSE. of various kinds
MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
GetDefaultKind(TypeCategory::Logical))};
bool value{std::get<bool>(x.t)};
auto result{common::SearchTypes(
TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
kind, std::move(value)})};
if (!result) {
Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
}
return result;
}
// BOZ typeless literals
MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
const char *p{x.v.c_str()};
std::uint64_t base{16};
switch (*p++) {
case 'b':
base = 2;
break;
case 'o':
base = 8;
break;
case 'z':
break;
case 'x':
break;
default:
CRASH_NO_CASE;
}
CHECK(*p == '"');
++p;
auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
if (*p != '"') {
Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
x.v); // C7107, C7108
return std::nullopt;
}
if (value.overflow) {
Say("BOZ literal '%s' too large"_err_en_US, x.v);
return std::nullopt;
}
return AsGenericExpr(std::move(value.value));
}
// Names and named constants
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
auto restorer{GetContextualMessages().SetLocation(n.source)};
if (std::optional<int> kind{IsImpliedDo(n.source)}) {
return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
*kind, AsExpr(ImpliedDoIndex{n.source})));
}
if (context_.HasError(n.symbol)) { // includes case of no symbol
return std::nullopt;
} else {
const Symbol &ultimate{n.symbol->GetUltimate()};
if (ultimate.has<semantics::TypeParamDetails>()) {
// A bare reference to a derived type parameter within a parameterized
// derived type definition.
auto dyType{DynamicType::From(ultimate)};
if (!dyType) {
// When the integer kind of this type parameter is not known now,
// it's either an error or because it depends on earlier-declared kind
// type parameters. So assume that it's a subscript integer for now
// while processing other specification expressions in the PDT
// definition; the right kind value will be used later in each of its
// instantiations.
int kind{SubscriptInteger::kind};
if (const auto *typeSpec{ultimate.GetType()}) {
if (const semantics::IntrinsicTypeSpec *
intrinType{typeSpec->AsIntrinsic()}) {
if (auto k{ToInt64(Fold(semantics::KindExpr{intrinType->kind()}))};
k && IsValidKindOfIntrinsicType(TypeCategory::Integer, *k)) {
kind = *k;
}
}
}
dyType = DynamicType{TypeCategory::Integer, kind};
}
return Fold(ConvertToType(
*dyType, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate})));
} else {
if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
if (const semantics::Scope *pure{semantics::FindPureProcedureContaining(
context_.FindScope(n.source))}) {
SayAt(n,
"VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
n.source, DEREF(pure->symbol()).name());
n.symbol->attrs().reset(semantics::Attr::VOLATILE);
}
}
if (!isWholeAssumedSizeArrayOk_ &&
semantics::IsAssumedSizeArray(
ResolveAssociations(*n.symbol))) { // C1002, C1014, C1231
AttachDeclaration(
SayAt(n,
"Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US,
n.source),
*n.symbol);
}
return Designate(DataRef{*n.symbol});
}
}
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
auto restorer{GetContextualMessages().SetLocation(n.v.source)};
if (MaybeExpr value{Analyze(n.v)}) {
Expr<SomeType> folded{Fold(std::move(*value))};
if (IsConstantExpr(folded)) {
return folded;
}
Say(n.v.source, "must be a constant"_err_en_US); // C718
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) {
auto restorer{AllowNullPointer()};
if (MaybeExpr value{Analyze(n.v.value())}) {
// Subtle: when the NullInit is a DataStmtConstant, it might
// be a misparse of a structure constructor without parameters
// or components (e.g., T()). Checking the result to ensure
// that a "=>" data entity initializer actually resolved to
// a null pointer has to be done by the caller.
return Fold(std::move(*value));
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(
const parser::StmtFunctionStmt &stmtFunc) {
inStmtFunctionDefinition_ = true;
return Analyze(std::get<parser::Scalar<parser::Expr>>(stmtFunc.t));
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
return Analyze(x.value());
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
if (const auto &repeat{
std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
x.repetitions = -1;
if (MaybeExpr expr{Analyze(repeat->u)}) {
Expr<SomeType> folded{Fold(std::move(*expr))};
if (auto value{ToInt64(folded)}) {
if (*value >= 0) { // C882
x.repetitions = *value;
} else {
Say(FindSourceLocation(repeat),
"Repeat count (%jd) for data value must not be negative"_err_en_US,
*value);
}
}
}
}
return Analyze(std::get<parser::DataStmtConstant>(x.t));
}
// Substring references
std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
const std::optional<parser::ScalarIntExpr> &bound) {
if (bound) {
if (MaybeExpr expr{Analyze(*bound)}) {
if (expr->Rank() > 1) {
Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
}
if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
return {std::move(*ssIntExpr)};
}
return {Expr<SubscriptInteger>{
Convert<SubscriptInteger, TypeCategory::Integer>{
std::move(*intExpr)}}};
} else {
Say("substring bound expression is not INTEGER"_err_en_US);
}
}
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
if (MaybeExpr newBaseExpr{Designate(std::move(*dataRef))}) {
if (std::optional<DataRef> checked{
ExtractDataRef(std::move(*newBaseExpr))}) {
const parser::SubstringRange &range{
std::get<parser::SubstringRange>(ss.t)};
std::optional<Expr<SubscriptInteger>> first{
Fold(GetSubstringBound(std::get<0>(range.t)))};
std::optional<Expr<SubscriptInteger>> last{
Fold(GetSubstringBound(std::get<1>(range.t)))};
const Symbol &symbol{checked->GetLastSymbol()};
if (std::optional<DynamicType> dynamicType{
DynamicType::From(symbol)}) {
if (dynamicType->category() == TypeCategory::Character) {
auto lbValue{ToInt64(first)};
if (!lbValue) {
lbValue = 1;
}
auto ubValue{ToInt64(last)};
auto len{dynamicType->knownLength()};
if (!ubValue) {
ubValue = len;
}
if (lbValue && ubValue && *lbValue > *ubValue) {
// valid, substring is empty
} else if (lbValue && *lbValue < 1 && (ubValue || !last)) {
Say("Substring must begin at 1 or later, not %jd"_err_en_US,
static_cast<std::intmax_t>(*lbValue));
return std::nullopt;
} else if (ubValue && len && *ubValue > *len &&
(lbValue || !first)) {
Say("Substring must end at %zd or earlier, not %jd"_err_en_US,
static_cast<std::intmax_t>(*len),
static_cast<std::intmax_t>(*ubValue));
return std::nullopt;
}
return WrapperHelper<TypeCategory::Character, Designator,
Substring>(dynamicType->kind(),
Substring{std::move(checked.value()), std::move(first),
std::move(last)});
}
}
Say("substring may apply only to CHARACTER"_err_en_US);
}
}
}
}
return std::nullopt;
}
// CHARACTER literal substrings
MaybeExpr ExpressionAnalyzer::Analyze(
const parser::CharLiteralConstantSubstring &x) {
const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
std::optional<Expr<SubscriptInteger>> lower{
GetSubstringBound(std::get<0>(range.t))};
std::optional<Expr<SubscriptInteger>> upper{
GetSubstringBound(std::get<1>(range.t))};
if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
Expr<SubscriptInteger> length{
common::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
charExpr->u)};
if (!lower) {
lower = Expr<SubscriptInteger>{1};
}
if (!upper) {
upper = Expr<SubscriptInteger>{
static_cast<std::int64_t>(ToInt64(length).value())};
}
return common::visit(
[&](auto &&ckExpr) -> MaybeExpr {
using Result = ResultType<decltype(ckExpr)>;
auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
CHECK(DEREF(cp).size() == 1);
StaticDataObject::Pointer staticData{StaticDataObject::Create()};
staticData->set_alignment(Result::kind)
.set_itemBytes(Result::kind)
.Push(cp->GetScalarValue().value(),
foldingContext_.targetCharacteristics().isBigEndian());
Substring substring{std::move(staticData), std::move(lower.value()),
std::move(upper.value())};
return AsGenericExpr(
Expr<Result>{Designator<Result>{std::move(substring)}});
},
std::move(charExpr->u));
}
}
return std::nullopt;
}
// substring%KIND/LEN
MaybeExpr ExpressionAnalyzer::Analyze(const parser::SubstringInquiry &x) {
if (MaybeExpr substring{Analyze(x.v)}) {
CHECK(x.source.size() >= 8);
int nameLen{x.source.end()[-1] == 'n' ? 3 /*LEN*/ : 4 /*KIND*/};
parser::CharBlock name{
x.source.end() - nameLen, static_cast<std::size_t>(nameLen)};
CHECK(name == "len" || name == "kind");
return MakeFunctionRef(
name, ActualArguments{ActualArgument{std::move(*substring)}});
} else {
return std::nullopt;
}
}
// Subscripted array references
std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
MaybeExpr &&expr) {
if (expr) {
if (expr->Rank() > 1) {
Say("Subscript expression has rank %d greater than 1"_err_en_US,
expr->Rank());
}
if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
return std::move(*ssIntExpr);
} else {
return Expr<SubscriptInteger>{
Convert<SubscriptInteger, TypeCategory::Integer>{
std::move(*intExpr)}};
}
} else {
Say("Subscript expression is not INTEGER"_err_en_US);
}
}
return std::nullopt;
}
std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
const std::optional<parser::Subscript> &s) {
if (s) {
return AsSubscript(Analyze(*s));
} else {
return std::nullopt;
}
}
std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
const parser::SectionSubscript &ss) {
return common::visit(
common::visitors{
[&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
const auto &lower{std::get<0>(t.t)};
const auto &upper{std::get<1>(t.t)};
const auto &stride{std::get<2>(t.t)};
auto result{Triplet{
TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
if ((lower && !result.lower()) || (upper && !result.upper())) {
return std::nullopt;
} else {
return std::make_optional<Subscript>(result);
}
},
[&](const auto &s) -> std::optional<Subscript> {
if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
return Subscript{std::move(*subscriptExpr)};
} else {
return std::nullopt;
}
},
},
ss.u);
}
// Empty result means an error occurred
std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
const std::list<parser::SectionSubscript> &sss) {
bool error{false};
std::vector<Subscript> subscripts;
for (const auto &s : sss) {
if (auto subscript{AnalyzeSectionSubscript(s)}) {
subscripts.emplace_back(std::move(*subscript));
} else {
error = true;
}
}
return !error ? subscripts : std::vector<Subscript>{};
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
MaybeExpr baseExpr;
{
auto restorer{AllowWholeAssumedSizeArray()};
baseExpr = Analyze(ae.base);
}
if (baseExpr) {
if (ae.subscripts.empty()) {
// will be converted to function call later or error reported
} else if (baseExpr->Rank() == 0) {
if (const Symbol *symbol{GetLastSymbol(*baseExpr)}) {
if (!context_.HasError(symbol)) {
if (inDataStmtConstant_) {
// Better error for NULL(X) with a MOLD= argument
Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US,
symbol->name());
} else {
Say("'%s' is not an array"_err_en_US, symbol->name());
}
context_.SetError(*symbol);
}
}
} else if (std::optional<DataRef> dataRef{
ExtractDataRef(std::move(*baseExpr))}) {
return ApplySubscripts(
std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
} else {
Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
}
}
// error was reported: analyze subscripts without reporting more errors
auto restorer{GetContextualMessages().DiscardMessages()};
AnalyzeSectionSubscripts(ae.subscripts);
return std::nullopt;
}
// Type parameter inquiries apply to data references, but don't depend
// on any trailing (co)subscripts.
static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
return common::visit(
common::visitors{
[](SymbolRef &&symbol) { return NamedEntity{symbol}; },
[](Component &&component) {
return NamedEntity{std::move(component)};
},
[](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
[](CoarrayRef &&coarrayRef) {
return NamedEntity{coarrayRef.GetLastSymbol()};
},
},
std::move(designator.u));
}
// Components, but not bindings, of parent derived types are explicitly
// represented as such.
std::optional<Component> ExpressionAnalyzer::CreateComponent(DataRef &&base,
const Symbol &component, const semantics::Scope &scope,
bool C919bAlreadyEnforced) {
if (!C919bAlreadyEnforced && IsAllocatableOrPointer(component) &&
base.Rank() > 0) { // C919b
Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US);
}
if (&component.owner() == &scope ||
component.has<semantics::ProcBindingDetails>()) {
return Component{std::move(base), component};
}
if (const Symbol *typeSymbol{scope.GetSymbol()}) {
if (const Symbol *parentComponent{typeSymbol->GetParentComponent(&scope)}) {
if (const auto *object{
parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) {
if (const auto *parentType{object->type()}) {
if (const semantics::Scope *parentScope{
parentType->derivedTypeSpec().scope()}) {
return CreateComponent(
DataRef{Component{std::move(base), *parentComponent}},
component, *parentScope, C919bAlreadyEnforced);
}
}
}
}
}
return std::nullopt;
}
// Derived type component references and type parameter inquiries
MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
Symbol *sym{sc.component.symbol};
if (context_.HasError(sym)) {
return std::nullopt;
}
const auto *misc{sym->detailsIf<semantics::MiscDetails>()};
bool isTypeParamInquiry{sym->has<semantics::TypeParamDetails>() ||
(misc &&
(misc->kind() == semantics::MiscDetails::Kind::KindParamInquiry ||
misc->kind() == semantics::MiscDetails::Kind::LenParamInquiry))};
MaybeExpr base;
if (isTypeParamInquiry) {
auto restorer{AllowWholeAssumedSizeArray()};
base = Analyze(sc.base);
} else {
base = Analyze(sc.base);
}
if (!base) {
return std::nullopt;
}
const auto &name{sc.component.source};
if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
if (isTypeParamInquiry) {
if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
if (dyType->category() == TypeCategory::Integer) {
auto restorer{GetContextualMessages().SetLocation(name)};
return Fold(ConvertToType(*dyType,
AsGenericExpr(TypeParamInquiry{
IgnoreAnySubscripts(std::move(*designator)), *sym})));
}
}
Say(name, "Type parameter is not INTEGER"_err_en_US);
} else {
Say(name,
"A type parameter inquiry must be applied to a designator"_err_en_US);
}
} else if (!dtSpec || !dtSpec->scope()) {
CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
return std::nullopt;
} else if (std::optional<DataRef> dataRef{
ExtractDataRef(std::move(*dtExpr))}) {
auto restorer{GetContextualMessages().SetLocation(name)};
if (auto component{
CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
return Designate(DataRef{std::move(*component)});
} else {
Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
dtSpec->typeSymbol().name());
}
} else {
Say(name,
"Base of component reference must be a data reference"_err_en_US);
}
} else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
// special part-ref: %re, %im, %kind, %len
// Type errors on the base of %re/%im/%len are detected and
// reported in name resolution.
using MiscKind = semantics::MiscDetails::Kind;
MiscKind kind{details->kind()};
if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
if (std::optional<DataRef> dataRef{ExtractDataRef(*zExpr)}) {
// Represent %RE/%IM as a designator
Expr<SomeReal> realExpr{common::visit(
[&](const auto &z) {
using PartType = typename ResultType<decltype(z)>::Part;
auto part{kind == MiscKind::ComplexPartRe
? ComplexPart::Part::RE
: ComplexPart::Part::IM};
return AsCategoryExpr(Designator<PartType>{
ComplexPart{std::move(*dataRef), part}});
},
zExpr->u)};
return AsGenericExpr(std::move(realExpr));
}
}
} else if (isTypeParamInquiry) { // %kind or %len
ActualArgument arg{std::move(*base)};
SetArgSourceLocation(arg, name);
return MakeFunctionRef(name, ActualArguments{std::move(arg)});
} else {
DIE("unexpected MiscDetails::Kind");
}
} else {
Say(name, "derived type required before component reference"_err_en_US);
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
DataRef *dataRef{&*maybeDataRef};
std::vector<Subscript> subscripts;
SymbolVector reversed;
if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
subscripts = std::move(aRef->subscript());
reversed.push_back(aRef->GetLastSymbol());
if (Component *component{aRef->base().UnwrapComponent()}) {
dataRef = &component->base();
} else {
dataRef = nullptr;
}
}
if (dataRef) {
while (auto *component{std::get_if<Component>(&dataRef->u)}) {
reversed.push_back(component->GetLastSymbol());
dataRef = &component->base();
}
if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
reversed.push_back(*baseSym);
} else {
Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
}
}
std::vector<Expr<SubscriptInteger>> cosubscripts;
bool cosubsOk{true};
for (const auto &cosub :
std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
MaybeExpr coex{Analyze(cosub)};
if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
cosubscripts.push_back(
ConvertToType<SubscriptInteger>(std::move(*intExpr)));
} else {
cosubsOk = false;
}
}
if (cosubsOk && !reversed.empty()) {
int numCosubscripts{static_cast<int>(cosubscripts.size())};
const Symbol &symbol{reversed.front()};
if (numCosubscripts != symbol.Corank()) {
Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
symbol.name(), symbol.Corank(), numCosubscripts);
}
}
for (const auto &imageSelSpec :
std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
common::visit(
common::visitors{
[&](const auto &x) { Analyze(x.v); },
},
imageSelSpec.u);
}
// Reverse the chain of symbols so that the base is first and coarray
// ultimate component is last.
if (cosubsOk) {
return Designate(
DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
std::move(subscripts), std::move(cosubscripts)}});
}
}
return std::nullopt;
}
int ExpressionAnalyzer::IntegerTypeSpecKind(
const parser::IntegerTypeSpec &spec) {
Expr<SubscriptInteger> value{
AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
if (auto kind{ToInt64(value)}) {
return static_cast<int>(*kind);
}
SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
return GetDefaultKind(TypeCategory::Integer);
}
// Array constructors
// Inverts a collection of generic ArrayConstructorValues<SomeType> that
// all happen to have the same actual type T into one ArrayConstructor<T>.
template <typename T>
ArrayConstructorValues<T> MakeSpecific(
ArrayConstructorValues<SomeType> &&from) {
ArrayConstructorValues<T> to;
for (ArrayConstructorValue<SomeType> &x : from) {
common::visit(
common::visitors{
[&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
to.Push(std::move(DEREF(typed)));
},
[&](ImpliedDo<SomeType> &&impliedDo) {
to.Push(ImpliedDo<T>{impliedDo.name(),
std::move(impliedDo.lower()), std::move(impliedDo.upper()),
std::move(impliedDo.stride()),
MakeSpecific<T>(std::move(impliedDo.values()))});
},
},
std::move(x.u));
}
return to;
}
class ArrayConstructorContext {
public:
ArrayConstructorContext(
ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
: exprAnalyzer_{c}, type_{std::move(t)} {}
void Add(const parser::AcValue &);
MaybeExpr ToExpr();
// These interfaces allow *this to be used as a type visitor argument to
// common::SearchTypes() to convert the array constructor to a typed
// expression in ToExpr().
using Result = MaybeExpr;
using Types = AllTypes;
template <typename T> Result Test() {
if (type_ && type_->category() == T::category) {
if constexpr (T::category == TypeCategory::Derived) {
if (!type_->IsUnlimitedPolymorphic()) {
return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
MakeSpecific<T>(std::move(values_))});
}
} else if (type_->kind() == T::kind) {
ArrayConstructor<T> result{MakeSpecific<T>(std::move(values_))};
if constexpr (T::category == TypeCategory::Character) {
if (auto len{LengthIfGood()}) {
// The ac-do-variables may be treated as constant expressions,
// if some conditions on ac-implied-do-control hold (10.1.12 (12)).
// At the same time, they may be treated as constant expressions
// only in the context of the ac-implied-do, but setting
// the character length here may result in complete elimination
// of the ac-implied-do. For example:
// character(10) :: c
// ... len([(c(i:i), integer(8)::i = 1,4)])
// would be evaulated into:
// ... int(max(0_8,i-i+1_8),kind=4)
// with a dangling reference to the ac-do-variable.
// Prevent this by checking for the ac-do-variable references
// in the 'len' expression.
result.set_LEN(std::move(*len));
}
}
return AsMaybeExpr(std::move(result));
}
}
return std::nullopt;
}
private:
using ImpliedDoIntType = ResultType<ImpliedDoIndex>;
std::optional<Expr<SubscriptInteger>> LengthIfGood() const {
if (type_) {
auto len{type_->LEN()};
if (explicitType_ ||
(len && IsConstantExpr(*len) && !ContainsAnyImpliedDoIndex(*len))) {
return len;
}
}
return std::nullopt;
}
bool NeedLength() const {
return type_ && type_->category() == TypeCategory::Character &&
!LengthIfGood();
}
void Push(MaybeExpr &&);
void Add(const parser::AcValue::Triplet &);
void Add(const parser::Expr &);
void Add(const parser::AcImpliedDo &);
void UnrollConstantImpliedDo(const parser::AcImpliedDo &,
parser::CharBlock name, std::int64_t lower, std::int64_t upper,
std::int64_t stride);
template <int KIND>
std::optional<Expr<Type<TypeCategory::Integer, KIND>>> ToSpecificInt(
MaybeExpr &&y) {
if (y) {
Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
return Fold(exprAnalyzer_.GetFoldingContext(),
ConvertToType<Type<TypeCategory::Integer, KIND>>(
std::move(DEREF(intExpr))));
} else {
return std::nullopt;
}
}
template <int KIND, typename A>
std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
const A &x) {
return ToSpecificInt<KIND>(exprAnalyzer_.Analyze(x));
}
// Nested array constructors all reference the same ExpressionAnalyzer,
// which represents the nest of active implied DO loop indices.
ExpressionAnalyzer &exprAnalyzer_;
std::optional<DynamicTypeWithLength> type_;
bool explicitType_{type_.has_value()};
std::optional<std::int64_t> constantLength_;
ArrayConstructorValues<SomeType> values_;
std::uint64_t messageDisplayedSet_{0};
};
void ArrayConstructorContext::Push(MaybeExpr &&x) {
if (!x) {
return;
}
if (!type_) {
if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
// Treat an array constructor of BOZ as if default integer.
exprAnalyzer_.Warn(common::LanguageFeature::BOZAsDefaultInteger,
"BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US);
x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
std::move(*boz)));
}
}
std::optional<DynamicType> dyType{x->GetType()};
if (!dyType) {
if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
if (!type_) {
// Treat an array constructor of BOZ as if default integer.
exprAnalyzer_.Warn(common::LanguageFeature::BOZAsDefaultInteger,
"BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US);
x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
std::move(*boz)));
dyType = x.value().GetType();
} else if (auto cast{ConvertToType(*type_, std::move(*x))}) {
x = std::move(cast);
dyType = *type_;
} else {
if (!(messageDisplayedSet_ & 0x80)) {
exprAnalyzer_.Say(
"BOZ literal is not suitable for use in this array constructor"_err_en_US);
messageDisplayedSet_ |= 0x80;
}
return;
}
} else { // procedure name, &c.
if (!(messageDisplayedSet_ & 0x40)) {
exprAnalyzer_.Say(
"Item is not suitable for use in an array constructor"_err_en_US);
messageDisplayedSet_ |= 0x40;
}
return;
}
} else if (dyType->IsUnlimitedPolymorphic()) {
if (!(messageDisplayedSet_ & 8)) {
exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an "
"array constructor"_err_en_US); // C7113
messageDisplayedSet_ |= 8;
}
return;
} else if (dyType->category() == TypeCategory::Derived &&
dyType->GetDerivedTypeSpec().typeSymbol().attrs().test(
semantics::Attr::ABSTRACT)) { // F'2023 C7125
if (!(messageDisplayedSet_ & 0x200)) {
exprAnalyzer_.Say(
"An item whose declared type is ABSTRACT may not appear in an array constructor"_err_en_US);
messageDisplayedSet_ |= 0x200;
}
}
DynamicTypeWithLength xType{dyType.value()};
if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
CHECK(xType.category() == TypeCategory::Character);
xType.length =
common::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
}
if (!type_) {
// If there is no explicit type-spec in an array constructor, the type
// of the array is the declared type of all of the elements, which must
// be well-defined and all match.
// TODO: Possible language extension: use the most general type of
// the values as the type of a numeric constructed array, convert all
// of the other values to that type. Alternative: let the first value
// determine the type, and convert the others to that type.
CHECK(!explicitType_);
type_ = std::move(xType);
constantLength_ = ToInt64(type_->length);
values_.Push(std::move(*x));
} else if (!explicitType_) {
if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) {
values_.Push(std::move(*x));
auto xLen{xType.LEN()};
if (auto thisLen{ToInt64(xLen)}) {
if (constantLength_) {
if (*thisLen != *constantLength_ && !(messageDisplayedSet_ & 1)) {
exprAnalyzer_.Warn(
common::LanguageFeature::DistinctArrayConstructorLengths,
"Character literal in array constructor without explicit "
"type has different length than earlier elements"_port_en_US);
messageDisplayedSet_ |= 1;
}
if (*thisLen > *constantLength_) {
// Language extension: use the longest literal to determine the
// length of the array constructor's character elements, not the
// first, when there is no explicit type.
*constantLength_ = *thisLen;
type_->length = std::move(xLen);
}
} else {
constantLength_ = *thisLen;
type_->length = std::move(xLen);
}
} else if (xLen && NeedLength()) {
type_->length = std::move(xLen);
}
} else {
if (!(messageDisplayedSet_ & 2)) {
exprAnalyzer_.Say(
"Values in array constructor must have the same declared type "
"when no explicit type appears"_err_en_US); // C7110
messageDisplayedSet_ |= 2;
}
}
} else {
if (auto cast{ConvertToType(*type_, std::move(*x))}) {
values_.Push(std::move(*cast));
} else if (!(messageDisplayedSet_ & 4)) {
exprAnalyzer_.Say("Value in array constructor of type '%s' could not "
"be converted to the type of the array '%s'"_err_en_US,
x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
messageDisplayedSet_ |= 4;
}
}
}
void ArrayConstructorContext::Add(const parser::AcValue &x) {
common::visit(
common::visitors{
[&](const parser::AcValue::Triplet &triplet) { Add(triplet); },
[&](const common::Indirection<parser::Expr> &expr) {
Add(expr.value());
},
[&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
Add(impliedDo.value());
},
},
x.u);
}
// Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) {
MaybeExpr lowerExpr{exprAnalyzer_.Analyze(std::get<0>(triplet.t))};
MaybeExpr upperExpr{exprAnalyzer_.Analyze(std::get<1>(triplet.t))};
MaybeExpr strideExpr{exprAnalyzer_.Analyze(std::get<2>(triplet.t))};
if (lowerExpr && upperExpr) {
auto lowerType{lowerExpr->GetType()};
auto upperType{upperExpr->GetType()};
auto strideType{strideExpr ? strideExpr->GetType() : lowerType};
if (lowerType && upperType && strideType) {
int kind{lowerType->kind()};
if (upperType->kind() > kind) {
kind = upperType->kind();
}
if (strideType->kind() > kind) {
kind = strideType->kind();
}
auto lower{ToSpecificInt<ImpliedDoIntType::kind>(std::move(lowerExpr))};
auto upper{ToSpecificInt<ImpliedDoIntType::kind>(std::move(upperExpr))};
if (lower && upper) {
auto stride{
ToSpecificInt<ImpliedDoIntType::kind>(std::move(strideExpr))};
if (!stride) {
stride = Expr<ImpliedDoIntType>{1};
}
DynamicType type{TypeCategory::Integer, kind};
if (!type_) {
type_ = DynamicTypeWithLength{type};
}
parser::CharBlock anonymous;
if (auto converted{ConvertToType(type,
AsGenericExpr(
Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}))}) {
auto v{std::move(values_)};
Push(std::move(converted));
std::swap(v, values_);
values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
std::move(*upper), std::move(*stride), std::move(v)});
}
}
}
}
}
void ArrayConstructorContext::Add(const parser::Expr &expr) {
auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)};
Push(exprAnalyzer_.Analyze(expr));
}
void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) {
const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)};
const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
exprAnalyzer_.Analyze(bounds.name);
parser::CharBlock name{bounds.name.thing.thing.source};
int kind{ImpliedDoIntType::kind};
if (const Symbol * symbol{bounds.name.thing.thing.symbol}) {
if (auto dynamicType{DynamicType::From(symbol)}) {
if (dynamicType->category() == TypeCategory::Integer) {
kind = dynamicType->kind();
}
}
}
std::optional<Expr<ImpliedDoIntType>> lower{
GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)};
std::optional<Expr<ImpliedDoIntType>> upper{
GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)};
if (lower && upper) {
std::optional<Expr<ImpliedDoIntType>> stride{
GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)};
if (!stride) {
stride = Expr<ImpliedDoIntType>{1};
}
if (exprAnalyzer_.AddImpliedDo(name, kind)) {
// Check for constant bounds; the loop may require complete unrolling
// of the parse tree if all bounds are constant in order to allow the
// implied DO loop index to qualify as a constant expression.
auto cLower{ToInt64(lower)};
auto cUpper{ToInt64(upper)};
auto cStride{ToInt64(stride)};
if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) {
exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source,
"The stride of an implied DO loop must not be zero"_err_en_US);
messageDisplayedSet_ |= 0x10;
}
bool isConstant{cLower && cUpper && cStride && *cStride != 0};
bool isNonemptyConstant{isConstant &&
((*cStride > 0 && *cLower <= *cUpper) ||
(*cStride < 0 && *cLower >= *cUpper))};
bool isEmpty{isConstant && !isNonemptyConstant};
bool unrollConstantLoop{false};
parser::Messages buffer;
auto saveMessagesDisplayed{messageDisplayedSet_};
{
auto messageRestorer{
exprAnalyzer_.GetContextualMessages().SetMessages(buffer)};
auto v{std::move(values_)};
for (const auto &value :
std::get<std::list<parser::AcValue>>(impliedDo.t)) {
Add(value);
}
std::swap(v, values_);
if (isNonemptyConstant && buffer.AnyFatalError()) {
unrollConstantLoop = true;
} else {
values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
std::move(*upper), std::move(*stride), std::move(v)});
}
}
// F'2023 7.8 p5
if (!(messageDisplayedSet_ & 0x100) && isEmpty && NeedLength()) {
exprAnalyzer_.SayAt(name,
"Array constructor implied DO loop has no iterations and indeterminate character length"_err_en_US);
messageDisplayedSet_ |= 0x100;
}
if (unrollConstantLoop) {
messageDisplayedSet_ = saveMessagesDisplayed;
UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride);
} else if (auto *messages{
exprAnalyzer_.GetContextualMessages().messages()}) {
messages->Annex(std::move(buffer));
}
exprAnalyzer_.RemoveImpliedDo(name);
} else if (!(messageDisplayedSet_ & 0x20)) {
exprAnalyzer_.SayAt(name,
"Implied DO index '%s' is active in a surrounding implied DO loop "
"and may not have the same name"_err_en_US,
name); // C7115
messageDisplayedSet_ |= 0x20;
}
}
}
// Fortran considers an implied DO index of an array constructor to be
// a constant expression if the bounds of the implied DO loop are constant.
// Usually this doesn't matter, but if we emitted spurious messages as a
// result of not using constant values for the index while analyzing the
// items, we need to do it again the "hard" way with multiple iterations over
// the parse tree.
void ArrayConstructorContext::UnrollConstantImpliedDo(
const parser::AcImpliedDo &impliedDo, parser::CharBlock name,
std::int64_t lower, std::int64_t upper, std::int64_t stride) {
auto &foldingContext{exprAnalyzer_.GetFoldingContext()};
auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()};
for (auto &at{foldingContext.StartImpliedDo(name, lower)};
(stride > 0 && at <= upper) || (stride < 0 && at >= upper);
at += stride) {
for (const auto &value :
std::get<std::list<parser::AcValue>>(impliedDo.t)) {
Add(value);
}
}
foldingContext.EndImpliedDo(name);
}
MaybeExpr ArrayConstructorContext::ToExpr() {
return common::SearchTypes(std::move(*this));
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
const parser::AcSpec &acSpec{array.v};
ArrayConstructorContext acContext{
*this, AnalyzeTypeSpec(acSpec.type, GetFoldingContext())};
for (const parser::AcValue &value : acSpec.values) {
acContext.Add(value);
}
return acContext.ToExpr();
}
// Check if implicit conversion of expr to the symbol type is legal (if needed),
// and make it explicit if requested.
static MaybeExpr ImplicitConvertTo(const semantics::Symbol &sym,
Expr<SomeType> &&expr, bool keepConvertImplicit) {
if (!keepConvertImplicit) {
return ConvertToType(sym, std::move(expr));
} else {
// Test if a convert could be inserted, but do not make it explicit to
// preserve the information that expr is a variable.
if (ConvertToType(sym, common::Clone(expr))) {
return MaybeExpr{std::move(expr)};
}
}
// Illegal implicit convert.
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(
const parser::StructureConstructor &structure) {
auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
parser::Name structureType{std::get<parser::Name>(parsedType.t)};
parser::CharBlock &typeName{structureType.source};
if (semantics::Symbol *typeSymbol{structureType.symbol}) {
if (typeSymbol->has<semantics::DerivedTypeDetails>()) {
semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()};
if (!CheckIsValidForwardReference(dtSpec)) {
return std::nullopt;
}
}
}
if (!parsedType.derivedTypeSpec) {
return std::nullopt;
}
const auto &spec{*parsedType.derivedTypeSpec};
const Symbol &typeSymbol{spec.typeSymbol()};
if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
return std::nullopt; // error recovery
}
const semantics::Scope &scope{context_.FindScope(typeName)};
const semantics::Scope *pureContext{FindPureProcedureContaining(scope)};
const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
AttachDeclaration(Say(typeName,
"ABSTRACT derived type '%s' may not be used in a "
"structure constructor"_err_en_US,
typeName),
typeSymbol); // C7114
}
// This iterator traverses all of the components in the derived type and its
// parents. The symbols for whole parent components appear after their
// own components and before the components of the types that extend them.
// E.g., TYPE :: A; REAL X; END TYPE
// TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
// produces the component list X, A, Y.
// The order is important below because a structure constructor can
// initialize X or A by name, but not both.
auto components{semantics::OrderedComponentIterator{spec}};
auto nextAnonymous{components.begin()};
auto afterLastParentComponentIter{components.end()};
if (parentComponent) {
for (auto iter{components.begin()}; iter != components.end(); ++iter) {
if (iter->test(Symbol::Flag::ParentComp)) {
afterLastParentComponentIter = iter;
++afterLastParentComponentIter;
}
}
}
std::set<parser::CharBlock> unavailable;
bool anyKeyword{false};
StructureConstructor result{spec};
bool checkConflicts{true}; // until we hit one
auto &messages{GetContextualMessages()};
// NULL() can be a valid component
auto restorer{AllowNullPointer()};
for (const auto &component :
std::get<std::list<parser::ComponentSpec>>(structure.t)) {
const parser::Expr &expr{
std::get<parser::ComponentDataSource>(component.t).v.value()};
parser::CharBlock source{expr.source};
auto restorer{messages.SetLocation(source)};
const Symbol *symbol{nullptr};
MaybeExpr value{Analyze(expr)};
std::optional<DynamicType> valueType{DynamicType::From(value)};
if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
anyKeyword = true;
source = kw->v.source;
symbol = kw->v.symbol;
if (!symbol) {
// Skip overridden inaccessible parent components in favor of
// their later overrides.
for (const Symbol &sym : components) {
if (sym.name() == source) {
symbol = &sym;
}
}
}
if (!symbol) { // C7101
Say(source,
"Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
source, typeName);
}
} else {
if (anyKeyword) { // C7100
Say(source,
"Value in structure constructor lacks a component name"_err_en_US);
checkConflicts = false; // stem cascade
}
// Here's a regrettably common extension of the standard: anonymous
// initialization of parent components, e.g., T(PT(1)) rather than
// T(1) or T(PT=PT(1)). There may be multiple parent components.
if (nextAnonymous == components.begin() && parentComponent && valueType &&
context().IsEnabled(LanguageFeature::AnonymousParents)) {
for (auto parent{components.begin()};
parent != afterLastParentComponentIter; ++parent) {
if (auto parentType{DynamicType::From(*parent)}; parentType &&
parent->test(Symbol::Flag::ParentComp) &&
valueType->IsEquivalentTo(*parentType)) {
symbol = &*parent;
nextAnonymous = ++parent;
Warn(LanguageFeature::AnonymousParents, source,
"Whole parent component '%s' in structure constructor should not be anonymous"_port_en_US,
symbol->name());
break;
}
}
}
while (!symbol && nextAnonymous != components.end()) {
const Symbol &next{*nextAnonymous};
++nextAnonymous;
if (!next.test(Symbol::Flag::ParentComp)) {
symbol = &next;
}
}
if (!symbol) {
Say(source, "Unexpected value in structure constructor"_err_en_US);
}
}
if (symbol) {
const semantics::Scope &innermost{context_.FindScope(expr.source)};
if (auto msg{CheckAccessibleSymbol(innermost, *symbol)}) {
Say(expr.source, std::move(*msg));
}
if (checkConflicts) {
auto componentIter{
std::find(components.begin(), components.end(), *symbol)};
if (unavailable.find(symbol->name()) != unavailable.cend()) {
// C797, C798
Say(source,
"Component '%s' conflicts with another component earlier in "
"this structure constructor"_err_en_US,
symbol->name());
} else if (symbol->test(Symbol::Flag::ParentComp)) {
// Make earlier components unavailable once a whole parent appears.
for (auto it{components.begin()}; it != componentIter; ++it) {
unavailable.insert(it->name());
}
} else {
// Make whole parent components unavailable after any of their
// constituents appear.
for (auto it{componentIter}; it != components.end(); ++it) {
if (it->test(Symbol::Flag::ParentComp)) {
unavailable.insert(it->name());
}
}
}
}
unavailable.insert(symbol->name());
if (value) {
if (symbol->has<semantics::TypeParamDetails>()) {
Say(expr.source,
"Type parameter '%s' may not appear as a component of a structure constructor"_err_en_US,
symbol->name());
}
if (!(symbol->has<semantics::ProcEntityDetails>() ||
symbol->has<semantics::ObjectEntityDetails>())) {
continue; // recovery
}
if (IsPointer(*symbol)) { // C7104, C7105, C1594(4)
semantics::CheckStructConstructorPointerComponent(
context_, *symbol, *value, innermost);
result.Add(*symbol, Fold(std::move(*value)));
continue;
}
if (IsNullPointer(*value)) {
if (IsAllocatable(*symbol)) {
if (IsBareNullPointer(&*value)) {
// NULL() with no arguments allowed by 7.5.10 para 6 for
// ALLOCATABLE.
result.Add(*symbol, Expr<SomeType>{NullPointer{}});
continue;
}
if (IsNullObjectPointer(*value)) {
AttachDeclaration(
Warn(common::LanguageFeature::
NullMoldAllocatableComponentValue,
expr.source,
"NULL() with arguments is not standard conforming as the value for allocatable component '%s'"_port_en_US,
symbol->name()),
*symbol);
// proceed to check type & shape
} else {
AttachDeclaration(
Say(expr.source,
"A NULL procedure pointer may not be used as the value for component '%s'"_err_en_US,
symbol->name()),
*symbol);
continue;
}
} else {
AttachDeclaration(
Say(expr.source,
"A NULL pointer may not be used as the value for component '%s'"_err_en_US,
symbol->name()),
*symbol);
continue;
}
} else if (const Symbol * pointer{FindPointerComponent(*symbol)};
pointer && pureContext) { // C1594(4)
if (const Symbol *
visible{semantics::FindExternallyVisibleObject(
*value, *pureContext)}) {
Say(expr.source,
"The externally visible object '%s' may not be used in a pure procedure as the value for component '%s' which has the pointer component '%s'"_err_en_US,
visible->name(), symbol->name(), pointer->name());
}
}
// Make implicit conversion explicit to allow folding of the structure
// constructors and help semantic checking, unless the component is
// allocatable, in which case the value could be an unallocated
// allocatable (see Fortran 2018 7.5.10 point 7). The explicit
// convert would cause a segfault. Lowering will deal with
// conditionally converting and preserving the lower bounds in this
// case.
if (MaybeExpr converted{ImplicitConvertTo(
*symbol, std::move(*value), IsAllocatable(*symbol))}) {
if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
AttachDeclaration(
Say(expr.source,
"Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
GetRank(*valueShape), symbol->name()),
*symbol);
} else {
auto checked{
CheckConformance(messages, *componentShape, *valueShape,
CheckConformanceFlags::RightIsExpandableDeferred,
"component", "value")};
if (checked && *checked && GetRank(*componentShape) > 0 &&
GetRank(*valueShape) == 0 &&
(IsDeferredShape(*symbol) ||
!IsExpandableScalar(*converted, GetFoldingContext(),
*componentShape, true /*admit PURE call*/))) {
AttachDeclaration(
Say(expr.source,
"Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
symbol->name()),
*symbol);
}
if (checked.value_or(true)) {
result.Add(*symbol, std::move(*converted));
}
}
} else {
Say(expr.source, "Shape of value cannot be determined"_err_en_US);
}
} else {
AttachDeclaration(
Say(expr.source,
"Shape of component '%s' cannot be determined"_err_en_US,
symbol->name()),
*symbol);
}
} else if (auto symType{DynamicType::From(symbol)}) {
if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() &&
valueType) {
// ok
} else if (valueType) {
AttachDeclaration(
Say(expr.source,
"Value in structure constructor of type '%s' is "
"incompatible with component '%s' of type '%s'"_err_en_US,
valueType->AsFortran(), symbol->name(),
symType->AsFortran()),
*symbol);
} else {
AttachDeclaration(
Say(expr.source,
"Value in structure constructor is incompatible with "
"component '%s' of type %s"_err_en_US,
symbol->name(), symType->AsFortran()),
*symbol);
}
}
}
}
}
// Ensure that unmentioned component objects have default initializers.
for (const Symbol &symbol : components) {
if (!symbol.test(Symbol::Flag::ParentComp) &&
unavailable.find(symbol.name()) == unavailable.cend()) {
if (IsAllocatable(symbol)) {
// Set all remaining allocatables to explicit NULL().
result.Add(symbol, Expr<SomeType>{NullPointer{}});
} else {
const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()};
if (object && object->init()) {
result.Add(symbol, common::Clone(*object->init()));
} else if (IsPointer(symbol)) {
result.Add(symbol, Expr<SomeType>{NullPointer{}});
} else if (object) { // C799
AttachDeclaration(Say(typeName,
"Structure constructor lacks a value for "
"component '%s'"_err_en_US,
symbol.name()),
symbol);
}
}
}
}
return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
}
static std::optional<parser::CharBlock> GetPassName(
const semantics::Symbol &proc) {
return common::visit(
[](const auto &details) {
if constexpr (std::is_base_of_v<semantics::WithPassArg,
std::decay_t<decltype(details)>>) {
return details.passName();
} else {
return std::optional<parser::CharBlock>{};
}
},
proc.details());
}
static std::optional<int> GetPassIndex(const Symbol &proc) {
CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
std::optional<parser::CharBlock> passName{GetPassName(proc)};
const auto *interface {
semantics::FindInterface(proc)
};
if (!passName || !interface) {
return 0; // first argument is passed-object
}
const auto &subp{interface->get<semantics::SubprogramDetails>()};
int index{0};
for (const auto *arg : subp.dummyArgs()) {
if (arg && arg->name() == passName) {
return index;
}
++index;
}
return std::nullopt;
}
// Injects an expression into an actual argument list as the "passed object"
// for a type-bound procedure reference that is not NOPASS. Adds an
// argument keyword if possible, but not when the passed object goes
// before a positional argument.
// e.g., obj%tbp(x) -> tbp(obj,x).
static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
const Symbol &component, bool isPassedObject = true) {
if (component.attrs().test(semantics::Attr::NOPASS)) {
return;
}
std::optional<int> passIndex{GetPassIndex(component)};
if (!passIndex) {
return; // error recovery
}
auto iter{actuals.begin()};
int at{0};
while (iter < actuals.end() && at < *passIndex) {
if (*iter && (*iter)->keyword()) {
iter = actuals.end();
break;
}
++iter;
++at;
}
ActualArgument passed{AsGenericExpr(common::Clone(expr))};
passed.set_isPassedObject(isPassedObject);
if (iter == actuals.end()) {
if (auto passName{GetPassName(component)}) {
passed.set_keyword(*passName);
}
}
actuals.emplace(iter, std::move(passed));
}
// Return the compile-time resolution of a procedure binding, if possible.
static const Symbol *GetBindingResolution(
const std::optional<DynamicType> &baseType, const Symbol &component) {
const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
if (!binding) {
return nullptr;
}
if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
(!baseType || baseType->IsPolymorphic())) {
return nullptr;
}
return &binding->symbol();
}
auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
const parser::ProcComponentRef &pcr, ActualArguments &&arguments,
bool isSubroutine) -> std::optional<CalleeAndArguments> {
const parser::StructureComponent &sc{pcr.v.thing};
if (MaybeExpr base{Analyze(sc.base)}) {
if (const Symbol *sym{sc.component.symbol}) {
if (context_.HasError(sym)) {
return std::nullopt;
}
if (!IsProcedure(*sym)) {
AttachDeclaration(
Say(sc.component.source, "'%s' is not a procedure"_err_en_US,
sc.component.source),
*sym);
return std::nullopt;
}
if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
if (sym->has<semantics::GenericDetails>()) {
const Symbol &generic{*sym};
auto dyType{dtExpr->GetType()};
AdjustActuals adjustment{
[&](const Symbol &proc, ActualArguments &actuals) {
if (!proc.attrs().test(semantics::Attr::NOPASS)) {
AddPassArg(actuals, std::move(*dtExpr), proc);
}
return true;
}};
auto pair{
ResolveGeneric(generic, arguments, adjustment, isSubroutine)};
sym = pair.first;
if (!sym) {
EmitGenericResolutionError(generic, pair.second, isSubroutine);
return std::nullopt;
}
// re-resolve the name to the specific binding
CHECK(sym->has<semantics::ProcBindingDetails>());
// Use the most recent override of a binding, respecting
// the rule that inaccessible bindings may not be overridden
// outside their module. Fortran doesn't allow a PUBLIC
// binding to be overridden by a PRIVATE one.
CHECK(dyType && dyType->category() == TypeCategory::Derived &&
!dyType->IsUnlimitedPolymorphic());
if (const Symbol *
latest{DEREF(dyType->GetDerivedTypeSpec().typeSymbol().scope())
.FindComponent(sym->name())}) {
if (sym->attrs().test(semantics::Attr::PRIVATE)) {
const auto *bindingModule{FindModuleContaining(generic.owner())};
const Symbol *s{latest};
while (s && FindModuleContaining(s->owner()) != bindingModule) {
if (const auto *parent{s->owner().GetDerivedTypeParent()}) {
s = parent->FindComponent(sym->name());
} else {
s = nullptr;
}
}
if (s && !s->attrs().test(semantics::Attr::PRIVATE)) {
// The latest override in the same module as the binding
// is public, so it can be overridden.
} else {
latest = s;
}
}
if (latest) {
sym = latest;
}
}
sc.component.symbol = const_cast<Symbol *>(sym);
}
std::optional<DataRef> dataRef{ExtractDataRef(std::move(*dtExpr))};
if (dataRef && !CheckDataRef(*dataRef)) {
return std::nullopt;
}
if (dataRef && dataRef->Rank() > 0) {
if (sym->has<semantics::ProcBindingDetails>() &&
sym->attrs().test(semantics::Attr::NOPASS)) {
// F'2023 C1529 seems unnecessary and most compilers don't
// enforce it.
AttachDeclaration(
Warn(common::LanguageFeature::NopassScalarBase,
sc.component.source,
"Base of NOPASS type-bound procedure reference should be scalar"_port_en_US),
*sym);
} else if (IsProcedurePointer(*sym)) { // C919
Say(sc.component.source,
"Base of procedure component reference must be scalar"_err_en_US);
}
}
if (const Symbol *resolution{
GetBindingResolution(dtExpr->GetType(), *sym)}) {
AddPassArg(arguments, std::move(*dtExpr), *sym, false);
return CalleeAndArguments{
ProcedureDesignator{*resolution}, std::move(arguments)};
} else if (dataRef.has_value()) {
if (sym->attrs().test(semantics::Attr::NOPASS)) {
const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
if (dtSpec && dtSpec->scope()) {
if (auto component{CreateComponent(std::move(*dataRef), *sym,
*dtSpec->scope(), /*C919bAlreadyEnforced=*/true)}) {
return CalleeAndArguments{
ProcedureDesignator{std::move(*component)},
std::move(arguments)};
}
}
Say(sc.component.source,
"Component is not in scope of base derived type"_err_en_US);
return std::nullopt;
} else {
AddPassArg(arguments,
Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
*sym);
return CalleeAndArguments{
ProcedureDesignator{*sym}, std::move(arguments)};
}
}
}
Say(sc.component.source,
"Base of procedure component reference is not a derived-type object"_err_en_US);
}
}
CHECK(context_.AnyFatalError());
return std::nullopt;
}
// Can actual be argument associated with dummy?
static bool CheckCompatibleArgument(bool isElemental,
const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
const auto *expr{actual.UnwrapExpr()};
return common::visit(
common::visitors{
[&](const characteristics::DummyDataObject &x) {
if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) &&
IsBareNullPointer(expr)) {
// NULL() without MOLD= is compatible with any dummy data pointer
// but cannot be allowed to lead to ambiguity.
return true;
} else if (!isElemental && actual.Rank() != x.type.Rank() &&
!x.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedRank) &&
!x.ignoreTKR.test(common::IgnoreTKR::Rank)) {
return false;
} else if (auto actualType{actual.GetType()}) {
return x.type.type().IsTkCompatibleWith(*actualType, x.ignoreTKR);
}
return false;
},
[&](const characteristics::DummyProcedure &) {
return expr && IsProcedurePointerTarget(*expr);
},
[&](const characteristics::AlternateReturn &) {
return actual.isAlternateReturn();
},
},
dummy.u);
}
// Are the actual arguments compatible with the dummy arguments of procedure?
static bool CheckCompatibleArguments(
const characteristics::Procedure &procedure,
const ActualArguments &actuals) {
bool isElemental{procedure.IsElemental()};
const auto &dummies{procedure.dummyArguments};
CHECK(dummies.size() == actuals.size());
for (std::size_t i{0}; i < dummies.size(); ++i) {
const characteristics::DummyArgument &dummy{dummies[i]};
const std::optional<ActualArgument> &actual{actuals[i]};
if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
return false;
}
}
return true;
}
static constexpr int cudaInfMatchingValue{std::numeric_limits<int>::max()};
// Compute the matching distance as described in section 3.2.3 of the CUDA
// Fortran references.
static int GetMatchingDistance(const common::LanguageFeatureControl &features,
const characteristics::DummyArgument &dummy,
const std::optional<ActualArgument> &actual) {
bool isCudaManaged{features.IsEnabled(common::LanguageFeature::CudaManaged)};
bool isCudaUnified{features.IsEnabled(common::LanguageFeature::CudaUnified)};
CHECK(!(isCudaUnified && isCudaManaged) && "expect only one enabled.");
std::optional<common::CUDADataAttr> actualDataAttr, dummyDataAttr;
if (actual) {
if (auto *expr{actual->UnwrapExpr()}) {
const auto *actualLastSymbol{evaluate::GetLastSymbol(*expr)};
if (actualLastSymbol) {
actualLastSymbol = &semantics::ResolveAssociations(*actualLastSymbol);
if (const auto *actualObject{actualLastSymbol
? actualLastSymbol
->detailsIf<semantics::ObjectEntityDetails>()
: nullptr}) {
actualDataAttr = actualObject->cudaDataAttr();
}
}
}
}
common::visit(common::visitors{
[&](const characteristics::DummyDataObject &object) {
dummyDataAttr = object.cudaDataAttr;
},
[&](const auto &) {},
},
dummy.u);
if (!dummyDataAttr) {
if (!actualDataAttr) {
if (isCudaUnified || isCudaManaged) {
return 3;
}
return 0;
} else if (*actualDataAttr == common::CUDADataAttr::Device) {
return cudaInfMatchingValue;
} else if (*actualDataAttr == common::CUDADataAttr::Managed ||
*actualDataAttr == common::CUDADataAttr::Unified) {
return 3;
}
} else if (*dummyDataAttr == common::CUDADataAttr::Device) {
if (!actualDataAttr) {
if (isCudaUnified || isCudaManaged) {
return 2;
}
return cudaInfMatchingValue;
} else if (*actualDataAttr == common::CUDADataAttr::Device) {
return 0;
} else if (*actualDataAttr == common::CUDADataAttr::Managed ||
*actualDataAttr == common::CUDADataAttr::Unified) {
return 2;
}
} else if (*dummyDataAttr == common::CUDADataAttr::Managed) {
if (!actualDataAttr) {
return isCudaUnified ? 1 : isCudaManaged ? 0 : cudaInfMatchingValue;
}
if (*actualDataAttr == common::CUDADataAttr::Device) {
return cudaInfMatchingValue;
} else if (*actualDataAttr == common::CUDADataAttr::Managed) {
return 0;
} else if (*actualDataAttr == common::CUDADataAttr::Unified) {
return 1;
}
} else if (*dummyDataAttr == common::CUDADataAttr::Unified) {
if (!actualDataAttr) {
return isCudaUnified ? 0 : isCudaManaged ? 1 : cudaInfMatchingValue;
}
if (*actualDataAttr == common::CUDADataAttr::Device) {
return cudaInfMatchingValue;
} else if (*actualDataAttr == common::CUDADataAttr::Managed) {
return 1;
} else if (*actualDataAttr == common::CUDADataAttr::Unified) {
return 0;
}
}
return cudaInfMatchingValue;
}
static int ComputeCudaMatchingDistance(
const common::LanguageFeatureControl &features,
const characteristics::Procedure &procedure,
const ActualArguments &actuals) {
const auto &dummies{procedure.dummyArguments};
CHECK(dummies.size() == actuals.size());
int distance{0};
for (std::size_t i{0}; i < dummies.size(); ++i) {
const characteristics::DummyArgument &dummy{dummies[i]};
const std::optional<ActualArgument> &actual{actuals[i]};
int d{GetMatchingDistance(features, dummy, actual)};
if (d == cudaInfMatchingValue)
return d;
distance += d;
}
return distance;
}
// Handles a forward reference to a module function from what must
// be a specification expression. Return false if the symbol is
// an invalid forward reference.
const Symbol *ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
if (context_.HasError(symbol)) {
return nullptr;
}
if (const auto *details{
symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
if (details->kind() == semantics::SubprogramKind::Module) {
// If this symbol is still a SubprogramNameDetails, we must be
// checking a specification expression in a sibling module
// procedure. Resolve its names now so that its interface
// is known.
const semantics::Scope &scope{symbol.owner()};
semantics::ResolveSpecificationParts(context_, symbol);
const Symbol *resolved{nullptr};
if (auto iter{scope.find(symbol.name())}; iter != scope.cend()) {
resolved = &*iter->second;
}
if (!resolved || resolved->has<semantics::SubprogramNameDetails>()) {
// When the symbol hasn't had its details updated, we must have
// already been in the process of resolving the function's
// specification part; but recursive function calls are not
// allowed in specification parts (10.1.11 para 5).
Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
symbol.name());
context_.SetError(symbol);
}
return resolved;
} else if (inStmtFunctionDefinition_) {
semantics::ResolveSpecificationParts(context_, symbol);
CHECK(symbol.has<semantics::SubprogramDetails>());
} else { // 10.1.11 para 4
Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
symbol.name());
context_.SetError(symbol);
return nullptr;
}
}
return &symbol;
}
// Resolve a call to a generic procedure with given actual arguments.
// adjustActuals is called on procedure bindings to handle pass arg.
std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric(
const Symbol &symbol, const ActualArguments &actuals,
const AdjustActuals &adjustActuals, bool isSubroutine,
bool mightBeStructureConstructor) {
const Symbol *elemental{nullptr}; // matching elemental specific proc
const Symbol *nonElemental{nullptr}; // matching non-elemental specific
const Symbol &ultimate{symbol.GetUltimate()};
int crtMatchingDistance{cudaInfMatchingValue};
// Check for a match with an explicit INTRINSIC
if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
parser::Messages buffer;
auto restorer{foldingContext_.messages().SetMessages(buffer)};
ActualArguments localActuals{actuals};
if (context_.intrinsics().Probe(
CallCharacteristics{ultimate.name().ToString(), isSubroutine},
localActuals, foldingContext_) &&
!buffer.AnyFatalError()) {
return {&ultimate, false};
}
}
if (const auto *details{ultimate.detailsIf<semantics::GenericDetails>()}) {
for (const Symbol &specific0 : details->specificProcs()) {
const Symbol &specific1{BypassGeneric(specific0)};
if (isSubroutine != !IsFunction(specific1)) {
continue;
}
const Symbol *specific{ResolveForward(specific1)};
if (!specific) {
continue;
}
if (std::optional<characteristics::Procedure> procedure{
characteristics::Procedure::Characterize(
ProcedureDesignator{*specific}, context_.foldingContext(),
/*emitError=*/false)}) {
ActualArguments localActuals{actuals};
if (specific->has<semantics::ProcBindingDetails>()) {
if (!adjustActuals.value()(*specific, localActuals)) {
continue;
}
}
if (semantics::CheckInterfaceForGeneric(*procedure, localActuals,
context_, false /* no integer conversions */) &&
CheckCompatibleArguments(*procedure, localActuals)) {
if ((procedure->IsElemental() && elemental) ||
(!procedure->IsElemental() && nonElemental)) {
int d{ComputeCudaMatchingDistance(
context_.languageFeatures(), *procedure, localActuals)};
if (d != crtMatchingDistance) {
if (d > crtMatchingDistance) {
continue;
}
// Matching distance is smaller than the previously matched
// specific. Let it go thourgh so the current procedure is picked.
} else {
// 16.9.144(6): a bare NULL() is not allowed as an actual
// argument to a generic procedure if the specific procedure
// cannot be unambiguously distinguished
// Underspecified external procedure actual arguments can
// also lead to ambiguity.
return {nullptr, true /* due to ambiguity */};
}
}
if (!procedure->IsElemental()) {
// takes priority over elemental match
nonElemental = specific;
} else {
elemental = specific;
}
crtMatchingDistance = ComputeCudaMatchingDistance(
context_.languageFeatures(), *procedure, localActuals);
}
}
}
if (nonElemental) {
return {&AccessSpecific(symbol, *nonElemental), false};
} else if (elemental) {
return {&AccessSpecific(symbol, *elemental), false};
}
// Check parent derived type
if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
if (const Symbol *extended{parentScope->FindComponent(symbol.name())}) {
auto pair{ResolveGeneric(
*extended, actuals, adjustActuals, isSubroutine, false)};
if (pair.first) {
return pair;
}
}
}
if (mightBeStructureConstructor && details->derivedType()) {
return {details->derivedType(), false};
}
}
// Check for generic or explicit INTRINSIC of the same name in outer scopes.
// See 15.5.5.2 for details.
if (!symbol.owner().IsGlobal() && !symbol.owner().IsDerivedType()) {
for (const std::string &n : GetAllNames(context_, symbol.name())) {
if (const Symbol *outer{symbol.owner().parent().FindSymbol(n)}) {
auto pair{ResolveGeneric(*outer, actuals, adjustActuals, isSubroutine,
mightBeStructureConstructor)};
if (pair.first) {
return pair;
}
}
}
}
return {nullptr, false};
}
const Symbol &ExpressionAnalyzer::AccessSpecific(
const Symbol &originalGeneric, const Symbol &specific) {
if (const auto *hosted{
originalGeneric.detailsIf<semantics::HostAssocDetails>()}) {
return AccessSpecific(hosted->symbol(), specific);
} else if (const auto *used{
originalGeneric.detailsIf<semantics::UseDetails>()}) {
const auto &scope{originalGeneric.owner()};
if (auto iter{scope.find(specific.name())}; iter != scope.end()) {
if (const auto *useDetails{
iter->second->detailsIf<semantics::UseDetails>()}) {
const Symbol &usedSymbol{useDetails->symbol()};
const auto *usedGeneric{
usedSymbol.detailsIf<semantics::GenericDetails>()};
if (&usedSymbol == &specific ||
(usedGeneric && usedGeneric->specific() == &specific)) {
return specific;
}
}
}
// Create a renaming USE of the specific procedure.
auto rename{context_.SaveTempName(
used->symbol().owner().GetName().value().ToString() + "$" +
specific.owner().GetName().value().ToString() + "$" +
specific.name().ToString())};
return *const_cast<semantics::Scope &>(scope)
.try_emplace(rename, specific.attrs(),
semantics::UseDetails{rename, specific})
.first->second;
} else {
return specific;
}
}
void ExpressionAnalyzer::EmitGenericResolutionError(
const Symbol &symbol, bool dueToAmbiguity, bool isSubroutine) {
Say(dueToAmbiguity
? "The actual arguments to the generic procedure '%s' matched multiple specific procedures, perhaps due to use of NULL() without MOLD= or an actual procedure with an implicit interface"_err_en_US
: semantics::IsGenericDefinedOp(symbol)
? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US
: isSubroutine
? "No specific subroutine of generic '%s' matches the actual arguments"_err_en_US
: "No specific function of generic '%s' matches the actual arguments"_err_en_US,
symbol.name());
}
auto ExpressionAnalyzer::GetCalleeAndArguments(
const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
bool isSubroutine, bool mightBeStructureConstructor)
-> std::optional<CalleeAndArguments> {
return common::visit(common::visitors{
[&](const parser::Name &name) {
return GetCalleeAndArguments(name,
std::move(arguments), isSubroutine,
mightBeStructureConstructor);
},
[&](const parser::ProcComponentRef &pcr) {
return AnalyzeProcedureComponentRef(
pcr, std::move(arguments), isSubroutine);
},
},
pd.u);
}
auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
ActualArguments &&arguments, bool isSubroutine,
bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
const Symbol *symbol{name.symbol};
if (context_.HasError(symbol)) {
return std::nullopt; // also handles null symbol
}
symbol = ResolveForward(*symbol);
if (!symbol) {
return std::nullopt;
}
name.symbol = const_cast<Symbol *>(symbol);
const Symbol &ultimate{symbol->GetUltimate()};
CheckForBadRecursion(name.source, ultimate);
bool dueToAmbiguity{false};
bool isGenericInterface{ultimate.has<semantics::GenericDetails>()};
bool isExplicitIntrinsic{ultimate.attrs().test(semantics::Attr::INTRINSIC)};
const Symbol *resolution{nullptr};
if (isGenericInterface || isExplicitIntrinsic) {
ExpressionAnalyzer::AdjustActuals noAdjustment;
auto pair{ResolveGeneric(*symbol, arguments, noAdjustment, isSubroutine,
mightBeStructureConstructor)};
resolution = pair.first;
dueToAmbiguity = pair.second;
if (resolution) {
if (context_.GetPPCBuiltinsScope() &&
resolution->name().ToString().rfind("__ppc_", 0) == 0) {
semantics::CheckPPCIntrinsic(
*symbol, *resolution, arguments, GetFoldingContext());
}
// re-resolve name to the specific procedure
name.symbol = const_cast<Symbol *>(resolution);
}
} else if (IsProcedure(ultimate) &&
ultimate.attrs().test(semantics::Attr::ABSTRACT)) {
Say("Abstract procedure interface '%s' may not be referenced"_err_en_US,
name.source);
} else {
resolution = symbol;
}
if (resolution && context_.targetCharacteristics().isOSWindows()) {
semantics::CheckWindowsIntrinsic(*resolution, GetFoldingContext());
}
if (!resolution || resolution->attrs().test(semantics::Attr::INTRINSIC)) {
auto name{resolution ? resolution->name() : ultimate.name()};
if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
CallCharacteristics{name.ToString(), isSubroutine}, arguments,
GetFoldingContext())}) {
CheckBadExplicitType(*specificCall, *symbol);
return CalleeAndArguments{
ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
std::move(specificCall->arguments)};
} else {
if (isGenericInterface) {
EmitGenericResolutionError(*symbol, dueToAmbiguity, isSubroutine);
}
return std::nullopt;
}
}
if (resolution->GetUltimate().has<semantics::DerivedTypeDetails>()) {
if (mightBeStructureConstructor) {
return CalleeAndArguments{
semantics::SymbolRef{*resolution}, std::move(arguments)};
}
} else if (IsProcedure(*resolution)) {
return CalleeAndArguments{
ProcedureDesignator{*resolution}, std::move(arguments)};
}
if (!context_.HasError(*resolution)) {
AttachDeclaration(
Say(name.source, "'%s' is not a callable procedure"_err_en_US,
name.source),
*resolution);
}
return std::nullopt;
}
// Fortran 2018 expressly states (8.2 p3) that any declared type for a
// generic intrinsic function "has no effect" on the result type of a
// call to that intrinsic. So one can declare "character*8 cos" and
// still get a real result from "cos(1.)". This is a dangerous feature,
// especially since implementations are free to extend their sets of
// intrinsics, and in doing so might clash with a name in a program.
// So we emit a warning in this situation, and perhaps it should be an
// error -- any correctly working program can silence the message by
// simply deleting the pointless type declaration.
void ExpressionAnalyzer::CheckBadExplicitType(
const SpecificCall &call, const Symbol &intrinsic) {
if (intrinsic.GetUltimate().GetType()) {
const auto &procedure{call.specificIntrinsic.characteristics.value()};
if (const auto &result{procedure.functionResult}) {
if (const auto *typeAndShape{result->GetTypeAndShape()}) {
if (auto declared{
typeAndShape->Characterize(intrinsic, GetFoldingContext())}) {
if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) {
if (auto *msg{Warn(
common::UsageWarning::IgnoredIntrinsicFunctionType,
"The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_warn_en_US,
typeAndShape->AsFortran(), intrinsic.name(),
declared->AsFortran())}) {
msg->Attach(intrinsic.name(),
"Ignored declaration of intrinsic function '%s'"_en_US,
intrinsic.name());
}
}
}
}
}
}
}
void ExpressionAnalyzer::CheckForBadRecursion(
parser::CharBlock callSite, const semantics::Symbol &proc) {
if (const auto *scope{proc.scope()}) {
if (scope->sourceRange().Contains(callSite)) {
parser::Message *msg{nullptr};
if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
callSite);
} else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
// TODO: Also catch assumed PDT type parameters
msg = Say( // 15.6.2.1(3)
"Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
callSite);
} else if (FindCUDADeviceContext(scope)) {
msg = Say(
"Device subprogram '%s' cannot call itself"_err_en_US, callSite);
}
AttachDeclaration(msg, proc);
}
}
}
template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
if (const auto *designator{
std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
if (const auto *dataRef{
std::get_if<parser::DataRef>(&designator->value().u)}) {
if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
return AssumedTypeDummy(*name);
}
}
}
return nullptr;
}
template <>
const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) {
if (const Symbol *symbol{name.symbol}) {
if (const auto *type{symbol->GetType()}) {
if (type->category() == semantics::DeclTypeSpec::TypeStar) {
return symbol;
}
}
}
return nullptr;
}
template <typename A>
static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) {
// It is illegal for allocatable of pointer objects to be TYPE(*), but at that
// point it is not guaranteed that it has been checked the object has
// POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly
// returned.
return common::visit(
common::visitors{
[&](const parser::StructureComponent &x) {
return AssumedTypeDummy(x.component);
},
[&](const parser::Name &x) { return AssumedTypeDummy(x); },
},
object.u);
}
template <>
const Symbol *AssumedTypeDummy<parser::AllocateObject>(
const parser::AllocateObject &x) {
return AssumedTypePointerOrAllocatableDummy(x);
}
template <>
const Symbol *AssumedTypeDummy<parser::PointerObject>(
const parser::PointerObject &x) {
return AssumedTypePointerOrAllocatableDummy(x);
}
bool ExpressionAnalyzer::CheckIsValidForwardReference(
const semantics::DerivedTypeSpec &dtSpec) {
if (dtSpec.IsForwardReferenced()) {
Say("Cannot construct value for derived type '%s' before it is defined"_err_en_US,
dtSpec.name());
return false;
}
return true;
}
std::optional<Chevrons> ExpressionAnalyzer::AnalyzeChevrons(
const parser::CallStmt &call) {
Chevrons result;
auto checkLaunchArg{[&](const Expr<SomeType> &expr, const char *which) {
if (auto dyType{expr.GetType()}) {
if (dyType->category() == TypeCategory::Integer) {
return true;
}
if (dyType->category() == TypeCategory::Derived &&
!dyType->IsPolymorphic() &&
IsBuiltinDerivedType(&dyType->GetDerivedTypeSpec(), "dim3")) {
return true;
}
}
Say("Kernel launch %s parameter must be either integer or TYPE(dim3)"_err_en_US,
which);
return false;
}};
if (const auto &chevrons{call.chevrons}) {
if (auto expr{Analyze(std::get<0>(chevrons->t))};
expr && checkLaunchArg(*expr, "grid")) {
result.emplace_back(*expr);
} else {
return std::nullopt;
}
if (auto expr{Analyze(std::get<1>(chevrons->t))};
expr && checkLaunchArg(*expr, "block")) {
result.emplace_back(*expr);
} else {
return std::nullopt;
}
if (const auto &maybeExpr{std::get<2>(chevrons->t)}) {
if (auto expr{Analyze(*maybeExpr)}) {
result.emplace_back(*expr);
} else {
return std::nullopt;
}
}
if (const auto &maybeExpr{std::get<3>(chevrons->t)}) {
if (auto expr{Analyze(*maybeExpr)}) {
result.emplace_back(*expr);
} else {
return std::nullopt;
}
}
}
return std::move(result);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
std::optional<parser::StructureConstructor> *structureConstructor) {
const parser::Call &call{funcRef.v};
auto restorer{GetContextualMessages().SetLocation(funcRef.source)};
ArgumentAnalyzer analyzer{*this, funcRef.source, true /* isProcedureCall */};
for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
analyzer.Analyze(arg, false /* not subroutine call */);
}
if (analyzer.fatalErrors()) {
return std::nullopt;
}
bool mightBeStructureConstructor{structureConstructor != nullptr};
if (std::optional<CalleeAndArguments> callee{GetCalleeAndArguments(
std::get<parser::ProcedureDesignator>(call.t), analyzer.GetActuals(),
false /* not subroutine */, mightBeStructureConstructor)}) {
if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
return MakeFunctionRef(
funcRef.source, std::move(*proc), std::move(callee->arguments));
}
CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)};
if (mightBeStructureConstructor) {
// Structure constructor misparsed as function reference?
const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
semantics::Scope &scope{context_.FindScope(name->source)};
semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()};
if (!CheckIsValidForwardReference(dtSpec)) {
return std::nullopt;
}
const semantics::DeclTypeSpec &type{
semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))};
auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
*structureConstructor =
mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
return Analyze(structureConstructor->value());
}
}
if (!context_.HasError(symbol)) {
AttachDeclaration(
Say("'%s' is called like a function but is not a procedure"_err_en_US,
symbol.name()),
symbol);
context_.SetError(symbol);
}
}
return std::nullopt;
}
static bool HasAlternateReturns(const evaluate::ActualArguments &args) {
for (const auto &arg : args) {
if (arg && arg->isAlternateReturn()) {
return true;
}
}
return false;
}
void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
const parser::Call &call{callStmt.call};
auto restorer{GetContextualMessages().SetLocation(callStmt.source)};
ArgumentAnalyzer analyzer{*this, callStmt.source, true /* isProcedureCall */};
const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
for (const auto &arg : actualArgList) {
analyzer.Analyze(arg, true /* is subroutine call */);
}
if (auto chevrons{AnalyzeChevrons(callStmt)};
chevrons && !analyzer.fatalErrors()) {
if (std::optional<CalleeAndArguments> callee{
GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
analyzer.GetActuals(), true /* subroutine */)}) {
ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
CHECK(proc);
bool isKernel{false};
if (const Symbol * procSym{proc->GetSymbol()}) {
const Symbol &ultimate{procSym->GetUltimate()};
if (const auto *subpDetails{
ultimate.detailsIf<semantics::SubprogramDetails>()}) {
if (auto attrs{subpDetails->cudaSubprogramAttrs()}) {
isKernel = *attrs == common::CUDASubprogramAttrs::Global ||
*attrs == common::CUDASubprogramAttrs::Grid_Global;
}
} else if (const auto *procDetails{
ultimate.detailsIf<semantics::ProcEntityDetails>()}) {
isKernel = procDetails->isCUDAKernel();
}
if (isKernel && chevrons->empty()) {
Say("'%s' is a kernel subroutine and must be called with kernel launch parameters in chevrons"_err_en_US,
procSym->name());
}
}
if (!isKernel && !chevrons->empty()) {
Say("Kernel launch parameters in chevrons may not be used unless calling a kernel subroutine"_err_en_US);
}
if (CheckCall(callStmt.source, *proc, callee->arguments)) {
callStmt.typedCall.Reset(
new ProcedureRef{std::move(*proc), std::move(callee->arguments),
HasAlternateReturns(callee->arguments)},
ProcedureRef::Deleter);
DEREF(callStmt.typedCall.get()).set_chevrons(std::move(*chevrons));
return;
}
}
if (!context_.AnyFatalError()) {
std::string buf;
llvm::raw_string_ostream dump{buf};
parser::DumpTree(dump, callStmt);
Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US,
buf);
}
}
}
const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
if (!x.typedAssignment) {
ArgumentAnalyzer analyzer{*this};
const auto &variable{std::get<parser::Variable>(x.t)};
analyzer.Analyze(variable);
analyzer.Analyze(std::get<parser::Expr>(x.t));
std::optional<Assignment> assignment;
if (!analyzer.fatalErrors()) {
auto restorer{GetContextualMessages().SetLocation(variable.GetSource())};
std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
if (!procRef) {
analyzer.CheckForNullPointer(
"in a non-pointer intrinsic assignment statement");
analyzer.CheckForAssumedRank("in an assignment statement");
const Expr<SomeType> &lhs{analyzer.GetExpr(0)};
if (auto dyType{lhs.GetType()};
dyType && dyType->IsPolymorphic()) { // 10.2.1.2p1(1)
const Symbol *lastWhole0{UnwrapWholeSymbolOrComponentDataRef(lhs)};
const Symbol *lastWhole{
lastWhole0 ? &lastWhole0->GetUltimate() : nullptr};
if (!lastWhole || !IsAllocatable(*lastWhole)) {
Say("Left-hand side of assignment may not be polymorphic unless assignment is to an entire allocatable"_err_en_US);
} else if (evaluate::IsCoarray(*lastWhole)) {
Say("Left-hand side of assignment may not be polymorphic if it is a coarray"_err_en_US);
}
}
}
assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1));
if (procRef) {
assignment->u = std::move(*procRef);
}
}
x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)},
GenericAssignmentWrapper::Deleter);
}
return common::GetPtrFromOptional(x.typedAssignment->v);
}
const Assignment *ExpressionAnalyzer::Analyze(
const parser::PointerAssignmentStmt &x) {
if (!x.typedAssignment) {
MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
MaybeExpr rhs;
{
auto restorer{AllowNullPointer()};
rhs = Analyze(std::get<parser::Expr>(x.t));
}
if (!lhs || !rhs) {
x.typedAssignment.Reset(
new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
} else {
Assignment assignment{std::move(*lhs), std::move(*rhs)};
common::visit(
common::visitors{
[&](const std::list<parser::BoundsRemapping> &list) {
Assignment::BoundsRemapping bounds;
for (const auto &elem : list) {
auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
if (lower && upper) {
bounds.emplace_back(
Fold(std::move(*lower)), Fold(std::move(*upper)));
}
}
assignment.u = std::move(bounds);
},
[&](const std::list<parser::BoundsSpec> &list) {
Assignment::BoundsSpec bounds;
for (const auto &bound : list) {
if (auto lower{AsSubscript(Analyze(bound.v))}) {
bounds.emplace_back(Fold(std::move(*lower)));
}
}
assignment.u = std::move(bounds);
},
},
std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
x.typedAssignment.Reset(
new GenericAssignmentWrapper{std::move(assignment)},
GenericAssignmentWrapper::Deleter);
}
}
return common::GetPtrFromOptional(x.typedAssignment->v);
}
static bool IsExternalCalledImplicitly(
parser::CharBlock callSite, const Symbol *symbol) {
return symbol && symbol->owner().IsGlobal() &&
symbol->has<semantics::SubprogramDetails>() &&
(!symbol->scope() /*ENTRY*/ ||
!symbol->scope()->sourceRange().Contains(callSite));
}
std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
parser::CharBlock callSite, const ProcedureDesignator &proc,
ActualArguments &arguments) {
bool treatExternalAsImplicit{
IsExternalCalledImplicitly(callSite, proc.GetSymbol())};
const Symbol *procSymbol{proc.GetSymbol()};
std::optional<characteristics::Procedure> chars;
if (procSymbol && procSymbol->has<semantics::ProcEntityDetails>() &&
procSymbol->owner().IsGlobal()) {
// Unknown global external, implicit interface; assume
// characteristics from the actual arguments, and check
// for consistency with other references.
chars = characteristics::Procedure::FromActuals(
proc, arguments, context_.foldingContext());
if (chars && procSymbol) {
// Ensure calls over implicit interfaces are consistent
auto name{procSymbol->name()};
if (auto iter{implicitInterfaces_.find(name)};
iter != implicitInterfaces_.end()) {
std::string whyNot;
if (!chars->IsCompatibleWith(iter->second.second,
/*ignoreImplicitVsExplicit=*/false, &whyNot)) {
if (auto *msg{Warn(
common::UsageWarning::IncompatibleImplicitInterfaces,
callSite,
"Reference to the procedure '%s' has an implicit interface that is distinct from another reference: %s"_warn_en_US,
name, whyNot)}) {
msg->Attach(
iter->second.first, "previous reference to '%s'"_en_US, name);
}
}
} else {
implicitInterfaces_.insert(
std::make_pair(name, std::make_pair(callSite, *chars)));
}
}
}
if (!chars) {
chars = characteristics::Procedure::Characterize(
proc, context_.foldingContext(), /*emitError=*/true);
}
bool ok{true};
if (chars) {
std::string whyNot;
if (treatExternalAsImplicit &&
!chars->CanBeCalledViaImplicitInterface(&whyNot)) {
if (auto *msg{Say(callSite,
"References to the procedure '%s' require an explicit interface"_err_en_US,
DEREF(procSymbol).name())};
msg && !whyNot.empty()) {
msg->Attach(callSite, "%s"_because_en_US, whyNot);
}
}
const SpecificIntrinsic *specificIntrinsic{proc.GetSpecificIntrinsic()};
bool procIsDummy{procSymbol && IsDummy(*procSymbol)};
if (chars->functionResult &&
chars->functionResult->IsAssumedLengthCharacter() &&
!specificIntrinsic && !procIsDummy) {
Say(callSite,
"Assumed-length character function must be defined with a length to be called"_err_en_US);
}
ok &= semantics::CheckArguments(*chars, arguments, context_,
context_.FindScope(callSite), treatExternalAsImplicit,
/*ignoreImplicitVsExplicit=*/false, specificIntrinsic);
}
if (procSymbol && !IsPureProcedure(*procSymbol)) {
if (const semantics::Scope *
pure{semantics::FindPureProcedureContaining(
context_.FindScope(callSite))}) {
Say(callSite,
"Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
procSymbol->name(), DEREF(pure->symbol()).name());
}
}
if (ok && !treatExternalAsImplicit && procSymbol &&
!(chars && chars->HasExplicitInterface())) {
if (const Symbol *global{FindGlobal(*procSymbol)};
global && global != procSymbol && IsProcedure(*global)) {
// Check a known global definition behind a local interface
if (auto globalChars{characteristics::Procedure::Characterize(
*global, context_.foldingContext())}) {
semantics::CheckArguments(*globalChars, arguments, context_,
context_.FindScope(callSite), /*treatExternalAsImplicit=*/true,
/*ignoreImplicitVsExplicit=*/false,
nullptr /*not specific intrinsic*/);
}
}
}
return chars;
}
// Unary operations
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
if (MaybeExpr operand{Analyze(x.v.value())}) {
if (const semantics::Symbol *symbol{GetLastSymbol(*operand)}) {
if (const semantics::Symbol *result{FindFunctionResult(*symbol)}) {
if (semantics::IsProcedurePointer(*result)) {
Say("A function reference that returns a procedure "
"pointer may not be parenthesized"_err_en_US); // C1003
}
}
}
return Parenthesize(std::move(*operand));
}
return std::nullopt;
}
static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
ArgumentAnalyzer analyzer{context};
analyzer.Analyze(x.v);
if (!analyzer.fatalErrors()) {
if (analyzer.IsIntrinsicNumeric(opr)) {
analyzer.CheckForNullPointer();
analyzer.CheckForAssumedRank();
if (opr == NumericOperator::Add) {
return analyzer.MoveExpr(0);
} else {
return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
}
} else {
return analyzer.TryDefinedOp(AsFortran(opr),
"Operand of unary %s must be numeric; have %s"_err_en_US);
}
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
return NumericUnaryHelper(*this, NumericOperator::Add, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
if (const auto *litConst{
std::get_if<parser::LiteralConstant>(&x.v.value().u)}) {
if (const auto *intConst{
std::get_if<parser::IntLiteralConstant>(&litConst->u)}) {
return Analyze(*intConst, true);
}
}
return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
ArgumentAnalyzer analyzer{*this};
analyzer.Analyze(x.v);
if (!analyzer.fatalErrors()) {
if (analyzer.IsIntrinsicLogical()) {
analyzer.CheckForNullPointer();
analyzer.CheckForAssumedRank();
return AsGenericExpr(
LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
} else {
return analyzer.TryDefinedOp(LogicalOperator::Not,
"Operand of %s must be LOGICAL; have %s"_err_en_US);
}
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
// Represent %LOC() exactly as if it had been a call to the LOC() extension
// intrinsic function.
// Use the actual source for the name of the call for error reporting.
std::optional<ActualArgument> arg;
if (const Symbol *assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
} else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
arg = ActualArgument{std::move(*argExpr)};
} else {
return std::nullopt;
}
parser::CharBlock at{GetContextualMessages().at()};
CHECK(at.size() >= 4);
parser::CharBlock loc{at.begin() + 1, 3};
CHECK(loc == "loc");
return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
const auto &name{std::get<parser::DefinedOpName>(x.t).v};
ArgumentAnalyzer analyzer{*this, name.source};
analyzer.Analyze(std::get<1>(x.t));
return analyzer.TryDefinedOp(name.source.ToString().c_str(),
"No operator %s defined for %s"_err_en_US, true);
}
// Binary (dyadic) operations
template <template <typename> class OPR>
MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
const parser::Expr::IntrinsicBinary &x) {
ArgumentAnalyzer analyzer{context};
analyzer.Analyze(std::get<0>(x.t));
analyzer.Analyze(std::get<1>(x.t));
if (!analyzer.fatalErrors()) {
if (analyzer.IsIntrinsicNumeric(opr)) {
analyzer.CheckForNullPointer();
analyzer.CheckForAssumedRank();
analyzer.CheckConformance();
return NumericOperation<OPR>(context.GetContextualMessages(),
analyzer.MoveExpr(0), analyzer.MoveExpr(1),
context.GetDefaultKind(TypeCategory::Real));
} else {
return analyzer.TryDefinedOp(AsFortran(opr),
"Operands of %s must be numeric; have %s and %s"_err_en_US);
}
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(
const parser::Expr::ComplexConstructor &z) {
Warn(common::LanguageFeature::ComplexConstructor,
"nonstandard usage: generalized COMPLEX constructor"_port_en_US);
return AnalyzeComplex(Analyze(std::get<0>(z.t).value()),
Analyze(std::get<1>(z.t).value()), "complex constructor");
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
ArgumentAnalyzer analyzer{*this};
analyzer.Analyze(std::get<0>(x.t));
analyzer.Analyze(std::get<1>(x.t));
if (!analyzer.fatalErrors()) {
if (analyzer.IsIntrinsicConcat()) {
analyzer.CheckForNullPointer();
analyzer.CheckForAssumedRank();
return common::visit(
[&](auto &&x, auto &&y) -> MaybeExpr {
using T = ResultType<decltype(x)>;
if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
} else {
DIE("different types for intrinsic concat");
}
},
std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
} else {
return analyzer.TryDefinedOp("//",
"Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
}
}
return std::nullopt;
}
// The Name represents a user-defined intrinsic operator.
// If the actuals match one of the specific procedures, return a function ref.
// Otherwise report the error in messages.
MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
const parser::Name &name, ActualArguments &&actuals) {
if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
return MakeFunctionRef(name.source,
std::move(std::get<ProcedureDesignator>(callee->u)),
std::move(callee->arguments));
} else {
return std::nullopt;
}
}
MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
const parser::Expr::IntrinsicBinary &x) {
ArgumentAnalyzer analyzer{context};
analyzer.Analyze(std::get<0>(x.t));
analyzer.Analyze(std::get<1>(x.t));
if (!analyzer.fatalErrors()) {
std::optional<DynamicType> leftType{analyzer.GetType(0)};
std::optional<DynamicType> rightType{analyzer.GetType(1)};
analyzer.ConvertBOZ(&leftType, 0, rightType);
analyzer.ConvertBOZ(&rightType, 1, leftType);
if (leftType && rightType &&
analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) {
analyzer.CheckForNullPointer("as a relational operand");
analyzer.CheckForAssumedRank("as a relational operand");
if (auto cmp{Relate(context.GetContextualMessages(), opr,
analyzer.MoveExpr(0), analyzer.MoveExpr(1))}) {
return AsMaybeExpr(ConvertToKind<TypeCategory::Logical>(
context.GetDefaultKind(TypeCategory::Logical),
AsExpr(std::move(*cmp))));
}
} else {
return analyzer.TryDefinedOp(opr,
leftType && leftType->category() == TypeCategory::Logical &&
rightType && rightType->category() == TypeCategory::Logical
? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US
: "Operands of %s must have comparable types; have %s and %s"_err_en_US);
}
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
return RelationHelper(*this, RelationalOperator::LT, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
return RelationHelper(*this, RelationalOperator::LE, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
return RelationHelper(*this, RelationalOperator::EQ, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
return RelationHelper(*this, RelationalOperator::NE, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
return RelationHelper(*this, RelationalOperator::GE, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
return RelationHelper(*this, RelationalOperator::GT, x);
}
MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
const parser::Expr::IntrinsicBinary &x) {
ArgumentAnalyzer analyzer{context};
analyzer.Analyze(std::get<0>(x.t));
analyzer.Analyze(std::get<1>(x.t));
if (!analyzer.fatalErrors()) {
if (analyzer.IsIntrinsicLogical()) {
analyzer.CheckForNullPointer("as a logical operand");
analyzer.CheckForAssumedRank("as a logical operand");
return AsGenericExpr(BinaryLogicalOperation(opr,
std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
} else {
return analyzer.TryDefinedOp(
opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
}
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
return LogicalBinaryHelper(*this, LogicalOperator::And, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
const auto &name{std::get<parser::DefinedOpName>(x.t).v};
ArgumentAnalyzer analyzer{*this, name.source};
analyzer.Analyze(std::get<1>(x.t));
analyzer.Analyze(std::get<2>(x.t));
return analyzer.TryDefinedOp(name.source.ToString().c_str(),
"No operator %s defined for %s and %s"_err_en_US, true);
}
// Returns true if a parsed function reference should be converted
// into an array element reference.
static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context,
const parser::FunctionReference &funcRef) {
// Emit message if the function reference fix will end up an array element
// reference with no subscripts, or subscripts on a scalar, because it will
// not be possible to later distinguish in expressions between an empty
// subscript list due to bad subscripts error recovery or because the
// user did not put any.
auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
const auto *name{std::get_if<parser::Name>(&proc.u)};
if (!name) {
name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
}
if (!name->symbol) {
return false;
} else if (name->symbol->Rank() == 0) {
if (const Symbol *function{
semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) {
auto &msg{context.Say(funcRef.source,
function->flags().test(Symbol::Flag::StmtFunction)
? "Recursive call to statement function '%s' is not allowed"_err_en_US
: "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US,
name->source)};
AttachDeclaration(&msg, *function);
name->symbol = const_cast<Symbol *>(function);
}
return false;
} else {
if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
auto &msg{context.Say(funcRef.source,
"Reference to array '%s' with empty subscript list"_err_en_US,
name->source)};
if (name->symbol) {
AttachDeclaration(&msg, *name->symbol);
}
}
return true;
}
}
// Converts, if appropriate, an original misparse of ambiguous syntax like
// A(1) as a function reference into an array reference.
// Misparsed structure constructors are detected elsewhere after generic
// function call resolution fails.
template <typename... A>
static void FixMisparsedFunctionReference(
semantics::SemanticsContext &context, const std::variant<A...> &constU) {
// The parse tree is updated in situ when resolving an ambiguous parse.
using uType = std::decay_t<decltype(constU)>;
auto &u{const_cast<uType &>(constU)};
if (auto *func{
std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
parser::FunctionReference &funcRef{func->value()};
// Ensure that there are no argument keywords
for (const auto &arg :
std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t)) {
if (std::get<std::optional<parser::Keyword>>(arg.t)) {
return;
}
}
auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
if (Symbol *origSymbol{
common::visit(common::visitors{
[&](parser::Name &name) { return name.symbol; },
[&](parser::ProcComponentRef &pcr) {
return pcr.v.thing.component.symbol;
},
},
proc.u)}) {
Symbol &symbol{origSymbol->GetUltimate()};
if (symbol.has<semantics::ObjectEntityDetails>() ||
symbol.has<semantics::AssocEntityDetails>()) {
// Note that expression in AssocEntityDetails cannot be a procedure
// pointer as per C1105 so this cannot be a function reference.
if constexpr (common::HasMember<common::Indirection<parser::Designator>,
uType>) {
if (CheckFuncRefToArrayElement(context, funcRef)) {
u = common::Indirection{funcRef.ConvertToArrayElementRef()};
}
} else {
DIE("can't fix misparsed function as array reference");
}
}
}
}
}
// Common handling of parse tree node types that retain the
// representation of the analyzed expression.
template <typename PARSED>
MaybeExpr ExpressionAnalyzer::ExprOrVariable(
const PARSED &x, parser::CharBlock source) {
auto restorer{GetContextualMessages().SetLocation(source)};
if constexpr (std::is_same_v<PARSED, parser::Expr> ||
std::is_same_v<PARSED, parser::Variable>) {
FixMisparsedFunctionReference(context_, x.u);
}
if (AssumedTypeDummy(x)) { // C710
Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
ResetExpr(x);
return std::nullopt;
}
MaybeExpr result;
if constexpr (common::HasMember<parser::StructureConstructor,
std::decay_t<decltype(x.u)>> &&
common::HasMember<common::Indirection<parser::FunctionReference>,
std::decay_t<decltype(x.u)>>) {
if (const auto *funcRef{
std::get_if<common::Indirection<parser::FunctionReference>>(
&x.u)}) {
// Function references in Exprs might turn out to be misparsed structure
// constructors; we have to try generic procedure resolution
// first to be sure.
std::optional<parser::StructureConstructor> ctor;
result = Analyze(funcRef->value(), &ctor);
if (result && ctor) {
// A misparsed function reference is really a structure
// constructor. Repair the parse tree in situ.
const_cast<PARSED &>(x).u = std::move(*ctor);
}
} else {
result = Analyze(x.u);
}
} else {
result = Analyze(x.u);
}
if (result) {
if constexpr (std::is_same_v<PARSED, parser::Expr>) {
if (!isNullPointerOk_ && IsNullPointer(*result)) {
Say(source,
"NULL() may not be used as an expression in this context"_err_en_US);
}
}
SetExpr(x, Fold(std::move(*result)));
return x.typedExpr->v;
} else {
ResetExpr(x);
if (!context_.AnyFatalError()) {
std::string buf;
llvm::raw_string_ostream dump{buf};
parser::DumpTree(dump, x);
Say("Internal error: Expression analysis failed on: %s"_err_en_US, buf);
}
return std::nullopt;
}
}
// This is an optional preliminary pass over parser::Expr subtrees.
// Given an expression tree, iteratively traverse it in a bottom-up order
// to analyze all of its subexpressions. A later normal top-down analysis
// will then be able to use the results that will have been saved in the
// parse tree without having to recurse deeply. This technique keeps
// absurdly deep expression parse trees from causing the analyzer to overflow
// its stack.
MaybeExpr ExpressionAnalyzer::IterativelyAnalyzeSubexpressions(
const parser::Expr &top) {
std::vector<const parser::Expr *> queue, finish;
queue.push_back(&top);
do {
const parser::Expr &expr{*queue.back()};
queue.pop_back();
if (!expr.typedExpr) {
const parser::Expr::IntrinsicUnary *unary{nullptr};
const parser::Expr::IntrinsicBinary *binary{nullptr};
common::visit(
[&unary, &binary](auto &y) {
if constexpr (std::is_convertible_v<decltype(&y),
decltype(unary)>) {
// Don't evaluate a constant operand to Negate
if (!std::holds_alternative<parser::LiteralConstant>(
y.v.value().u)) {
unary = &y;
}
} else if constexpr (std::is_convertible_v<decltype(&y),
decltype(binary)>) {
binary = &y;
}
},
expr.u);
if (unary) {
queue.push_back(&unary->v.value());
} else if (binary) {
queue.push_back(&std::get<0>(binary->t).value());
queue.push_back(&std::get<1>(binary->t).value());
}
finish.push_back(&expr);
}
} while (!queue.empty());
// Analyze the collected subexpressions in bottom-up order.
// On an error, bail out and leave partial results in place.
MaybeExpr result;
for (auto riter{finish.rbegin()}; riter != finish.rend(); ++riter) {
const parser::Expr &expr{**riter};
result = ExprOrVariable(expr, expr.source);
if (!result) {
return result;
}
}
return result; // last value was from analysis of "top"
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
bool wasIterativelyAnalyzing{iterativelyAnalyzingSubexpressions_};
MaybeExpr result;
if (useSavedTypedExprs_) {
if (expr.typedExpr) {
return expr.typedExpr->v;
}
if (!wasIterativelyAnalyzing) {
iterativelyAnalyzingSubexpressions_ = true;
result = IterativelyAnalyzeSubexpressions(expr);
}
}
if (!result) {
result = ExprOrVariable(expr, expr.source);
}
iterativelyAnalyzingSubexpressions_ = wasIterativelyAnalyzing;
return result;
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
if (useSavedTypedExprs_ && variable.typedExpr) {
return variable.typedExpr->v;
}
return ExprOrVariable(variable, variable.GetSource());
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) {
if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) {
if (!useSavedTypedExprs_ || !var->typedExpr) {
parser::CharBlock source{var->GetSource()};
auto restorer{GetContextualMessages().SetLocation(source)};
FixMisparsedFunctionReference(context_, var->u);
if (const auto *funcRef{
std::get_if<common::Indirection<parser::FunctionReference>>(
&var->u)}) {
// A Selector that parsed as a Variable might turn out during analysis
// to actually be a structure constructor. In that case, repair the
// Variable parse tree node into an Expr
std::optional<parser::StructureConstructor> ctor;
if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) {
if (ctor) {
auto &writable{const_cast<parser::Selector &>(selector)};
writable.u = parser::Expr{std::move(*ctor)};
auto &expr{std::get<parser::Expr>(writable.u)};
expr.source = source;
SetExpr(expr, Fold(std::move(*result)));
return expr.typedExpr->v;
} else {
SetExpr(*var, Fold(std::move(*result)));
return var->typedExpr->v;
}
} else {
ResetExpr(*var);
if (context_.AnyFatalError()) {
return std::nullopt;
}
}
}
}
// Not a Variable -> FunctionReference
auto restorer{AllowWholeAssumedSizeArray()};
return Analyze(selector.u);
} else { // Expr
return Analyze(selector.u);
}
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
auto restorer{common::ScopedSet(inDataStmtConstant_, true)};
return ExprOrVariable(x, x.source);
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) {
return ExprOrVariable(x, parser::FindSourceLocation(x));
}
MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) {
return ExprOrVariable(x, parser::FindSourceLocation(x));
}
Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
TypeCategory category,
const std::optional<parser::KindSelector> &selector) {
int defaultKind{GetDefaultKind(category)};
if (!selector) {
return Expr<SubscriptInteger>{defaultKind};
}
return common::visit(
common::visitors{
[&](const parser::ScalarIntConstantExpr &x) {
if (MaybeExpr kind{Analyze(x)}) {
if (std::optional<std::int64_t> code{ToInt64(*kind)}) {
if (CheckIntrinsicKind(category, *code)) {
return Expr<SubscriptInteger>{*code};
}
} else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) {
return ConvertToType<SubscriptInteger>(std::move(*intExpr));
}
}
return Expr<SubscriptInteger>{defaultKind};
},
[&](const parser::KindSelector::StarSize &x) {
std::intmax_t size = x.v;
if (!CheckIntrinsicSize(category, size)) {
size = defaultKind;
} else if (category == TypeCategory::Complex) {
size /= 2;
}
return Expr<SubscriptInteger>{size};
},
},
selector->u);
}
int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
return context_.GetDefaultKind(category);
}
DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
common::TypeCategory category) {
return {category, GetDefaultKind(category)};
}
bool ExpressionAnalyzer::CheckIntrinsicKind(
TypeCategory category, std::int64_t kind) {
if (foldingContext_.targetCharacteristics().IsTypeEnabled(
category, kind)) { // C712, C714, C715, C727
return true;
} else if (foldingContext_.targetCharacteristics().CanSupportType(
category, kind)) {
Warn(common::UsageWarning::BadTypeForTarget,
"%s(KIND=%jd) is not an enabled type for this target"_warn_en_US,
ToUpperCase(EnumToString(category)), kind);
return true;
} else {
Say("%s(KIND=%jd) is not a supported type"_err_en_US,
ToUpperCase(EnumToString(category)), kind);
return false;
}
}
bool ExpressionAnalyzer::CheckIntrinsicSize(
TypeCategory category, std::int64_t size) {
std::int64_t kind{size};
if (category == TypeCategory::Complex) {
// COMPLEX*16 == COMPLEX(KIND=8)
if (size % 2 == 0) {
kind = size / 2;
} else {
Say("COMPLEX*%jd is not a supported type"_err_en_US, size);
return false;
}
}
if (foldingContext_.targetCharacteristics().IsTypeEnabled(
category, kind)) { // C712, C714, C715, C727
return true;
} else if (foldingContext_.targetCharacteristics().CanSupportType(
category, kind)) {
Warn(common::UsageWarning::BadTypeForTarget,
"%s*%jd is not an enabled type for this target"_warn_en_US,
ToUpperCase(EnumToString(category)), size);
return true;
} else {
Say("%s*%jd is not a supported type"_err_en_US,
ToUpperCase(EnumToString(category)), size);
return false;
}
}
bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
return impliedDos_.insert(std::make_pair(name, kind)).second;
}
void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
auto iter{impliedDos_.find(name)};
if (iter != impliedDos_.end()) {
impliedDos_.erase(iter);
}
}
std::optional<int> ExpressionAnalyzer::IsImpliedDo(
parser::CharBlock name) const {
auto iter{impliedDos_.find(name)};
if (iter != impliedDos_.cend()) {
return {iter->second};
} else {
return std::nullopt;
}
}
bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
const MaybeExpr &result, TypeCategory category, bool defaultKind) {
if (result) {
if (auto type{result->GetType()}) {
if (type->category() != category) { // C885
Say(at, "Must have %s type, but is %s"_err_en_US,
ToUpperCase(EnumToString(category)),
ToUpperCase(type->AsFortran()));
return false;
} else if (defaultKind) {
int kind{context_.GetDefaultKind(category)};
if (type->kind() != kind) {
Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
kind, ToUpperCase(EnumToString(category)),
ToUpperCase(type->AsFortran()));
return false;
}
}
} else {
Say(at, "Must have %s type, but is typeless"_err_en_US,
ToUpperCase(EnumToString(category)));
return false;
}
}
return true;
}
MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
ProcedureDesignator &&proc, ActualArguments &&arguments) {
if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
if (intrinsic->characteristics.value().attrs.test(
characteristics::Procedure::Attr::NullPointer) &&
arguments.empty()) {
return Expr<SomeType>{NullPointer{}};
}
}
if (const Symbol *symbol{proc.GetSymbol()}) {
if (!ResolveForward(*symbol)) {
return std::nullopt;
}
}
if (auto chars{CheckCall(callSite, proc, arguments)}) {
if (chars->functionResult) {
const auto &result{*chars->functionResult};
ProcedureRef procRef{std::move(proc), std::move(arguments)};
if (result.IsProcedurePointer()) {
return Expr<SomeType>{std::move(procRef)};
} else {
// Not a procedure pointer, so type and shape are known.
return TypedWrapper<FunctionRef, ProcedureRef>(
DEREF(result.GetTypeAndShape()).type(), std::move(procRef));
}
} else {
Say("Function result characteristics are not known"_err_en_US);
}
}
return std::nullopt;
}
MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
parser::CharBlock intrinsic, ActualArguments &&arguments) {
if (std::optional<SpecificCall> specificCall{
context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
arguments, GetFoldingContext())}) {
return MakeFunctionRef(intrinsic,
ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
std::move(specificCall->arguments));
} else {
return std::nullopt;
}
}
MaybeExpr ExpressionAnalyzer::AnalyzeComplex(
MaybeExpr &&re, MaybeExpr &&im, const char *what) {
if (re && re->Rank() > 0) {
Warn(common::LanguageFeature::ComplexConstructor,
"Real part of %s is not scalar"_port_en_US, what);
}
if (im && im->Rank() > 0) {
Warn(common::LanguageFeature::ComplexConstructor,
"Imaginary part of %s is not scalar"_port_en_US, what);
}
if (re && im) {
ConformabilityCheck(GetContextualMessages(), *re, *im);
}
return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
std::move(im), GetDefaultKind(TypeCategory::Real)));
}
std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeVariable(
const parser::Variable &x) {
source_.ExtendToCover(x.GetSource());
if (MaybeExpr expr{context_.Analyze(x)}) {
if (!IsConstantExpr(*expr)) {
ActualArgument actual{std::move(*expr)};
SetArgSourceLocation(actual, x.GetSource());
return actual;
}
const Symbol *symbol{GetLastSymbol(*expr)};
if (!symbol) {
context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
x.GetSource());
} else if (IsProcedure(*symbol)) {
if (auto *msg{context_.SayAt(x,
"Assignment to procedure '%s' is not allowed"_err_en_US,
symbol->name())}) {
if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
if (subp->isFunction()) {
const auto &result{subp->result().name()};
msg->Attach(result, "Function result is '%s'"_en_US, result);
}
}
}
} else {
context_.SayAt(
x, "Assignment to '%s' is not allowed"_err_en_US, symbol->name());
}
}
fatalErrors_ = true;
return std::nullopt;
}
void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
if (auto actual = AnalyzeVariable(x)) {
actuals_.emplace_back(std::move(actual));
}
}
void ArgumentAnalyzer::Analyze(
const parser::ActualArgSpec &arg, bool isSubroutine) {
// TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
std::optional<ActualArgument> actual;
auto restorer{context_.AllowWholeAssumedSizeArray()};
common::visit(
common::visitors{
[&](const common::Indirection<parser::Expr> &x) {
actual = AnalyzeExpr(x.value());
},
[&](const parser::AltReturnSpec &label) {
if (!isSubroutine) {
context_.Say(
"alternate return specification may not appear on function reference"_err_en_US);
}
actual = ActualArgument(label.v);
},
[&](const parser::ActualArg::PercentRef &percentRef) {
actual = AnalyzeExpr(percentRef.v);
if (actual.has_value()) {
actual->set_isPercentRef();
}
},
[&](const parser::ActualArg::PercentVal &percentVal) {
actual = AnalyzeExpr(percentVal.v);
if (actual.has_value()) {
actual->set_isPercentVal();
}
},
},
std::get<parser::ActualArg>(arg.t).u);
if (actual) {
if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
actual->set_keyword(argKW->v.source);
}
actuals_.emplace_back(std::move(*actual));
} else {
fatalErrors_ = true;
}
}
bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr,
const DynamicType &leftType, const DynamicType &rightType) const {
CHECK(actuals_.size() == 2);
return semantics::IsIntrinsicRelational(
opr, leftType, GetRank(0), rightType, GetRank(1));
}
bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
std::optional<DynamicType> leftType{GetType(0)};
if (actuals_.size() == 1) {
if (IsBOZLiteral(0)) {
return opr == NumericOperator::Add; // unary '+'
} else {
return leftType && semantics::IsIntrinsicNumeric(*leftType);
}
} else {
std::optional<DynamicType> rightType{GetType(1)};
if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real
auto cat1{rightType->category()};
return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
} else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ
auto cat0{leftType->category()};
return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
} else {
return leftType && rightType &&
semantics::IsIntrinsicNumeric(
*leftType, GetRank(0), *rightType, GetRank(1));
}
}
}
bool ArgumentAnalyzer::IsIntrinsicLogical() const {
if (std::optional<DynamicType> leftType{GetType(0)}) {
if (actuals_.size() == 1) {
return semantics::IsIntrinsicLogical(*leftType);
} else if (std::optional<DynamicType> rightType{GetType(1)}) {
return semantics::IsIntrinsicLogical(
*leftType, GetRank(0), *rightType, GetRank(1));
}
}
return false;
}
bool ArgumentAnalyzer::IsIntrinsicConcat() const {
if (std::optional<DynamicType> leftType{GetType(0)}) {
if (std::optional<DynamicType> rightType{GetType(1)}) {
return semantics::IsIntrinsicConcat(
*leftType, GetRank(0), *rightType, GetRank(1));
}
}
return false;
}
bool ArgumentAnalyzer::CheckConformance() {
if (actuals_.size() == 2) {
const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
if (lhs && rhs) {
auto &foldingContext{context_.GetFoldingContext()};
auto lhShape{GetShape(foldingContext, *lhs)};
auto rhShape{GetShape(foldingContext, *rhs)};
if (lhShape && rhShape) {
if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape,
*rhShape, CheckConformanceFlags::EitherScalarExpandable,
"left operand", "right operand")
.value_or(false /*fail when conformance is not known now*/)) {
fatalErrors_ = true;
return false;
}
}
}
}
return true; // no proven problem
}
bool ArgumentAnalyzer::CheckAssignmentConformance() {
if (actuals_.size() == 2) {
const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
if (lhs && rhs) {
auto &foldingContext{context_.GetFoldingContext()};
auto lhShape{GetShape(foldingContext, *lhs)};
auto rhShape{GetShape(foldingContext, *rhs)};
if (lhShape && rhShape) {
if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape,
*rhShape, CheckConformanceFlags::RightScalarExpandable,
"left-hand side", "right-hand side")
.value_or(true /*ok when conformance is not known now*/)) {
fatalErrors_ = true;
return false;
}
}
}
}
return true; // no proven problem
}
bool ArgumentAnalyzer::CheckForNullPointer(const char *where) {
for (const std::optional<ActualArgument> &arg : actuals_) {
if (arg) {
if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) {
if (IsNullPointer(*expr)) {
context_.Say(
source_, "A NULL() pointer is not allowed %s"_err_en_US, where);
fatalErrors_ = true;
return false;
}
}
}
}
return true;
}
bool ArgumentAnalyzer::CheckForAssumedRank(const char *where) {
for (const std::optional<ActualArgument> &arg : actuals_) {
if (arg && IsAssumedRank(arg->UnwrapExpr())) {
context_.Say(source_,
"An assumed-rank dummy argument is not allowed %s"_err_en_US, where);
fatalErrors_ = true;
return false;
}
}
return true;
}
MaybeExpr ArgumentAnalyzer::TryDefinedOp(
const char *opr, parser::MessageFixedText error, bool isUserOp) {
if (AnyUntypedOrMissingOperand()) {
context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
return std::nullopt;
}
MaybeExpr result;
bool anyPossibilities{false};
std::optional<parser::MessageFormattedText> inaccessible;
std::vector<const Symbol *> hit;
std::string oprNameString{
isUserOp ? std::string{opr} : "operator("s + opr + ')'};
parser::CharBlock oprName{oprNameString};
parser::Messages hitBuffer;
{
parser::Messages buffer;
auto restorer{context_.GetContextualMessages().SetMessages(buffer)};
const auto &scope{context_.context().FindScope(source_)};
if (Symbol *symbol{scope.FindSymbol(oprName)}) {
anyPossibilities = true;
parser::Name name{symbol->name(), symbol};
if (!fatalErrors_) {
result = context_.AnalyzeDefinedOp(name, GetActuals());
}
if (result) {
inaccessible = CheckAccessibleSymbol(scope, *symbol);
if (inaccessible) {
result.reset();
} else {
hit.push_back(symbol);
hitBuffer = std::move(buffer);
}
}
}
for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
buffer.clear();
const Symbol *generic{nullptr};
if (const Symbol *binding{
FindBoundOp(oprName, passIndex, generic, false)}) {
anyPossibilities = true;
if (MaybeExpr thisResult{TryBoundOp(*binding, passIndex)}) {
if (auto thisInaccessible{
CheckAccessibleSymbol(scope, DEREF(generic))}) {
inaccessible = thisInaccessible;
} else {
result = std::move(thisResult);
hit.push_back(binding);
hitBuffer = std::move(buffer);
}
}
}
}
}
if (result) {
if (hit.size() > 1) {
if (auto *msg{context_.Say(
"%zd matching accessible generic interfaces for %s were found"_err_en_US,
hit.size(), ToUpperCase(opr))}) {
for (const Symbol *symbol : hit) {
AttachDeclaration(*msg, *symbol);
}
}
}
if (auto *msgs{context_.GetContextualMessages().messages()}) {
msgs->Annex(std::move(hitBuffer));
}
} else if (inaccessible) {
context_.Say(source_, std::move(*inaccessible));
} else if (anyPossibilities) {
SayNoMatch(ToUpperCase(oprNameString), false);
} else if (actuals_.size() == 2 && !AreConformable()) {
context_.Say(
"Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
} else if (CheckForNullPointer() && CheckForAssumedRank()) {
context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
}
return result;
}
MaybeExpr ArgumentAnalyzer::TryDefinedOp(
const std::vector<const char *> &oprs, parser::MessageFixedText error) {
if (oprs.size() == 1) {
return TryDefinedOp(oprs[0], error);
}
MaybeExpr result;
std::vector<const char *> hit;
parser::Messages hitBuffer;
{
for (std::size_t i{0}; i < oprs.size(); ++i) {
parser::Messages buffer;
auto restorer{context_.GetContextualMessages().SetMessages(buffer)};
if (MaybeExpr thisResult{TryDefinedOp(oprs[i], error)}) {
result = std::move(thisResult);
hit.push_back(oprs[i]);
hitBuffer = std::move(buffer);
}
}
}
if (hit.empty()) { // for the error
result = TryDefinedOp(oprs[0], error);
} else if (hit.size() > 1) {
context_.Say(
"Matching accessible definitions were found with %zd variant spellings of the generic operator ('%s', '%s')"_err_en_US,
hit.size(), ToUpperCase(hit[0]), ToUpperCase(hit[1]));
} else { // one hit; preserve errors
context_.context().messages().Annex(std::move(hitBuffer));
}
return result;
}
MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
ActualArguments localActuals{actuals_};
const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
if (!proc) {
proc = &symbol;
localActuals.at(passIndex).value().set_isPassedObject();
}
CheckConformance();
return context_.MakeFunctionRef(
source_, ProcedureDesignator{*proc}, std::move(localActuals));
}
std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
using semantics::Tristate;
const Expr<SomeType> &lhs{GetExpr(0)};
const Expr<SomeType> &rhs{GetExpr(1)};
std::optional<DynamicType> lhsType{lhs.GetType()};
std::optional<DynamicType> rhsType{rhs.GetType()};
int lhsRank{lhs.Rank()};
int rhsRank{rhs.Rank()};
Tristate isDefined{
semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
if (isDefined == Tristate::No) {
// Make implicit conversion explicit, unless it is an assignment to a whole
// allocatable (the explicit conversion would prevent the propagation of the
// right hand side if it is a variable). Lowering will deal with the
// conversion in this case.
if (lhsType) {
if (rhsType) {
if (!IsAllocatableDesignator(lhs) || context_.inWhereBody()) {
AddAssignmentConversion(*lhsType, *rhsType);
}
} else {
if (lhsType->category() == TypeCategory::Integer ||
lhsType->category() == TypeCategory::Real) {
ConvertBOZ(nullptr, 1, lhsType);
}
if (IsBOZLiteral(1)) {
context_.Say(
"Right-hand side of this assignment may not be BOZ"_err_en_US);
fatalErrors_ = true;
}
}
}
if (!fatalErrors_) {
CheckAssignmentConformance();
}
return std::nullopt; // user-defined assignment not allowed for these args
}
auto restorer{context_.GetContextualMessages().SetLocation(source_)};
if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032
context_.Say(
"Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US,
DEREF(procRef->proc().GetSymbol()).name());
}
context_.CheckCall(source_, procRef->proc(), procRef->arguments());
return std::move(*procRef);
}
if (isDefined == Tristate::Yes) {
if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
!OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
SayNoMatch("ASSIGNMENT(=)", true);
}
} else if (!fatalErrors_) {
CheckAssignmentConformance();
}
return std::nullopt;
}
bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
TypeCategory lhs, TypeCategory rhs) {
if (!context_.context().languageFeatures().IsEnabled(
common::LanguageFeature::LogicalIntegerAssignment)) {
return false;
}
std::optional<parser::MessageFixedText> msg;
if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
// allow assignment to LOGICAL from INTEGER as a legacy extension
msg = "assignment of LOGICAL to INTEGER"_port_en_US;
} else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
// ... and assignment to LOGICAL from INTEGER
msg = "assignment of INTEGER to LOGICAL"_port_en_US;
} else {
return false;
}
context_.Warn(
common::LanguageFeature::LogicalIntegerAssignment, std::move(*msg));
return true;
}
std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
const Symbol *proc{nullptr};
std::optional<int> passedObjectIndex;
std::string oprNameString{"assignment(=)"};
parser::CharBlock oprName{oprNameString};
const auto &scope{context_.context().FindScope(source_)};
// If multiple resolutions were possible, they will have been already
// diagnosed.
{
auto restorer{context_.GetContextualMessages().DiscardMessages()};
if (const Symbol *symbol{scope.FindSymbol(oprName)}) {
ExpressionAnalyzer::AdjustActuals noAdjustment;
proc =
context_.ResolveGeneric(*symbol, actuals_, noAdjustment, true).first;
}
for (std::size_t i{0}; !proc && i < actuals_.size(); ++i) {
const Symbol *generic{nullptr};
if (const Symbol *binding{FindBoundOp(oprName, i, generic, true)}) {
if (CheckAccessibleSymbol(scope, DEREF(generic))) {
// ignore inaccessible type-bound ASSIGNMENT(=) generic
} else if (const Symbol *
resolution{GetBindingResolution(GetType(i), *binding)}) {
proc = resolution;
} else {
proc = binding;
passedObjectIndex = i;
}
}
}
}
if (!proc) {
return std::nullopt;
}
ActualArguments actualsCopy{actuals_};
// Ensure that the RHS argument is not passed as a variable unless
// the dummy argument has the VALUE attribute.
if (evaluate::IsVariable(actualsCopy.at(1).value().UnwrapExpr())) {
auto chars{evaluate::characteristics::Procedure::Characterize(
*proc, context_.GetFoldingContext())};
const auto *rhsDummy{chars && chars->dummyArguments.size() == 2
? std::get_if<evaluate::characteristics::DummyDataObject>(
&chars->dummyArguments.at(1).u)
: nullptr};
if (!rhsDummy ||
!rhsDummy->attrs.test(
evaluate::characteristics::DummyDataObject::Attr::Value)) {
actualsCopy.at(1).value().Parenthesize();
}
}
if (passedObjectIndex) {
actualsCopy[*passedObjectIndex]->set_isPassedObject();
}
return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
}
void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
<< '\n';
for (const auto &actual : actuals_) {
if (!actual.has_value()) {
os << "- error\n";
} else if (const Symbol *symbol{actual->GetAssumedTypeDummy()}) {
os << "- assumed type: " << symbol->name().ToString() << '\n';
} else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
expr->AsFortran(os << "- expr: ") << '\n';
} else {
DIE("bad ActualArgument");
}
}
}
std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
const parser::Expr &expr) {
source_.ExtendToCover(expr.source);
if (const Symbol *assumedTypeDummy{AssumedTypeDummy(expr)}) {
ResetExpr(expr);
if (isProcedureCall_) {
ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}};
SetArgSourceLocation(arg, expr.source);
return std::move(arg);
}
context_.SayAt(expr.source,
"TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
} else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) {
if (isProcedureCall_ || !IsProcedureDesignator(*argExpr)) {
ActualArgument arg{std::move(*argExpr)};
SetArgSourceLocation(arg, expr.source);
return std::move(arg);
}
context_.SayAt(expr.source,
IsFunctionDesignator(*argExpr)
? "Function call must have argument list"_err_en_US
: "Subroutine name is not allowed here"_err_en_US);
}
return std::nullopt;
}
MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray(
const parser::Expr &expr) {
// If an expression's parse tree is a whole assumed-size array:
// Expr -> Designator -> DataRef -> Name
// treat it as a special case for argument passing and bypass
// the C1002/C1014 constraint checking in expression semantics.
if (const auto *name{parser::Unwrap<parser::Name>(expr)}) {
if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) {
auto restorer{context_.AllowWholeAssumedSizeArray()};
return context_.Analyze(expr);
}
}
auto restorer{context_.AllowNullPointer()};
return context_.Analyze(expr);
}
bool ArgumentAnalyzer::AreConformable() const {
CHECK(actuals_.size() == 2);
return actuals_[0] && actuals_[1] &&
evaluate::AreConformable(*actuals_[0], *actuals_[1]);
}
// Look for a type-bound operator in the type of arg number passIndex.
const Symbol *ArgumentAnalyzer::FindBoundOp(parser::CharBlock oprName,
int passIndex, const Symbol *&generic, bool isSubroutine) {
const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
const semantics::Scope *scope{type ? type->scope() : nullptr};
if (scope) {
// Use the original type definition's scope, since PDT
// instantiations don't have redundant copies of bindings or
// generics.
scope = DEREF(scope->derivedTypeSpec()).typeSymbol().scope();
}
generic = scope ? scope->FindComponent(oprName) : nullptr;
if (generic) {
ExpressionAnalyzer::AdjustActuals adjustment{
[&](const Symbol &proc, ActualArguments &) {
return passIndex == GetPassIndex(proc).value_or(-1);
}};
auto pair{
context_.ResolveGeneric(*generic, actuals_, adjustment, isSubroutine)};
if (const Symbol *binding{pair.first}) {
CHECK(binding->has<semantics::ProcBindingDetails>());
// Use the most recent override of the binding, if any
return scope->FindComponent(binding->name());
} else {
context_.EmitGenericResolutionError(*generic, pair.second, isSubroutine);
}
}
return nullptr;
}
// If there is an implicit conversion between intrinsic types, make it explicit
void ArgumentAnalyzer::AddAssignmentConversion(
const DynamicType &lhsType, const DynamicType &rhsType) {
if (lhsType.category() == rhsType.category() &&
(lhsType.category() == TypeCategory::Derived ||
lhsType.kind() == rhsType.kind())) {
// no conversion necessary
} else if (auto rhsExpr{evaluate::Fold(context_.GetFoldingContext(),
evaluate::ConvertToType(lhsType, MoveExpr(1)))}) {
std::optional<parser::CharBlock> source;
if (actuals_[1]) {
source = actuals_[1]->sourceLocation();
}
actuals_[1] = ActualArgument{*rhsExpr};
SetArgSourceLocation(actuals_[1], source);
} else {
actuals_[1] = std::nullopt;
}
}
std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
}
int ArgumentAnalyzer::GetRank(std::size_t i) const {
return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
}
// If the argument at index i is a BOZ literal, convert its type to match the
// otherType. If it's REAL convert to REAL, otherwise convert to INTEGER.
// Note that IBM supports comparing BOZ literals to CHARACTER operands. That
// is not currently supported.
void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> *thisType,
std::size_t i, std::optional<DynamicType> otherType) {
if (IsBOZLiteral(i)) {
Expr<SomeType> &&argExpr{MoveExpr(i)};
auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
if (otherType && otherType->category() == TypeCategory::Real) {
int kind{context_.context().GetDefaultKind(TypeCategory::Real)};
MaybeExpr realExpr{
ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))};
actuals_[i] = std::move(*realExpr);
if (thisType) {
thisType->emplace(TypeCategory::Real, kind);
}
} else {
int kind{context_.context().GetDefaultKind(TypeCategory::Integer)};
MaybeExpr intExpr{
ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))};
actuals_[i] = std::move(*intExpr);
if (thisType) {
thisType->emplace(TypeCategory::Integer, kind);
}
}
}
}
// Report error resolving opr when there is a user-defined one available
void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
std::string type0{TypeAsFortran(0)};
auto rank0{actuals_[0]->Rank()};
if (actuals_.size() == 1) {
if (rank0 > 0) {
context_.Say("No intrinsic or user-defined %s matches "
"rank %d array of %s"_err_en_US,
opr, rank0, type0);
} else {
context_.Say("No intrinsic or user-defined %s matches "
"operand type %s"_err_en_US,
opr, type0);
}
} else {
std::string type1{TypeAsFortran(1)};
auto rank1{actuals_[1]->Rank()};
if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
context_.Say("No intrinsic or user-defined %s matches "
"rank %d array of %s and rank %d array of %s"_err_en_US,
opr, rank0, type0, rank1, type1);
} else if (isAssignment && rank0 != rank1) {
if (rank0 == 0) {
context_.Say("No intrinsic or user-defined %s matches "
"scalar %s and rank %d array of %s"_err_en_US,
opr, type0, rank1, type1);
} else {
context_.Say("No intrinsic or user-defined %s matches "
"rank %d array of %s and scalar %s"_err_en_US,
opr, rank0, type0, type1);
}
} else {
context_.Say("No intrinsic or user-defined %s matches "
"operand types %s and %s"_err_en_US,
opr, type0, type1);
}
}
}
std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
if (i >= actuals_.size() || !actuals_[i]) {
return "missing argument";
} else if (std::optional<DynamicType> type{GetType(i)}) {
return type->IsAssumedType() ? "TYPE(*)"s
: type->IsUnlimitedPolymorphic() ? "CLASS(*)"s
: type->IsPolymorphic() ? type->AsFortran()
: type->category() == TypeCategory::Derived
? "TYPE("s + type->AsFortran() + ')'
: type->category() == TypeCategory::Character
? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
: ToUpperCase(type->AsFortran());
} else {
return "untyped";
}
}
bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() {
for (const auto &actual : actuals_) {
if (!actual ||
(!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) {
return true;
}
}
return false;
}
} // namespace Fortran::evaluate
namespace Fortran::semantics {
evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
SemanticsContext &context, common::TypeCategory category,
const std::optional<parser::KindSelector> &selector) {
evaluate::ExpressionAnalyzer analyzer{context};
CHECK(context.location().has_value());
auto restorer{
analyzer.GetContextualMessages().SetLocation(*context.location())};
return analyzer.AnalyzeKindSelector(category, selector);
}
ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
bool ExprChecker::Pre(const parser::DataStmtObject &obj) {
exprAnalyzer_.set_inDataStmtObject(true);
return true;
}
void ExprChecker::Post(const parser::DataStmtObject &obj) {
exprAnalyzer_.set_inDataStmtObject(false);
}
bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
auto name{bounds.name.thing.thing};
int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
if (dynamicType->category() == TypeCategory::Integer) {
kind = dynamicType->kind();
}
}
exprAnalyzer_.AddImpliedDo(name.source, kind);
parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
exprAnalyzer_.RemoveImpliedDo(name.source);
return false;
}
bool ExprChecker::Walk(const parser::Program &program) {
parser::Walk(program, *this);
return !context_.AnyFatalError();
}
} // namespace Fortran::semantics