//===-- lib/Semantics/resolve-names.cpp -----------------------------------===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "resolve-names.h"
#include "assignment.h"
#include "definable.h"
#include "mod-file.h"
#include "pointer-assignment.h"
#include "program-tree.h"
#include "resolve-directives.h"
#include "resolve-names-utils.h"
#include "rewrite-parse-tree.h"
#include "flang/Common/Fortran.h"
#include "flang/Common/default-kinds.h"
#include "flang/Common/indirection.h"
#include "flang/Common/restorer.h"
#include "flang/Common/visit.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/common.h"
#include "flang/Evaluate/fold-designator.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/intrinsics.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/parse-tree-visitor.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Parser/tools.h"
#include "flang/Semantics/attr.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include "llvm/Support/raw_ostream.h"
#include <list>
#include <map>
#include <set>
#include <stack>
namespace Fortran::semantics {
using namespace parser::literals;
template <typename T> using Indirection = common::Indirection<T>;
using Message = parser::Message;
using Messages = parser::Messages;
using MessageFixedText = parser::MessageFixedText;
using MessageFormattedText = parser::MessageFormattedText;
class ResolveNamesVisitor;
class ScopeHandler;
// ImplicitRules maps initial character of identifier to the DeclTypeSpec
// representing the implicit type; std::nullopt if none.
// It also records the presence of IMPLICIT NONE statements.
// When inheritFromParent is set, defaults come from the parent rules.
class ImplicitRules {
public:
ImplicitRules(SemanticsContext &context, const ImplicitRules *parent)
: parent_{parent}, context_{context},
inheritFromParent_{parent != nullptr} {}
bool isImplicitNoneType() const;
bool isImplicitNoneExternal() const;
void set_isImplicitNoneType(bool x) { isImplicitNoneType_ = x; }
void set_isImplicitNoneExternal(bool x) { isImplicitNoneExternal_ = x; }
void set_inheritFromParent(bool x) { inheritFromParent_ = x; }
// Get the implicit type for this name. May be null.
const DeclTypeSpec *GetType(
SourceName, bool respectImplicitNone = true) const;
// Record the implicit type for the range of characters [fromLetter,
// toLetter].
void SetTypeMapping(const DeclTypeSpec &type, parser::Location fromLetter,
parser::Location toLetter);
private:
static char Incr(char ch);
const ImplicitRules *parent_;
SemanticsContext &context_;
bool inheritFromParent_{false}; // look in parent if not specified here
bool isImplicitNoneType_{
context_.IsEnabled(common::LanguageFeature::ImplicitNoneTypeAlways)};
bool isImplicitNoneExternal_{false};
// map_ contains the mapping between letters and types that were defined
// by the IMPLICIT statements of the related scope. It does not contain
// the default Fortran mappings nor the mapping defined in parents.
std::map<char, common::Reference<const DeclTypeSpec>> map_;
friend llvm::raw_ostream &operator<<(
llvm::raw_ostream &, const ImplicitRules &);
friend void ShowImplicitRule(
llvm::raw_ostream &, const ImplicitRules &, char);
};
// scope -> implicit rules for that scope
using ImplicitRulesMap = std::map<const Scope *, ImplicitRules>;
// Track statement source locations and save messages.
class MessageHandler {
public:
MessageHandler() { DIE("MessageHandler: default-constructed"); }
explicit MessageHandler(SemanticsContext &c) : context_{&c} {}
Messages &messages() { return context_->messages(); };
const std::optional<SourceName> &currStmtSource() {
return context_->location();
}
void set_currStmtSource(const std::optional<SourceName> &source) {
context_->set_location(source);
}
// Emit a message associated with the current statement source.
Message &Say(MessageFixedText &&);
Message &Say(MessageFormattedText &&);
// Emit a message about a SourceName
Message &Say(const SourceName &, MessageFixedText &&);
// Emit a formatted message associated with a source location.
template <typename... A>
Message &Say(const SourceName &source, MessageFixedText &&msg, A &&...args) {
return context_->Say(source, std::move(msg), std::forward<A>(args)...);
}
private:
SemanticsContext *context_;
};
// Inheritance graph for the parse tree visitation classes that follow:
// BaseVisitor
// + AttrsVisitor
// | + DeclTypeSpecVisitor
// | + ImplicitRulesVisitor
// | + ScopeHandler ------------------+
// | + ModuleVisitor -------------+ |
// | + GenericHandler -------+ | |
// | | + InterfaceVisitor | | |
// | +-+ SubprogramVisitor ==|==+ | |
// + ArraySpecVisitor | | | |
// + DeclarationVisitor <--------+ | | |
// + ConstructVisitor | | |
// + ResolveNamesVisitor <------+-+-+
class BaseVisitor {
public:
BaseVisitor() { DIE("BaseVisitor: default-constructed"); }
BaseVisitor(
SemanticsContext &c, ResolveNamesVisitor &v, ImplicitRulesMap &rules)
: implicitRulesMap_{&rules}, this_{&v}, context_{&c}, messageHandler_{c} {
}
template <typename T> void Walk(const T &);
MessageHandler &messageHandler() { return messageHandler_; }
const std::optional<SourceName> &currStmtSource() {
return context_->location();
}
SemanticsContext &context() const { return *context_; }
evaluate::FoldingContext &GetFoldingContext() const {
return context_->foldingContext();
}
bool IsIntrinsic(
const SourceName &name, std::optional<Symbol::Flag> flag) const {
if (!flag) {
return context_->intrinsics().IsIntrinsic(name.ToString());
} else if (flag == Symbol::Flag::Function) {
return context_->intrinsics().IsIntrinsicFunction(name.ToString());
} else if (flag == Symbol::Flag::Subroutine) {
return context_->intrinsics().IsIntrinsicSubroutine(name.ToString());
} else {
DIE("expected Subroutine or Function flag");
}
}
bool InModuleFile() const {
return GetFoldingContext().moduleFileName().has_value();
}
// Make a placeholder symbol for a Name that otherwise wouldn't have one.
// It is not in any scope and always has MiscDetails.
void MakePlaceholder(const parser::Name &, MiscDetails::Kind);
template <typename T> common::IfNoLvalue<T, T> FoldExpr(T &&expr) {
return evaluate::Fold(GetFoldingContext(), std::move(expr));
}
template <typename T> MaybeExpr EvaluateExpr(const T &expr) {
return FoldExpr(AnalyzeExpr(*context_, expr));
}
template <typename T>
MaybeExpr EvaluateNonPointerInitializer(
const Symbol &symbol, const T &expr, parser::CharBlock source) {
if (!context().HasError(symbol)) {
if (auto maybeExpr{AnalyzeExpr(*context_, expr)}) {
auto restorer{GetFoldingContext().messages().SetLocation(source)};
return evaluate::NonPointerInitializationExpr(
symbol, std::move(*maybeExpr), GetFoldingContext());
}
}
return std::nullopt;
}
template <typename T> MaybeIntExpr EvaluateIntExpr(const T &expr) {
return semantics::EvaluateIntExpr(*context_, expr);
}
template <typename T>
MaybeSubscriptIntExpr EvaluateSubscriptIntExpr(const T &expr) {
if (MaybeIntExpr maybeIntExpr{EvaluateIntExpr(expr)}) {
return FoldExpr(evaluate::ConvertToType<evaluate::SubscriptInteger>(
std::move(*maybeIntExpr)));
} else {
return std::nullopt;
}
}
template <typename... A> Message &Say(A &&...args) {
return messageHandler_.Say(std::forward<A>(args)...);
}
template <typename... A>
Message &Say(
const parser::Name &name, MessageFixedText &&text, const A &...args) {
return messageHandler_.Say(name.source, std::move(text), args...);
}
protected:
ImplicitRulesMap *implicitRulesMap_{nullptr};
private:
ResolveNamesVisitor *this_;
SemanticsContext *context_;
MessageHandler messageHandler_;
};
// Provide Post methods to collect attributes into a member variable.
class AttrsVisitor : public virtual BaseVisitor {
public:
bool BeginAttrs(); // always returns true
Attrs GetAttrs();
std::optional<common::CUDADataAttr> cudaDataAttr() { return cudaDataAttr_; }
Attrs EndAttrs();
bool SetPassNameOn(Symbol &);
void SetBindNameOn(Symbol &);
void Post(const parser::LanguageBindingSpec &);
bool Pre(const parser::IntentSpec &);
bool Pre(const parser::Pass &);
bool CheckAndSet(Attr);
// Simple case: encountering CLASSNAME causes ATTRNAME to be set.
#define HANDLE_ATTR_CLASS(CLASSNAME, ATTRNAME) \
bool Pre(const parser::CLASSNAME &) { \
CheckAndSet(Attr::ATTRNAME); \
return false; \
}
HANDLE_ATTR_CLASS(PrefixSpec::Elemental, ELEMENTAL)
HANDLE_ATTR_CLASS(PrefixSpec::Impure, IMPURE)
HANDLE_ATTR_CLASS(PrefixSpec::Module, MODULE)
HANDLE_ATTR_CLASS(PrefixSpec::Non_Recursive, NON_RECURSIVE)
HANDLE_ATTR_CLASS(PrefixSpec::Pure, PURE)
HANDLE_ATTR_CLASS(PrefixSpec::Recursive, RECURSIVE)
HANDLE_ATTR_CLASS(TypeAttrSpec::BindC, BIND_C)
HANDLE_ATTR_CLASS(BindAttr::Deferred, DEFERRED)
HANDLE_ATTR_CLASS(BindAttr::Non_Overridable, NON_OVERRIDABLE)
HANDLE_ATTR_CLASS(Abstract, ABSTRACT)
HANDLE_ATTR_CLASS(Allocatable, ALLOCATABLE)
HANDLE_ATTR_CLASS(Asynchronous, ASYNCHRONOUS)
HANDLE_ATTR_CLASS(Contiguous, CONTIGUOUS)
HANDLE_ATTR_CLASS(External, EXTERNAL)
HANDLE_ATTR_CLASS(Intrinsic, INTRINSIC)
HANDLE_ATTR_CLASS(NoPass, NOPASS)
HANDLE_ATTR_CLASS(Optional, OPTIONAL)
HANDLE_ATTR_CLASS(Parameter, PARAMETER)
HANDLE_ATTR_CLASS(Pointer, POINTER)
HANDLE_ATTR_CLASS(Protected, PROTECTED)
HANDLE_ATTR_CLASS(Save, SAVE)
HANDLE_ATTR_CLASS(Target, TARGET)
HANDLE_ATTR_CLASS(Value, VALUE)
HANDLE_ATTR_CLASS(Volatile, VOLATILE)
#undef HANDLE_ATTR_CLASS
bool Pre(const common::CUDADataAttr);
protected:
std::optional<Attrs> attrs_;
std::optional<common::CUDADataAttr> cudaDataAttr_;
Attr AccessSpecToAttr(const parser::AccessSpec &x) {
switch (x.v) {
case parser::AccessSpec::Kind::Public:
return Attr::PUBLIC;
case parser::AccessSpec::Kind::Private:
return Attr::PRIVATE;
}
llvm_unreachable("Switch covers all cases"); // suppress g++ warning
}
Attr IntentSpecToAttr(const parser::IntentSpec &x) {
switch (x.v) {
case parser::IntentSpec::Intent::In:
return Attr::INTENT_IN;
case parser::IntentSpec::Intent::Out:
return Attr::INTENT_OUT;
case parser::IntentSpec::Intent::InOut:
return Attr::INTENT_INOUT;
}
llvm_unreachable("Switch covers all cases"); // suppress g++ warning
}
private:
bool IsDuplicateAttr(Attr);
bool HaveAttrConflict(Attr, Attr, Attr);
bool IsConflictingAttr(Attr);
MaybeExpr bindName_; // from BIND(C, NAME="...")
bool isCDefined_{false}; // BIND(C, NAME="...", CDEFINED) extension
std::optional<SourceName> passName_; // from PASS(...)
};
// Find and create types from declaration-type-spec nodes.
class DeclTypeSpecVisitor : public AttrsVisitor {
public:
using AttrsVisitor::Post;
using AttrsVisitor::Pre;
void Post(const parser::IntrinsicTypeSpec::DoublePrecision &);
void Post(const parser::IntrinsicTypeSpec::DoubleComplex &);
void Post(const parser::DeclarationTypeSpec::ClassStar &);
void Post(const parser::DeclarationTypeSpec::TypeStar &);
bool Pre(const parser::TypeGuardStmt &);
void Post(const parser::TypeGuardStmt &);
void Post(const parser::TypeSpec &);
// Walk the parse tree of a type spec and return the DeclTypeSpec for it.
template <typename T>
const DeclTypeSpec *ProcessTypeSpec(const T &x, bool allowForward = false) {
auto restorer{common::ScopedSet(state_, State{})};
set_allowForwardReferenceToDerivedType(allowForward);
BeginDeclTypeSpec();
Walk(x);
const auto *type{GetDeclTypeSpec()};
EndDeclTypeSpec();
return type;
}
protected:
struct State {
bool expectDeclTypeSpec{false}; // should see decl-type-spec only when true
const DeclTypeSpec *declTypeSpec{nullptr};
struct {
DerivedTypeSpec *type{nullptr};
DeclTypeSpec::Category category{DeclTypeSpec::TypeDerived};
} derived;
bool allowForwardReferenceToDerivedType{false};
};
bool allowForwardReferenceToDerivedType() const {
return state_.allowForwardReferenceToDerivedType;
}
void set_allowForwardReferenceToDerivedType(bool yes) {
state_.allowForwardReferenceToDerivedType = yes;
}
const DeclTypeSpec *GetDeclTypeSpec();
void BeginDeclTypeSpec();
void EndDeclTypeSpec();
void SetDeclTypeSpec(const DeclTypeSpec &);
void SetDeclTypeSpecCategory(DeclTypeSpec::Category);
DeclTypeSpec::Category GetDeclTypeSpecCategory() const {
return state_.derived.category;
}
KindExpr GetKindParamExpr(
TypeCategory, const std::optional<parser::KindSelector> &);
void CheckForAbstractType(const Symbol &typeSymbol);
private:
State state_;
void MakeNumericType(TypeCategory, int kind);
};
// Visit ImplicitStmt and related parse tree nodes and updates implicit rules.
class ImplicitRulesVisitor : public DeclTypeSpecVisitor {
public:
using DeclTypeSpecVisitor::Post;
using DeclTypeSpecVisitor::Pre;
using ImplicitNoneNameSpec = parser::ImplicitStmt::ImplicitNoneNameSpec;
void Post(const parser::ParameterStmt &);
bool Pre(const parser::ImplicitStmt &);
bool Pre(const parser::LetterSpec &);
bool Pre(const parser::ImplicitSpec &);
void Post(const parser::ImplicitSpec &);
const DeclTypeSpec *GetType(
SourceName name, bool respectImplicitNoneType = true) {
return implicitRules_->GetType(name, respectImplicitNoneType);
}
bool isImplicitNoneType() const {
return implicitRules_->isImplicitNoneType();
}
bool isImplicitNoneType(const Scope &scope) const {
return implicitRulesMap_->at(&scope).isImplicitNoneType();
}
bool isImplicitNoneExternal() const {
return implicitRules_->isImplicitNoneExternal();
}
void set_inheritFromParent(bool x) {
implicitRules_->set_inheritFromParent(x);
}
protected:
void BeginScope(const Scope &);
void SetScope(const Scope &);
private:
// implicit rules in effect for current scope
ImplicitRules *implicitRules_{nullptr};
std::optional<SourceName> prevImplicit_;
std::optional<SourceName> prevImplicitNone_;
std::optional<SourceName> prevImplicitNoneType_;
std::optional<SourceName> prevParameterStmt_;
bool HandleImplicitNone(const std::list<ImplicitNoneNameSpec> &nameSpecs);
};
// Track array specifications. They can occur in AttrSpec, EntityDecl,
// ObjectDecl, DimensionStmt, CommonBlockObject, BasedPointer, and
// ComponentDecl.
// 1. INTEGER, DIMENSION(10) :: x
// 2. INTEGER :: x(10)
// 3. ALLOCATABLE :: x(:)
// 4. DIMENSION :: x(10)
// 5. COMMON x(10)
// 6. POINTER(p,x(10))
class ArraySpecVisitor : public virtual BaseVisitor {
public:
void Post(const parser::ArraySpec &);
void Post(const parser::ComponentArraySpec &);
void Post(const parser::CoarraySpec &);
void Post(const parser::AttrSpec &) { PostAttrSpec(); }
void Post(const parser::ComponentAttrSpec &) { PostAttrSpec(); }
protected:
const ArraySpec &arraySpec();
void set_arraySpec(const ArraySpec arraySpec) { arraySpec_ = arraySpec; }
const ArraySpec &coarraySpec();
void BeginArraySpec();
void EndArraySpec();
void ClearArraySpec() { arraySpec_.clear(); }
void ClearCoarraySpec() { coarraySpec_.clear(); }
private:
// arraySpec_/coarraySpec_ are populated from any ArraySpec/CoarraySpec
ArraySpec arraySpec_;
ArraySpec coarraySpec_;
// When an ArraySpec is under an AttrSpec or ComponentAttrSpec, it is moved
// into attrArraySpec_
ArraySpec attrArraySpec_;
ArraySpec attrCoarraySpec_;
void PostAttrSpec();
};
// Manages a stack of function result information. We defer the processing
// of a type specification that appears in the prefix of a FUNCTION statement
// until the function result variable appears in the specification part
// or the end of the specification part. This allows for forward references
// in the type specification to resolve to local names.
class FuncResultStack {
public:
explicit FuncResultStack(ScopeHandler &scopeHandler)
: scopeHandler_{scopeHandler} {}
~FuncResultStack();
struct FuncInfo {
FuncInfo(const Scope &s, SourceName at) : scope{s}, source{at} {}
const Scope &scope;
SourceName source;
// Parse tree of the type specification in the FUNCTION prefix
const parser::DeclarationTypeSpec *parsedType{nullptr};
// Name of the function RESULT in the FUNCTION suffix, if any
const parser::Name *resultName{nullptr};
// Result symbol
Symbol *resultSymbol{nullptr};
bool inFunctionStmt{false}; // true between Pre/Post of FunctionStmt
};
// Completes the definition of the top function's result.
void CompleteFunctionResultType();
// Completes the definition of a symbol if it is the top function's result.
void CompleteTypeIfFunctionResult(Symbol &);
FuncInfo *Top() { return stack_.empty() ? nullptr : &stack_.back(); }
FuncInfo &Push(const Scope &scope, SourceName at) {
return stack_.emplace_back(scope, at);
}
void Pop();
private:
ScopeHandler &scopeHandler_;
std::vector<FuncInfo> stack_;
};
// Manage a stack of Scopes
class ScopeHandler : public ImplicitRulesVisitor {
public:
using ImplicitRulesVisitor::Post;
using ImplicitRulesVisitor::Pre;
Scope &currScope() { return DEREF(currScope_); }
// The enclosing host procedure if current scope is in an internal procedure
Scope *GetHostProcedure();
// The innermost enclosing program unit scope, ignoring BLOCK and other
// construct scopes.
Scope &InclusiveScope();
// The enclosing scope, skipping derived types.
Scope &NonDerivedTypeScope();
// Create a new scope and push it on the scope stack.
void PushScope(Scope::Kind kind, Symbol *symbol);
void PushScope(Scope &scope);
void PopScope();
void SetScope(Scope &);
template <typename T> bool Pre(const parser::Statement<T> &x) {
messageHandler().set_currStmtSource(x.source);
currScope_->AddSourceRange(x.source);
return true;
}
template <typename T> void Post(const parser::Statement<T> &) {
messageHandler().set_currStmtSource(std::nullopt);
}
// Special messages: already declared; referencing symbol's declaration;
// about a type; two names & locations
void SayAlreadyDeclared(const parser::Name &, Symbol &);
void SayAlreadyDeclared(const SourceName &, Symbol &);
void SayAlreadyDeclared(const SourceName &, const SourceName &);
void SayWithReason(
const parser::Name &, Symbol &, MessageFixedText &&, Message &&);
template <typename... A>
Message &SayWithDecl(
const parser::Name &, Symbol &, MessageFixedText &&, A &&...args);
void SayLocalMustBeVariable(const parser::Name &, Symbol &);
Message &SayDerivedType(
const SourceName &, MessageFixedText &&, const Scope &);
Message &Say2(const SourceName &, MessageFixedText &&, const SourceName &,
MessageFixedText &&);
Message &Say2(
const SourceName &, MessageFixedText &&, Symbol &, MessageFixedText &&);
Message &Say2(
const parser::Name &, MessageFixedText &&, Symbol &, MessageFixedText &&);
// Search for symbol by name in current, parent derived type, and
// containing scopes
Symbol *FindSymbol(const parser::Name &);
Symbol *FindSymbol(const Scope &, const parser::Name &);
// Search for name only in scope, not in enclosing scopes.
Symbol *FindInScope(const Scope &, const parser::Name &);
Symbol *FindInScope(const Scope &, const SourceName &);
template <typename T> Symbol *FindInScope(const T &name) {
return FindInScope(currScope(), name);
}
// Search for name in a derived type scope and its parents.
Symbol *FindInTypeOrParents(const Scope &, const parser::Name &);
Symbol *FindInTypeOrParents(const parser::Name &);
Symbol *FindInScopeOrBlockConstructs(const Scope &, SourceName);
Symbol *FindSeparateModuleProcedureInterface(const parser::Name &);
void EraseSymbol(const parser::Name &);
void EraseSymbol(const Symbol &symbol) { currScope().erase(symbol.name()); }
// Make a new symbol with the name and attrs of an existing one
Symbol &CopySymbol(const SourceName &, const Symbol &);
// Make symbols in the current or named scope
Symbol &MakeSymbol(Scope &, const SourceName &, Attrs);
Symbol &MakeSymbol(const SourceName &, Attrs = Attrs{});
Symbol &MakeSymbol(const parser::Name &, Attrs = Attrs{});
Symbol &MakeHostAssocSymbol(const parser::Name &, const Symbol &);
template <typename D>
common::IfNoLvalue<Symbol &, D> MakeSymbol(
const parser::Name &name, D &&details) {
return MakeSymbol(name, Attrs{}, std::move(details));
}
template <typename D>
common::IfNoLvalue<Symbol &, D> MakeSymbol(
const parser::Name &name, const Attrs &attrs, D &&details) {
return Resolve(name, MakeSymbol(name.source, attrs, std::move(details)));
}
template <typename D>
common::IfNoLvalue<Symbol &, D> MakeSymbol(
const SourceName &name, const Attrs &attrs, D &&details) {
// Note: don't use FindSymbol here. If this is a derived type scope,
// we want to detect whether the name is already declared as a component.
auto *symbol{FindInScope(name)};
if (!symbol) {
symbol = &MakeSymbol(name, attrs);
symbol->set_details(std::move(details));
return *symbol;
}
if constexpr (std::is_same_v<DerivedTypeDetails, D>) {
if (auto *d{symbol->detailsIf<GenericDetails>()}) {
if (!d->specific()) {
// derived type with same name as a generic
auto *derivedType{d->derivedType()};
if (!derivedType) {
derivedType =
&currScope().MakeSymbol(name, attrs, std::move(details));
d->set_derivedType(*derivedType);
} else if (derivedType->CanReplaceDetails(details)) {
// was forward-referenced
CheckDuplicatedAttrs(name, *symbol, attrs);
SetExplicitAttrs(*derivedType, attrs);
derivedType->set_details(std::move(details));
} else {
SayAlreadyDeclared(name, *derivedType);
}
return *derivedType;
}
}
} else if constexpr (std::is_same_v<ProcEntityDetails, D>) {
if (auto *d{symbol->detailsIf<GenericDetails>()}) {
if (!d->derivedType()) {
// procedure pointer with same name as a generic
auto *specific{d->specific()};
if (!specific) {
specific = &currScope().MakeSymbol(name, attrs, std::move(details));
d->set_specific(*specific);
} else {
SayAlreadyDeclared(name, *specific);
}
return *specific;
}
}
}
if (symbol->CanReplaceDetails(details)) {
// update the existing symbol
CheckDuplicatedAttrs(name, *symbol, attrs);
SetExplicitAttrs(*symbol, attrs);
if constexpr (std::is_same_v<SubprogramDetails, D>) {
// Dummy argument defined by explicit interface?
details.set_isDummy(IsDummy(*symbol));
}
symbol->set_details(std::move(details));
return *symbol;
} else if constexpr (std::is_same_v<UnknownDetails, D>) {
CheckDuplicatedAttrs(name, *symbol, attrs);
SetExplicitAttrs(*symbol, attrs);
return *symbol;
} else {
if (!CheckPossibleBadForwardRef(*symbol)) {
if (name.empty() && symbol->name().empty()) {
// report the error elsewhere
return *symbol;
}
Symbol &errSym{*symbol};
if (auto *d{symbol->detailsIf<GenericDetails>()}) {
if (d->specific()) {
errSym = *d->specific();
} else if (d->derivedType()) {
errSym = *d->derivedType();
}
}
SayAlreadyDeclared(name, errSym);
}
// replace the old symbol with a new one with correct details
EraseSymbol(*symbol);
auto &result{MakeSymbol(name, attrs, std::move(details))};
context().SetError(result);
return result;
}
}
void MakeExternal(Symbol &);
// C815 duplicated attribute checking; returns false on error
bool CheckDuplicatedAttr(SourceName, Symbol &, Attr);
bool CheckDuplicatedAttrs(SourceName, Symbol &, Attrs);
void SetExplicitAttr(Symbol &symbol, Attr attr) const {
symbol.attrs().set(attr);
symbol.implicitAttrs().reset(attr);
}
void SetExplicitAttrs(Symbol &symbol, Attrs attrs) const {
symbol.attrs() |= attrs;
symbol.implicitAttrs() &= ~attrs;
}
void SetImplicitAttr(Symbol &symbol, Attr attr) const {
symbol.attrs().set(attr);
symbol.implicitAttrs().set(attr);
}
void SetCUDADataAttr(
SourceName, Symbol &, std::optional<common::CUDADataAttr>);
protected:
FuncResultStack &funcResultStack() { return funcResultStack_; }
// Apply the implicit type rules to this symbol.
void ApplyImplicitRules(Symbol &, bool allowForwardReference = false);
bool ImplicitlyTypeForwardRef(Symbol &);
void AcquireIntrinsicProcedureFlags(Symbol &);
const DeclTypeSpec *GetImplicitType(
Symbol &, bool respectImplicitNoneType = true);
void CheckEntryDummyUse(SourceName, Symbol *);
bool ConvertToObjectEntity(Symbol &);
bool ConvertToProcEntity(Symbol &, std::optional<SourceName> = std::nullopt);
const DeclTypeSpec &MakeNumericType(
TypeCategory, const std::optional<parser::KindSelector> &);
const DeclTypeSpec &MakeNumericType(TypeCategory, int);
const DeclTypeSpec &MakeLogicalType(
const std::optional<parser::KindSelector> &);
const DeclTypeSpec &MakeLogicalType(int);
void NotePossibleBadForwardRef(const parser::Name &);
std::optional<SourceName> HadForwardRef(const Symbol &) const;
bool CheckPossibleBadForwardRef(const Symbol &);
bool inSpecificationPart_{false};
bool deferImplicitTyping_{false};
bool inEquivalenceStmt_{false};
// Some information is collected from a specification part for deferred
// processing in DeclarationPartVisitor functions (e.g., CheckSaveStmts())
// that are called by ResolveNamesVisitor::FinishSpecificationPart(). Since
// specification parts can nest (e.g., INTERFACE bodies), the collected
// information that is not contained in the scope needs to be packaged
// and restorable.
struct SpecificationPartState {
std::set<SourceName> forwardRefs;
// Collect equivalence sets and process at end of specification part
std::vector<const std::list<parser::EquivalenceObject> *> equivalenceSets;
// Names of all common block objects in the scope
std::set<SourceName> commonBlockObjects;
// Info about SAVE statements and attributes in current scope
struct {
std::optional<SourceName> saveAll; // "SAVE" without entity list
std::set<SourceName> entities; // names of entities with save attr
std::set<SourceName> commons; // names of common blocks with save attr
} saveInfo;
} specPartState_;
// Some declaration processing can and should be deferred to
// ResolveExecutionParts() to avoid prematurely creating implicitly-typed
// local symbols that should be host associations.
struct DeferredDeclarationState {
// The content of each namelist group
std::list<const parser::NamelistStmt::Group *> namelistGroups;
};
DeferredDeclarationState *GetDeferredDeclarationState(bool add = false) {
if (!add && deferred_.find(&currScope()) == deferred_.end()) {
return nullptr;
} else {
return &deferred_.emplace(&currScope(), DeferredDeclarationState{})
.first->second;
}
}
private:
Scope *currScope_{nullptr};
FuncResultStack funcResultStack_{*this};
std::map<Scope *, DeferredDeclarationState> deferred_;
};
class ModuleVisitor : public virtual ScopeHandler {
public:
bool Pre(const parser::AccessStmt &);
bool Pre(const parser::Only &);
bool Pre(const parser::Rename::Names &);
bool Pre(const parser::Rename::Operators &);
bool Pre(const parser::UseStmt &);
void Post(const parser::UseStmt &);
void BeginModule(const parser::Name &, bool isSubmodule);
bool BeginSubmodule(const parser::Name &, const parser::ParentIdentifier &);
void ApplyDefaultAccess();
Symbol &AddGenericUse(GenericDetails &, const SourceName &, const Symbol &);
void AddAndCheckModuleUse(SourceName, bool isIntrinsic);
void CollectUseRenames(const parser::UseStmt &);
void ClearUseRenames() { useRenames_.clear(); }
void ClearUseOnly() { useOnly_.clear(); }
void ClearModuleUses() {
intrinsicUses_.clear();
nonIntrinsicUses_.clear();
}
private:
// The location of the last AccessStmt without access-ids, if any.
std::optional<SourceName> prevAccessStmt_;
// The scope of the module during a UseStmt
Scope *useModuleScope_{nullptr};
// Names that have appeared in a rename clause of USE statements
std::set<std::pair<SourceName, SourceName>> useRenames_;
// Names that have appeared in an ONLY clause of a USE statement
std::set<std::pair<SourceName, Scope *>> useOnly_;
// Intrinsic and non-intrinsic (explicit or not) module names that
// have appeared in USE statements; used for C1406 warnings.
std::set<SourceName> intrinsicUses_;
std::set<SourceName> nonIntrinsicUses_;
Symbol &SetAccess(const SourceName &, Attr attr, Symbol * = nullptr);
// A rename in a USE statement: local => use
struct SymbolRename {
Symbol *local{nullptr};
Symbol *use{nullptr};
};
// Record a use from useModuleScope_ of use Name/Symbol as local Name/Symbol
SymbolRename AddUse(const SourceName &localName, const SourceName &useName);
SymbolRename AddUse(const SourceName &, const SourceName &, Symbol *);
void DoAddUse(
SourceName, SourceName, Symbol &localSymbol, const Symbol &useSymbol);
void AddUse(const GenericSpecInfo &);
// Record a name appearing as the target of a USE rename clause
void AddUseRename(SourceName name, SourceName moduleName) {
useRenames_.emplace(std::make_pair(name, moduleName));
}
bool IsUseRenamed(const SourceName &name) const {
return useModuleScope_ && useModuleScope_->symbol() &&
useRenames_.find({name, useModuleScope_->symbol()->name()}) !=
useRenames_.end();
}
// Record a name appearing in a USE ONLY clause
void AddUseOnly(const SourceName &name) {
useOnly_.emplace(std::make_pair(name, useModuleScope_));
}
bool IsUseOnly(const SourceName &name) const {
return useOnly_.find({name, useModuleScope_}) != useOnly_.end();
}
Scope *FindModule(const parser::Name &, std::optional<bool> isIntrinsic,
Scope *ancestor = nullptr);
};
class GenericHandler : public virtual ScopeHandler {
protected:
using ProcedureKind = parser::ProcedureStmt::Kind;
void ResolveSpecificsInGeneric(Symbol &, bool isEndOfSpecificationPart);
void DeclaredPossibleSpecificProc(Symbol &);
// Mappings of generics to their as-yet specific proc names and kinds
using SpecificProcMapType =
std::multimap<Symbol *, std::pair<const parser::Name *, ProcedureKind>>;
SpecificProcMapType specificsForGenericProcs_;
// inversion of SpecificProcMapType: maps pending proc names to generics
using GenericProcMapType = std::multimap<SourceName, Symbol *>;
GenericProcMapType genericsForSpecificProcs_;
};
class InterfaceVisitor : public virtual ScopeHandler,
public virtual GenericHandler {
public:
bool Pre(const parser::InterfaceStmt &);
void Post(const parser::InterfaceStmt &);
void Post(const parser::EndInterfaceStmt &);
bool Pre(const parser::GenericSpec &);
bool Pre(const parser::ProcedureStmt &);
bool Pre(const parser::GenericStmt &);
void Post(const parser::GenericStmt &);
bool inInterfaceBlock() const;
bool isGeneric() const;
bool isAbstract() const;
protected:
Symbol &GetGenericSymbol() { return DEREF(genericInfo_.top().symbol); }
// Add to generic the symbol for the subprogram with the same name
void CheckGenericProcedures(Symbol &);
private:
// A new GenericInfo is pushed for each interface block and generic stmt
struct GenericInfo {
GenericInfo(bool isInterface, bool isAbstract = false)
: isInterface{isInterface}, isAbstract{isAbstract} {}
bool isInterface; // in interface block
bool isAbstract; // in abstract interface block
Symbol *symbol{nullptr}; // the generic symbol being defined
};
std::stack<GenericInfo> genericInfo_;
const GenericInfo &GetGenericInfo() const { return genericInfo_.top(); }
void SetGenericSymbol(Symbol &symbol) { genericInfo_.top().symbol = &symbol; }
void AddSpecificProcs(const std::list<parser::Name> &, ProcedureKind);
void ResolveNewSpecifics();
};
class SubprogramVisitor : public virtual ScopeHandler, public InterfaceVisitor {
public:
bool HandleStmtFunction(const parser::StmtFunctionStmt &);
bool Pre(const parser::SubroutineStmt &);
bool Pre(const parser::FunctionStmt &);
void Post(const parser::FunctionStmt &);
bool Pre(const parser::EntryStmt &);
void Post(const parser::EntryStmt &);
bool Pre(const parser::InterfaceBody::Subroutine &);
void Post(const parser::InterfaceBody::Subroutine &);
bool Pre(const parser::InterfaceBody::Function &);
void Post(const parser::InterfaceBody::Function &);
bool Pre(const parser::Suffix &);
bool Pre(const parser::PrefixSpec &);
bool Pre(const parser::PrefixSpec::Attributes &);
void Post(const parser::PrefixSpec::Launch_Bounds &);
void Post(const parser::PrefixSpec::Cluster_Dims &);
bool BeginSubprogram(const parser::Name &, Symbol::Flag,
bool hasModulePrefix = false,
const parser::LanguageBindingSpec * = nullptr,
const ProgramTree::EntryStmtList * = nullptr);
bool BeginMpSubprogram(const parser::Name &);
void PushBlockDataScope(const parser::Name &);
void EndSubprogram(std::optional<parser::CharBlock> stmtSource = std::nullopt,
const std::optional<parser::LanguageBindingSpec> * = nullptr,
const ProgramTree::EntryStmtList * = nullptr);
protected:
// Set when we see a stmt function that is really an array element assignment
bool misparsedStmtFuncFound_{false};
private:
// Edits an existing symbol created for earlier calls to a subprogram or ENTRY
// so that it can be replaced by a later definition.
bool HandlePreviousCalls(const parser::Name &, Symbol &, Symbol::Flag);
void CheckExtantProc(const parser::Name &, Symbol::Flag);
// Create a subprogram symbol in the current scope and push a new scope.
Symbol &PushSubprogramScope(const parser::Name &, Symbol::Flag,
const parser::LanguageBindingSpec * = nullptr,
bool hasModulePrefix = false);
Symbol *GetSpecificFromGeneric(const parser::Name &);
Symbol &PostSubprogramStmt();
void CreateDummyArgument(SubprogramDetails &, const parser::Name &);
void CreateEntry(const parser::EntryStmt &stmt, Symbol &subprogram);
void PostEntryStmt(const parser::EntryStmt &stmt);
void HandleLanguageBinding(Symbol *,
std::optional<parser::CharBlock> stmtSource,
const std::optional<parser::LanguageBindingSpec> *);
};
class DeclarationVisitor : public ArraySpecVisitor,
public virtual GenericHandler {
public:
using ArraySpecVisitor::Post;
using ScopeHandler::Post;
using ScopeHandler::Pre;
bool Pre(const parser::Initialization &);
void Post(const parser::EntityDecl &);
void Post(const parser::ObjectDecl &);
void Post(const parser::PointerDecl &);
bool Pre(const parser::BindStmt &) { return BeginAttrs(); }
void Post(const parser::BindStmt &) { EndAttrs(); }
bool Pre(const parser::BindEntity &);
bool Pre(const parser::OldParameterStmt &);
bool Pre(const parser::NamedConstantDef &);
bool Pre(const parser::NamedConstant &);
void Post(const parser::EnumDef &);
bool Pre(const parser::Enumerator &);
bool Pre(const parser::AccessSpec &);
bool Pre(const parser::AsynchronousStmt &);
bool Pre(const parser::ContiguousStmt &);
bool Pre(const parser::ExternalStmt &);
bool Pre(const parser::IntentStmt &);
bool Pre(const parser::IntrinsicStmt &);
bool Pre(const parser::OptionalStmt &);
bool Pre(const parser::ProtectedStmt &);
bool Pre(const parser::ValueStmt &);
bool Pre(const parser::VolatileStmt &);
bool Pre(const parser::AllocatableStmt &) {
objectDeclAttr_ = Attr::ALLOCATABLE;
return true;
}
void Post(const parser::AllocatableStmt &) { objectDeclAttr_ = std::nullopt; }
bool Pre(const parser::TargetStmt &) {
objectDeclAttr_ = Attr::TARGET;
return true;
}
bool Pre(const parser::CUDAAttributesStmt &);
void Post(const parser::TargetStmt &) { objectDeclAttr_ = std::nullopt; }
void Post(const parser::DimensionStmt::Declaration &);
void Post(const parser::CodimensionDecl &);
bool Pre(const parser::TypeDeclarationStmt &);
void Post(const parser::TypeDeclarationStmt &);
void Post(const parser::IntegerTypeSpec &);
void Post(const parser::IntrinsicTypeSpec::Real &);
void Post(const parser::IntrinsicTypeSpec::Complex &);
void Post(const parser::IntrinsicTypeSpec::Logical &);
void Post(const parser::IntrinsicTypeSpec::Character &);
void Post(const parser::CharSelector::LengthAndKind &);
void Post(const parser::CharLength &);
void Post(const parser::LengthSelector &);
bool Pre(const parser::KindParam &);
bool Pre(const parser::VectorTypeSpec &);
void Post(const parser::VectorTypeSpec &);
bool Pre(const parser::DeclarationTypeSpec::Type &);
void Post(const parser::DeclarationTypeSpec::Type &);
bool Pre(const parser::DeclarationTypeSpec::Class &);
void Post(const parser::DeclarationTypeSpec::Class &);
void Post(const parser::DeclarationTypeSpec::Record &);
void Post(const parser::DerivedTypeSpec &);
bool Pre(const parser::DerivedTypeDef &);
bool Pre(const parser::DerivedTypeStmt &);
void Post(const parser::DerivedTypeStmt &);
bool Pre(const parser::TypeParamDefStmt &) { return BeginDecl(); }
void Post(const parser::TypeParamDefStmt &);
bool Pre(const parser::TypeAttrSpec::Extends &);
bool Pre(const parser::PrivateStmt &);
bool Pre(const parser::SequenceStmt &);
bool Pre(const parser::ComponentDefStmt &) { return BeginDecl(); }
void Post(const parser::ComponentDefStmt &) { EndDecl(); }
void Post(const parser::ComponentDecl &);
void Post(const parser::FillDecl &);
bool Pre(const parser::ProcedureDeclarationStmt &);
void Post(const parser::ProcedureDeclarationStmt &);
bool Pre(const parser::DataComponentDefStmt &); // returns false
bool Pre(const parser::ProcComponentDefStmt &);
void Post(const parser::ProcComponentDefStmt &);
bool Pre(const parser::ProcPointerInit &);
void Post(const parser::ProcInterface &);
void Post(const parser::ProcDecl &);
bool Pre(const parser::TypeBoundProcedurePart &);
void Post(const parser::TypeBoundProcedurePart &);
void Post(const parser::ContainsStmt &);
bool Pre(const parser::TypeBoundProcBinding &) { return BeginAttrs(); }
void Post(const parser::TypeBoundProcBinding &) { EndAttrs(); }
void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &);
void Post(const parser::TypeBoundProcedureStmt::WithInterface &);
bool Pre(const parser::FinalProcedureStmt &);
bool Pre(const parser::TypeBoundGenericStmt &);
bool Pre(const parser::StructureDef &); // returns false
bool Pre(const parser::Union::UnionStmt &);
bool Pre(const parser::StructureField &);
void Post(const parser::StructureField &);
bool Pre(const parser::AllocateStmt &);
void Post(const parser::AllocateStmt &);
bool Pre(const parser::StructureConstructor &);
bool Pre(const parser::NamelistStmt::Group &);
bool Pre(const parser::IoControlSpec &);
bool Pre(const parser::CommonStmt::Block &);
bool Pre(const parser::CommonBlockObject &);
void Post(const parser::CommonBlockObject &);
bool Pre(const parser::EquivalenceStmt &);
bool Pre(const parser::SaveStmt &);
bool Pre(const parser::BasedPointer &);
void Post(const parser::BasedPointer &);
void PointerInitialization(
const parser::Name &, const parser::InitialDataTarget &);
void PointerInitialization(
const parser::Name &, const parser::ProcPointerInit &);
void NonPointerInitialization(
const parser::Name &, const parser::ConstantExpr &);
void CheckExplicitInterface(const parser::Name &);
void CheckBindings(const parser::TypeBoundProcedureStmt::WithoutInterface &);
const parser::Name *ResolveDesignator(const parser::Designator &);
int GetVectorElementKind(
TypeCategory category, const std::optional<parser::KindSelector> &kind);
protected:
bool BeginDecl();
void EndDecl();
Symbol &DeclareObjectEntity(const parser::Name &, Attrs = Attrs{});
// Make sure that there's an entity in an enclosing scope called Name
Symbol &FindOrDeclareEnclosingEntity(const parser::Name &);
// Declare a LOCAL/LOCAL_INIT/REDUCE entity while setting a locality flag. If
// there isn't a type specified it comes from the entity in the containing
// scope, or implicit rules.
void DeclareLocalEntity(const parser::Name &, Symbol::Flag);
// Declare a statement entity (i.e., an implied DO loop index for
// a DATA statement or an array constructor). If there isn't an explict
// type specified, implicit rules apply. Return pointer to the new symbol,
// or nullptr on error.
Symbol *DeclareStatementEntity(const parser::DoVariable &,
const std::optional<parser::IntegerTypeSpec> &);
Symbol &MakeCommonBlockSymbol(const parser::Name &);
Symbol &MakeCommonBlockSymbol(const std::optional<parser::Name> &);
bool CheckUseError(const parser::Name &);
void CheckAccessibility(const SourceName &, bool, Symbol &);
void CheckCommonBlocks();
void CheckSaveStmts();
void CheckEquivalenceSets();
bool CheckNotInBlock(const char *);
bool NameIsKnownOrIntrinsic(const parser::Name &);
void FinishNamelists();
// Each of these returns a pointer to a resolved Name (i.e. with symbol)
// or nullptr in case of error.
const parser::Name *ResolveStructureComponent(
const parser::StructureComponent &);
const parser::Name *ResolveDataRef(const parser::DataRef &);
const parser::Name *ResolveName(const parser::Name &);
bool PassesSharedLocalityChecks(const parser::Name &name, Symbol &symbol);
Symbol *NoteInterfaceName(const parser::Name &);
bool IsUplevelReference(const Symbol &);
std::optional<SourceName> BeginCheckOnIndexUseInOwnBounds(
const parser::DoVariable &name) {
std::optional<SourceName> result{checkIndexUseInOwnBounds_};
checkIndexUseInOwnBounds_ = name.thing.thing.source;
return result;
}
void EndCheckOnIndexUseInOwnBounds(const std::optional<SourceName> &restore) {
checkIndexUseInOwnBounds_ = restore;
}
void NoteScalarSpecificationArgument(const Symbol &symbol) {
mustBeScalar_.emplace(symbol);
}
// Declare an object or procedure entity.
// T is one of: EntityDetails, ObjectEntityDetails, ProcEntityDetails
template <typename T>
Symbol &DeclareEntity(const parser::Name &name, Attrs attrs) {
Symbol &symbol{MakeSymbol(name, attrs)};
if (context().HasError(symbol) || symbol.has<T>()) {
return symbol; // OK or error already reported
} else if (symbol.has<UnknownDetails>()) {
symbol.set_details(T{});
return symbol;
} else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
symbol.set_details(T{std::move(*details)});
return symbol;
} else if (std::is_same_v<EntityDetails, T> &&
(symbol.has<ObjectEntityDetails>() ||
symbol.has<ProcEntityDetails>())) {
return symbol; // OK
} else if (auto *details{symbol.detailsIf<UseDetails>()}) {
Say(name.source,
"'%s' is use-associated from module '%s' and cannot be re-declared"_err_en_US,
name.source, GetUsedModule(*details).name());
} else if (auto *details{symbol.detailsIf<SubprogramNameDetails>()}) {
if (details->kind() == SubprogramKind::Module) {
Say2(name,
"Declaration of '%s' conflicts with its use as module procedure"_err_en_US,
symbol, "Module procedure definition"_en_US);
} else if (details->kind() == SubprogramKind::Internal) {
Say2(name,
"Declaration of '%s' conflicts with its use as internal procedure"_err_en_US,
symbol, "Internal procedure definition"_en_US);
} else {
DIE("unexpected kind");
}
} else if (std::is_same_v<ObjectEntityDetails, T> &&
symbol.has<ProcEntityDetails>()) {
SayWithDecl(
name, symbol, "'%s' is already declared as a procedure"_err_en_US);
} else if (std::is_same_v<ProcEntityDetails, T> &&
symbol.has<ObjectEntityDetails>()) {
if (FindCommonBlockContaining(symbol)) {
SayWithDecl(name, symbol,
"'%s' may not be a procedure as it is in a COMMON block"_err_en_US);
} else {
SayWithDecl(
name, symbol, "'%s' is already declared as an object"_err_en_US);
}
} else if (!CheckPossibleBadForwardRef(symbol)) {
SayAlreadyDeclared(name, symbol);
}
context().SetError(symbol);
return symbol;
}
private:
// The attribute corresponding to the statement containing an ObjectDecl
std::optional<Attr> objectDeclAttr_;
// Info about current character type while walking DeclTypeSpec.
// Also captures any "*length" specifier on an individual declaration.
struct {
std::optional<ParamValue> length;
std::optional<KindExpr> kind;
} charInfo_;
// Info about current derived type or STRUCTURE while walking
// DerivedTypeDef / StructureDef
struct {
const parser::Name *extends{nullptr}; // EXTENDS(name)
bool privateComps{false}; // components are private by default
bool privateBindings{false}; // bindings are private by default
bool sawContains{false}; // currently processing bindings
bool sequence{false}; // is a sequence type
const Symbol *type{nullptr}; // derived type being defined
bool isStructure{false}; // is a DEC STRUCTURE
} derivedTypeInfo_;
// In a ProcedureDeclarationStmt or ProcComponentDefStmt, this is
// the interface name, if any.
const parser::Name *interfaceName_{nullptr};
// Map type-bound generic to binding names of its specific bindings
std::multimap<Symbol *, const parser::Name *> genericBindings_;
// Info about current ENUM
struct EnumeratorState {
// Enum value must hold inside a C_INT (7.6.2).
std::optional<int> value{0};
} enumerationState_;
// Set for OldParameterStmt processing
bool inOldStyleParameterStmt_{false};
// Set when walking DATA & array constructor implied DO loop bounds
// to warn about use of the implied DO intex therein.
std::optional<SourceName> checkIndexUseInOwnBounds_;
bool isVectorType_{false};
UnorderedSymbolSet mustBeScalar_;
bool HandleAttributeStmt(Attr, const std::list<parser::Name> &);
Symbol &HandleAttributeStmt(Attr, const parser::Name &);
Symbol &DeclareUnknownEntity(const parser::Name &, Attrs);
Symbol &DeclareProcEntity(
const parser::Name &, Attrs, const Symbol *interface);
void SetType(const parser::Name &, const DeclTypeSpec &);
std::optional<DerivedTypeSpec> ResolveDerivedType(const parser::Name &);
std::optional<DerivedTypeSpec> ResolveExtendsType(
const parser::Name &, const parser::Name *);
Symbol *MakeTypeSymbol(const SourceName &, Details &&);
Symbol *MakeTypeSymbol(const parser::Name &, Details &&);
bool OkToAddComponent(const parser::Name &, const Symbol *extends = nullptr);
ParamValue GetParamValue(
const parser::TypeParamValue &, common::TypeParamAttr attr);
void CheckCommonBlockDerivedType(
const SourceName &, const Symbol &, UnorderedSymbolSet &);
Attrs HandleSaveName(const SourceName &, Attrs);
void AddSaveName(std::set<SourceName> &, const SourceName &);
bool HandleUnrestrictedSpecificIntrinsicFunction(const parser::Name &);
const parser::Name *FindComponent(const parser::Name *, const parser::Name &);
void Initialization(const parser::Name &, const parser::Initialization &,
bool inComponentDecl);
bool PassesLocalityChecks(
const parser::Name &name, Symbol &symbol, Symbol::Flag flag);
bool CheckForHostAssociatedImplicit(const parser::Name &);
bool HasCycle(const Symbol &, const Symbol *interface);
bool MustBeScalar(const Symbol &symbol) const {
return mustBeScalar_.find(symbol) != mustBeScalar_.end();
}
void DeclareIntrinsic(const parser::Name &);
};
// Resolve construct entities and statement entities.
// Check that construct names don't conflict with other names.
class ConstructVisitor : public virtual DeclarationVisitor {
public:
bool Pre(const parser::ConcurrentHeader &);
bool Pre(const parser::LocalitySpec::Local &);
bool Pre(const parser::LocalitySpec::LocalInit &);
bool Pre(const parser::LocalitySpec::Reduce &);
bool Pre(const parser::LocalitySpec::Shared &);
bool Pre(const parser::AcSpec &);
bool Pre(const parser::AcImpliedDo &);
bool Pre(const parser::DataImpliedDo &);
bool Pre(const parser::DataIDoObject &);
bool Pre(const parser::DataStmtObject &);
bool Pre(const parser::DataStmtValue &);
bool Pre(const parser::DoConstruct &);
void Post(const parser::DoConstruct &);
bool Pre(const parser::ForallConstruct &);
void Post(const parser::ForallConstruct &);
bool Pre(const parser::ForallStmt &);
void Post(const parser::ForallStmt &);
bool Pre(const parser::BlockConstruct &);
void Post(const parser::Selector &);
void Post(const parser::AssociateStmt &);
void Post(const parser::EndAssociateStmt &);
bool Pre(const parser::Association &);
void Post(const parser::SelectTypeStmt &);
void Post(const parser::SelectRankStmt &);
bool Pre(const parser::SelectTypeConstruct &);
void Post(const parser::SelectTypeConstruct &);
bool Pre(const parser::SelectTypeConstruct::TypeCase &);
void Post(const parser::SelectTypeConstruct::TypeCase &);
// Creates Block scopes with neither symbol name nor symbol details.
bool Pre(const parser::SelectRankConstruct::RankCase &);
void Post(const parser::SelectRankConstruct::RankCase &);
bool Pre(const parser::TypeGuardStmt::Guard &);
void Post(const parser::TypeGuardStmt::Guard &);
void Post(const parser::SelectRankCaseStmt::Rank &);
bool Pre(const parser::ChangeTeamStmt &);
void Post(const parser::EndChangeTeamStmt &);
void Post(const parser::CoarrayAssociation &);
// Definitions of construct names
bool Pre(const parser::WhereConstructStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::ForallConstructStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::CriticalStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::LabelDoStmt &) {
return false; // error recovery
}
bool Pre(const parser::NonLabelDoStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::IfThenStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::SelectCaseStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::SelectRankConstruct &);
void Post(const parser::SelectRankConstruct &);
bool Pre(const parser::SelectRankStmt &x) {
return CheckDef(std::get<0>(x.t));
}
bool Pre(const parser::SelectTypeStmt &x) {
return CheckDef(std::get<0>(x.t));
}
// References to construct names
void Post(const parser::MaskedElsewhereStmt &x) { CheckRef(x.t); }
void Post(const parser::ElsewhereStmt &x) { CheckRef(x.v); }
void Post(const parser::EndWhereStmt &x) { CheckRef(x.v); }
void Post(const parser::EndForallStmt &x) { CheckRef(x.v); }
void Post(const parser::EndCriticalStmt &x) { CheckRef(x.v); }
void Post(const parser::EndDoStmt &x) { CheckRef(x.v); }
void Post(const parser::ElseIfStmt &x) { CheckRef(x.t); }
void Post(const parser::ElseStmt &x) { CheckRef(x.v); }
void Post(const parser::EndIfStmt &x) { CheckRef(x.v); }
void Post(const parser::CaseStmt &x) { CheckRef(x.t); }
void Post(const parser::EndSelectStmt &x) { CheckRef(x.v); }
void Post(const parser::SelectRankCaseStmt &x) { CheckRef(x.t); }
void Post(const parser::TypeGuardStmt &x) { CheckRef(x.t); }
void Post(const parser::CycleStmt &x) { CheckRef(x.v); }
void Post(const parser::ExitStmt &x) { CheckRef(x.v); }
void HandleImpliedAsynchronousInScope(const parser::Block &);
private:
// R1105 selector -> expr | variable
// expr is set in either case unless there were errors
struct Selector {
Selector() {}
Selector(const SourceName &source, MaybeExpr &&expr)
: source{source}, expr{std::move(expr)} {}
operator bool() const { return expr.has_value(); }
parser::CharBlock source;
MaybeExpr expr;
};
// association -> [associate-name =>] selector
struct Association {
const parser::Name *name{nullptr};
Selector selector;
};
std::vector<Association> associationStack_;
Association *currentAssociation_{nullptr};
template <typename T> bool CheckDef(const T &t) {
return CheckDef(std::get<std::optional<parser::Name>>(t));
}
template <typename T> void CheckRef(const T &t) {
CheckRef(std::get<std::optional<parser::Name>>(t));
}
bool CheckDef(const std::optional<parser::Name> &);
void CheckRef(const std::optional<parser::Name> &);
const DeclTypeSpec &ToDeclTypeSpec(evaluate::DynamicType &&);
const DeclTypeSpec &ToDeclTypeSpec(
evaluate::DynamicType &&, MaybeSubscriptIntExpr &&length);
Symbol *MakeAssocEntity();
void SetTypeFromAssociation(Symbol &);
void SetAttrsFromAssociation(Symbol &);
Selector ResolveSelector(const parser::Selector &);
void ResolveIndexName(const parser::ConcurrentControl &control);
void SetCurrentAssociation(std::size_t n);
Association &GetCurrentAssociation();
void PushAssociation();
void PopAssociation(std::size_t count = 1);
};
// Create scopes for OpenACC constructs
class AccVisitor : public virtual DeclarationVisitor {
public:
void AddAccSourceRange(const parser::CharBlock &);
static bool NeedsScope(const parser::OpenACCBlockConstruct &);
bool Pre(const parser::OpenACCBlockConstruct &);
void Post(const parser::OpenACCBlockConstruct &);
bool Pre(const parser::OpenACCCombinedConstruct &);
void Post(const parser::OpenACCCombinedConstruct &);
bool Pre(const parser::AccBeginBlockDirective &x) {
AddAccSourceRange(x.source);
return true;
}
void Post(const parser::AccBeginBlockDirective &) {
messageHandler().set_currStmtSource(std::nullopt);
}
bool Pre(const parser::AccEndBlockDirective &x) {
AddAccSourceRange(x.source);
return true;
}
void Post(const parser::AccEndBlockDirective &) {
messageHandler().set_currStmtSource(std::nullopt);
}
bool Pre(const parser::AccBeginLoopDirective &x) {
AddAccSourceRange(x.source);
return true;
}
void Post(const parser::AccBeginLoopDirective &x) {
messageHandler().set_currStmtSource(std::nullopt);
}
};
bool AccVisitor::NeedsScope(const parser::OpenACCBlockConstruct &x) {
const auto &beginBlockDir{std::get<parser::AccBeginBlockDirective>(x.t)};
const auto &beginDir{std::get<parser::AccBlockDirective>(beginBlockDir.t)};
switch (beginDir.v) {
case llvm::acc::Directive::ACCD_data:
case llvm::acc::Directive::ACCD_host_data:
case llvm::acc::Directive::ACCD_kernels:
case llvm::acc::Directive::ACCD_parallel:
case llvm::acc::Directive::ACCD_serial:
return true;
default:
return false;
}
}
void AccVisitor::AddAccSourceRange(const parser::CharBlock &source) {
messageHandler().set_currStmtSource(source);
currScope().AddSourceRange(source);
}
bool AccVisitor::Pre(const parser::OpenACCBlockConstruct &x) {
if (NeedsScope(x)) {
PushScope(Scope::Kind::OpenACCConstruct, nullptr);
}
return true;
}
void AccVisitor::Post(const parser::OpenACCBlockConstruct &x) {
if (NeedsScope(x)) {
PopScope();
}
}
bool AccVisitor::Pre(const parser::OpenACCCombinedConstruct &x) {
PushScope(Scope::Kind::OpenACCConstruct, nullptr);
return true;
}
void AccVisitor::Post(const parser::OpenACCCombinedConstruct &x) { PopScope(); }
// Create scopes for OpenMP constructs
class OmpVisitor : public virtual DeclarationVisitor {
public:
void AddOmpSourceRange(const parser::CharBlock &);
static bool NeedsScope(const parser::OpenMPBlockConstruct &);
bool Pre(const parser::OpenMPRequiresConstruct &x) {
AddOmpSourceRange(x.source);
return true;
}
bool Pre(const parser::OmpSimpleStandaloneDirective &x) {
AddOmpSourceRange(x.source);
return true;
}
bool Pre(const parser::OpenMPBlockConstruct &);
void Post(const parser::OpenMPBlockConstruct &);
bool Pre(const parser::OmpBeginBlockDirective &x) {
AddOmpSourceRange(x.source);
return true;
}
void Post(const parser::OmpBeginBlockDirective &) {
messageHandler().set_currStmtSource(std::nullopt);
}
bool Pre(const parser::OmpEndBlockDirective &x) {
AddOmpSourceRange(x.source);
return true;
}
void Post(const parser::OmpEndBlockDirective &) {
messageHandler().set_currStmtSource(std::nullopt);
}
bool Pre(const parser::OpenMPLoopConstruct &) {
PushScope(Scope::Kind::OtherConstruct, nullptr);
return true;
}
void Post(const parser::OpenMPLoopConstruct &) { PopScope(); }
bool Pre(const parser::OmpBeginLoopDirective &x) {
AddOmpSourceRange(x.source);
return true;
}
void Post(const parser::OmpBeginLoopDirective &) {
messageHandler().set_currStmtSource(std::nullopt);
}
bool Pre(const parser::OmpEndLoopDirective &x) {
AddOmpSourceRange(x.source);
return true;
}
void Post(const parser::OmpEndLoopDirective &) {
messageHandler().set_currStmtSource(std::nullopt);
}
bool Pre(const parser::OpenMPSectionsConstruct &) {
PushScope(Scope::Kind::OtherConstruct, nullptr);
return true;
}
void Post(const parser::OpenMPSectionsConstruct &) { PopScope(); }
bool Pre(const parser::OmpBeginSectionsDirective &x) {
AddOmpSourceRange(x.source);
return true;
}
void Post(const parser::OmpBeginSectionsDirective &) {
messageHandler().set_currStmtSource(std::nullopt);
}
bool Pre(const parser::OmpEndSectionsDirective &x) {
AddOmpSourceRange(x.source);
return true;
}
void Post(const parser::OmpEndSectionsDirective &) {
messageHandler().set_currStmtSource(std::nullopt);
}
bool Pre(const parser::OmpCriticalDirective &x) {
AddOmpSourceRange(x.source);
return true;
}
void Post(const parser::OmpCriticalDirective &) {
messageHandler().set_currStmtSource(std::nullopt);
}
bool Pre(const parser::OmpEndCriticalDirective &x) {
AddOmpSourceRange(x.source);
return true;
}
void Post(const parser::OmpEndCriticalDirective &) {
messageHandler().set_currStmtSource(std::nullopt);
}
};
bool OmpVisitor::NeedsScope(const parser::OpenMPBlockConstruct &x) {
const auto &beginBlockDir{std::get<parser::OmpBeginBlockDirective>(x.t)};
const auto &beginDir{std::get<parser::OmpBlockDirective>(beginBlockDir.t)};
switch (beginDir.v) {
case llvm::omp::Directive::OMPD_master:
case llvm::omp::Directive::OMPD_ordered:
case llvm::omp::Directive::OMPD_taskgroup:
return false;
default:
return true;
}
}
void OmpVisitor::AddOmpSourceRange(const parser::CharBlock &source) {
messageHandler().set_currStmtSource(source);
currScope().AddSourceRange(source);
}
bool OmpVisitor::Pre(const parser::OpenMPBlockConstruct &x) {
if (NeedsScope(x)) {
PushScope(Scope::Kind::OtherConstruct, nullptr);
}
return true;
}
void OmpVisitor::Post(const parser::OpenMPBlockConstruct &x) {
if (NeedsScope(x)) {
PopScope();
}
}
// Walk the parse tree and resolve names to symbols.
class ResolveNamesVisitor : public virtual ScopeHandler,
public ModuleVisitor,
public SubprogramVisitor,
public ConstructVisitor,
public OmpVisitor,
public AccVisitor {
public:
using AccVisitor::Post;
using AccVisitor::Pre;
using ArraySpecVisitor::Post;
using ConstructVisitor::Post;
using ConstructVisitor::Pre;
using DeclarationVisitor::Post;
using DeclarationVisitor::Pre;
using ImplicitRulesVisitor::Post;
using ImplicitRulesVisitor::Pre;
using InterfaceVisitor::Post;
using InterfaceVisitor::Pre;
using ModuleVisitor::Post;
using ModuleVisitor::Pre;
using OmpVisitor::Post;
using OmpVisitor::Pre;
using ScopeHandler::Post;
using ScopeHandler::Pre;
using SubprogramVisitor::Post;
using SubprogramVisitor::Pre;
ResolveNamesVisitor(
SemanticsContext &context, ImplicitRulesMap &rules, Scope &top)
: BaseVisitor{context, *this, rules}, topScope_{top} {
PushScope(top);
}
Scope &topScope() const { return topScope_; }
// Default action for a parse tree node is to visit children.
template <typename T> bool Pre(const T &) { return true; }
template <typename T> void Post(const T &) {}
bool Pre(const parser::SpecificationPart &);
bool Pre(const parser::Program &);
void Post(const parser::Program &);
bool Pre(const parser::ImplicitStmt &);
void Post(const parser::PointerObject &);
void Post(const parser::AllocateObject &);
bool Pre(const parser::PointerAssignmentStmt &);
void Post(const parser::Designator &);
void Post(const parser::SubstringInquiry &);
template <typename A, typename B>
void Post(const parser::LoopBounds<A, B> &x) {
ResolveName(*parser::Unwrap<parser::Name>(x.name));
}
void Post(const parser::ProcComponentRef &);
bool Pre(const parser::FunctionReference &);
bool Pre(const parser::CallStmt &);
bool Pre(const parser::ImportStmt &);
void Post(const parser::TypeGuardStmt &);
bool Pre(const parser::StmtFunctionStmt &);
bool Pre(const parser::DefinedOpName &);
bool Pre(const parser::ProgramUnit &);
void Post(const parser::AssignStmt &);
void Post(const parser::AssignedGotoStmt &);
void Post(const parser::CompilerDirective &);
// These nodes should never be reached: they are handled in ProgramUnit
bool Pre(const parser::MainProgram &) {
llvm_unreachable("This node is handled in ProgramUnit");
}
bool Pre(const parser::FunctionSubprogram &) {
llvm_unreachable("This node is handled in ProgramUnit");
}
bool Pre(const parser::SubroutineSubprogram &) {
llvm_unreachable("This node is handled in ProgramUnit");
}
bool Pre(const parser::SeparateModuleSubprogram &) {
llvm_unreachable("This node is handled in ProgramUnit");
}
bool Pre(const parser::Module &) {
llvm_unreachable("This node is handled in ProgramUnit");
}
bool Pre(const parser::Submodule &) {
llvm_unreachable("This node is handled in ProgramUnit");
}
bool Pre(const parser::BlockData &) {
llvm_unreachable("This node is handled in ProgramUnit");
}
void NoteExecutablePartCall(Symbol::Flag, SourceName, bool hasCUDAChevrons);
friend void ResolveSpecificationParts(SemanticsContext &, const Symbol &);
private:
// Kind of procedure we are expecting to see in a ProcedureDesignator
std::optional<Symbol::Flag> expectedProcFlag_;
std::optional<SourceName> prevImportStmt_;
Scope &topScope_;
void PreSpecificationConstruct(const parser::SpecificationConstruct &);
void CreateCommonBlockSymbols(const parser::CommonStmt &);
void CreateObjectSymbols(const std::list<parser::ObjectDecl> &, Attr);
void CreateGeneric(const parser::GenericSpec &);
void FinishSpecificationPart(const std::list<parser::DeclarationConstruct> &);
void AnalyzeStmtFunctionStmt(const parser::StmtFunctionStmt &);
void CheckImports();
void CheckImport(const SourceName &, const SourceName &);
void HandleCall(Symbol::Flag, const parser::Call &);
void HandleProcedureName(Symbol::Flag, const parser::Name &);
bool CheckImplicitNoneExternal(const SourceName &, const Symbol &);
bool SetProcFlag(const parser::Name &, Symbol &, Symbol::Flag);
void ResolveSpecificationParts(ProgramTree &);
void AddSubpNames(ProgramTree &);
bool BeginScopeForNode(const ProgramTree &);
void EndScopeForNode(const ProgramTree &);
void FinishSpecificationParts(const ProgramTree &);
void FinishExecutionParts(const ProgramTree &);
void FinishDerivedTypeInstantiation(Scope &);
void ResolveExecutionParts(const ProgramTree &);
void UseCUDABuiltinNames();
void HandleDerivedTypesInImplicitStmts(const parser::ImplicitPart &,
const std::list<parser::DeclarationConstruct> &);
};
// ImplicitRules implementation
bool ImplicitRules::isImplicitNoneType() const {
if (isImplicitNoneType_) {
return true;
} else if (map_.empty() && inheritFromParent_) {
return parent_->isImplicitNoneType();
} else {
return false; // default if not specified
}
}
bool ImplicitRules::isImplicitNoneExternal() const {
if (isImplicitNoneExternal_) {
return true;
} else if (inheritFromParent_) {
return parent_->isImplicitNoneExternal();
} else {
return false; // default if not specified
}
}
const DeclTypeSpec *ImplicitRules::GetType(
SourceName name, bool respectImplicitNoneType) const {
char ch{name.begin()[0]};
if (isImplicitNoneType_ && respectImplicitNoneType) {
return nullptr;
} else if (auto it{map_.find(ch)}; it != map_.end()) {
return &*it->second;
} else if (inheritFromParent_) {
return parent_->GetType(name, respectImplicitNoneType);
} else if (ch >= 'i' && ch <= 'n') {
return &context_.MakeNumericType(TypeCategory::Integer);
} else if (ch >= 'a' && ch <= 'z') {
return &context_.MakeNumericType(TypeCategory::Real);
} else {
return nullptr;
}
}
void ImplicitRules::SetTypeMapping(const DeclTypeSpec &type,
parser::Location fromLetter, parser::Location toLetter) {
for (char ch = *fromLetter; ch; ch = ImplicitRules::Incr(ch)) {
auto res{map_.emplace(ch, type)};
if (!res.second) {
context_.Say(parser::CharBlock{fromLetter},
"More than one implicit type specified for '%c'"_err_en_US, ch);
}
if (ch == *toLetter) {
break;
}
}
}
// Return the next char after ch in a way that works for ASCII or EBCDIC.
// Return '\0' for the char after 'z'.
char ImplicitRules::Incr(char ch) {
switch (ch) {
case 'i':
return 'j';
case 'r':
return 's';
case 'z':
return '\0';
default:
return ch + 1;
}
}
llvm::raw_ostream &operator<<(
llvm::raw_ostream &o, const ImplicitRules &implicitRules) {
o << "ImplicitRules:\n";
for (char ch = 'a'; ch; ch = ImplicitRules::Incr(ch)) {
ShowImplicitRule(o, implicitRules, ch);
}
ShowImplicitRule(o, implicitRules, '_');
ShowImplicitRule(o, implicitRules, '$');
ShowImplicitRule(o, implicitRules, '@');
return o;
}
void ShowImplicitRule(
llvm::raw_ostream &o, const ImplicitRules &implicitRules, char ch) {
auto it{implicitRules.map_.find(ch)};
if (it != implicitRules.map_.end()) {
o << " " << ch << ": " << *it->second << '\n';
}
}
template <typename T> void BaseVisitor::Walk(const T &x) {
parser::Walk(x, *this_);
}
void BaseVisitor::MakePlaceholder(
const parser::Name &name, MiscDetails::Kind kind) {
if (!name.symbol) {
name.symbol = &context_->globalScope().MakeSymbol(
name.source, Attrs{}, MiscDetails{kind});
}
}
// AttrsVisitor implementation
bool AttrsVisitor::BeginAttrs() {
CHECK(!attrs_ && !cudaDataAttr_);
attrs_ = Attrs{};
return true;
}
Attrs AttrsVisitor::GetAttrs() {
CHECK(attrs_);
return *attrs_;
}
Attrs AttrsVisitor::EndAttrs() {
Attrs result{GetAttrs()};
attrs_.reset();
cudaDataAttr_.reset();
passName_ = std::nullopt;
bindName_.reset();
isCDefined_ = false;
return result;
}
bool AttrsVisitor::SetPassNameOn(Symbol &symbol) {
if (!passName_) {
return false;
}
common::visit(common::visitors{
[&](ProcEntityDetails &x) { x.set_passName(*passName_); },
[&](ProcBindingDetails &x) { x.set_passName(*passName_); },
[](auto &) { common::die("unexpected pass name"); },
},
symbol.details());
return true;
}
void AttrsVisitor::SetBindNameOn(Symbol &symbol) {
if ((!attrs_ || !attrs_->test(Attr::BIND_C)) &&
!symbol.attrs().test(Attr::BIND_C)) {
return;
}
symbol.SetIsCDefined(isCDefined_);
std::optional<std::string> label{
evaluate::GetScalarConstantValue<evaluate::Ascii>(bindName_)};
// 18.9.2(2): discard leading and trailing blanks
if (label) {
symbol.SetIsExplicitBindName(true);
auto first{label->find_first_not_of(" ")};
if (first == std::string::npos) {
// Empty NAME= means no binding at all (18.10.2p2)
return;
}
auto last{label->find_last_not_of(" ")};
label = label->substr(first, last - first + 1);
} else if (symbol.GetIsExplicitBindName()) {
// don't try to override explicit binding name with default
return;
} else if (ClassifyProcedure(symbol) == ProcedureDefinitionClass::Internal) {
// BIND(C) does not give an implicit binding label to internal procedures.
return;
} else {
label = symbol.name().ToString();
}
// Checks whether a symbol has two Bind names.
std::string oldBindName;
if (const auto *bindName{symbol.GetBindName()}) {
oldBindName = *bindName;
}
symbol.SetBindName(std::move(*label));
if (!oldBindName.empty()) {
if (const std::string * newBindName{symbol.GetBindName()}) {
if (oldBindName != *newBindName) {
Say(symbol.name(),
"The entity '%s' has multiple BIND names ('%s' and '%s')"_err_en_US,
symbol.name(), oldBindName, *newBindName);
}
}
}
}
void AttrsVisitor::Post(const parser::LanguageBindingSpec &x) {
if (CheckAndSet(Attr::BIND_C)) {
if (const auto &name{
std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
x.t)}) {
bindName_ = EvaluateExpr(*name);
}
isCDefined_ = std::get<bool>(x.t);
}
}
bool AttrsVisitor::Pre(const parser::IntentSpec &x) {
CheckAndSet(IntentSpecToAttr(x));
return false;
}
bool AttrsVisitor::Pre(const parser::Pass &x) {
if (CheckAndSet(Attr::PASS)) {
if (x.v) {
passName_ = x.v->source;
MakePlaceholder(*x.v, MiscDetails::Kind::PassName);
}
}
return false;
}
// C730, C743, C755, C778, C1543 say no attribute or prefix repetitions
bool AttrsVisitor::IsDuplicateAttr(Attr attrName) {
CHECK(attrs_);
if (attrs_->test(attrName)) {
context().Warn(common::LanguageFeature::RedundantAttribute,
currStmtSource().value(),
"Attribute '%s' cannot be used more than once"_warn_en_US,
AttrToString(attrName));
return true;
}
return false;
}
// See if attrName violates a constraint cause by a conflict. attr1 and attr2
// name attributes that cannot be used on the same declaration
bool AttrsVisitor::HaveAttrConflict(Attr attrName, Attr attr1, Attr attr2) {
CHECK(attrs_);
if ((attrName == attr1 && attrs_->test(attr2)) ||
(attrName == attr2 && attrs_->test(attr1))) {
Say(currStmtSource().value(),
"Attributes '%s' and '%s' conflict with each other"_err_en_US,
AttrToString(attr1), AttrToString(attr2));
return true;
}
return false;
}
// C759, C1543
bool AttrsVisitor::IsConflictingAttr(Attr attrName) {
return HaveAttrConflict(attrName, Attr::INTENT_IN, Attr::INTENT_INOUT) ||
HaveAttrConflict(attrName, Attr::INTENT_IN, Attr::INTENT_OUT) ||
HaveAttrConflict(attrName, Attr::INTENT_INOUT, Attr::INTENT_OUT) ||
HaveAttrConflict(attrName, Attr::PASS, Attr::NOPASS) || // C781
HaveAttrConflict(attrName, Attr::PURE, Attr::IMPURE) ||
HaveAttrConflict(attrName, Attr::PUBLIC, Attr::PRIVATE) ||
HaveAttrConflict(attrName, Attr::RECURSIVE, Attr::NON_RECURSIVE);
}
bool AttrsVisitor::CheckAndSet(Attr attrName) {
if (IsConflictingAttr(attrName) || IsDuplicateAttr(attrName)) {
return false;
}
attrs_->set(attrName);
return true;
}
bool AttrsVisitor::Pre(const common::CUDADataAttr x) {
if (cudaDataAttr_.value_or(x) != x) {
Say(currStmtSource().value(),
"CUDA data attributes '%s' and '%s' may not both be specified"_err_en_US,
common::EnumToString(*cudaDataAttr_), common::EnumToString(x));
}
cudaDataAttr_ = x;
return false;
}
// DeclTypeSpecVisitor implementation
const DeclTypeSpec *DeclTypeSpecVisitor::GetDeclTypeSpec() {
return state_.declTypeSpec;
}
void DeclTypeSpecVisitor::BeginDeclTypeSpec() {
CHECK(!state_.expectDeclTypeSpec);
CHECK(!state_.declTypeSpec);
state_.expectDeclTypeSpec = true;
}
void DeclTypeSpecVisitor::EndDeclTypeSpec() {
CHECK(state_.expectDeclTypeSpec);
state_ = {};
}
void DeclTypeSpecVisitor::SetDeclTypeSpecCategory(
DeclTypeSpec::Category category) {
CHECK(state_.expectDeclTypeSpec);
state_.derived.category = category;
}
bool DeclTypeSpecVisitor::Pre(const parser::TypeGuardStmt &) {
BeginDeclTypeSpec();
return true;
}
void DeclTypeSpecVisitor::Post(const parser::TypeGuardStmt &) {
EndDeclTypeSpec();
}
void DeclTypeSpecVisitor::Post(const parser::TypeSpec &typeSpec) {
// Record the resolved DeclTypeSpec in the parse tree for use by
// expression semantics if the DeclTypeSpec is a valid TypeSpec.
// The grammar ensures that it's an intrinsic or derived type spec,
// not TYPE(*) or CLASS(*) or CLASS(T).
if (const DeclTypeSpec * spec{state_.declTypeSpec}) {
switch (spec->category()) {
case DeclTypeSpec::Numeric:
case DeclTypeSpec::Logical:
case DeclTypeSpec::Character:
typeSpec.declTypeSpec = spec;
break;
case DeclTypeSpec::TypeDerived:
if (const DerivedTypeSpec * derived{spec->AsDerived()}) {
CheckForAbstractType(derived->typeSymbol()); // C703
typeSpec.declTypeSpec = spec;
}
break;
default:
CRASH_NO_CASE;
}
}
}
void DeclTypeSpecVisitor::Post(
const parser::IntrinsicTypeSpec::DoublePrecision &) {
MakeNumericType(TypeCategory::Real, context().doublePrecisionKind());
}
void DeclTypeSpecVisitor::Post(
const parser::IntrinsicTypeSpec::DoubleComplex &) {
MakeNumericType(TypeCategory::Complex, context().doublePrecisionKind());
}
void DeclTypeSpecVisitor::MakeNumericType(TypeCategory category, int kind) {
SetDeclTypeSpec(context().MakeNumericType(category, kind));
}
void DeclTypeSpecVisitor::CheckForAbstractType(const Symbol &typeSymbol) {
if (typeSymbol.attrs().test(Attr::ABSTRACT)) {
Say("ABSTRACT derived type may not be used here"_err_en_US);
}
}
void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::ClassStar &) {
SetDeclTypeSpec(context().globalScope().MakeClassStarType());
}
void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::TypeStar &) {
SetDeclTypeSpec(context().globalScope().MakeTypeStarType());
}
// Check that we're expecting to see a DeclTypeSpec (and haven't seen one yet)
// and save it in state_.declTypeSpec.
void DeclTypeSpecVisitor::SetDeclTypeSpec(const DeclTypeSpec &declTypeSpec) {
CHECK(state_.expectDeclTypeSpec);
CHECK(!state_.declTypeSpec);
state_.declTypeSpec = &declTypeSpec;
}
KindExpr DeclTypeSpecVisitor::GetKindParamExpr(
TypeCategory category, const std::optional<parser::KindSelector> &kind) {
return AnalyzeKindSelector(context(), category, kind);
}
// MessageHandler implementation
Message &MessageHandler::Say(MessageFixedText &&msg) {
return context_->Say(currStmtSource().value(), std::move(msg));
}
Message &MessageHandler::Say(MessageFormattedText &&msg) {
return context_->Say(currStmtSource().value(), std::move(msg));
}
Message &MessageHandler::Say(const SourceName &name, MessageFixedText &&msg) {
return Say(name, std::move(msg), name);
}
// ImplicitRulesVisitor implementation
void ImplicitRulesVisitor::Post(const parser::ParameterStmt &) {
prevParameterStmt_ = currStmtSource();
}
bool ImplicitRulesVisitor::Pre(const parser::ImplicitStmt &x) {
bool result{
common::visit(common::visitors{
[&](const std::list<ImplicitNoneNameSpec> &y) {
return HandleImplicitNone(y);
},
[&](const std::list<parser::ImplicitSpec> &) {
if (prevImplicitNoneType_) {
Say("IMPLICIT statement after IMPLICIT NONE or "
"IMPLICIT NONE(TYPE) statement"_err_en_US);
return false;
}
implicitRules_->set_isImplicitNoneType(false);
return true;
},
},
x.u)};
prevImplicit_ = currStmtSource();
return result;
}
bool ImplicitRulesVisitor::Pre(const parser::LetterSpec &x) {
auto loLoc{std::get<parser::Location>(x.t)};
auto hiLoc{loLoc};
if (auto hiLocOpt{std::get<std::optional<parser::Location>>(x.t)}) {
hiLoc = *hiLocOpt;
if (*hiLoc < *loLoc) {
Say(hiLoc, "'%s' does not follow '%s' alphabetically"_err_en_US,
std::string(hiLoc, 1), std::string(loLoc, 1));
return false;
}
}
implicitRules_->SetTypeMapping(*GetDeclTypeSpec(), loLoc, hiLoc);
return false;
}
bool ImplicitRulesVisitor::Pre(const parser::ImplicitSpec &) {
BeginDeclTypeSpec();
set_allowForwardReferenceToDerivedType(true);
return true;
}
void ImplicitRulesVisitor::Post(const parser::ImplicitSpec &) {
set_allowForwardReferenceToDerivedType(false);
EndDeclTypeSpec();
}
void ImplicitRulesVisitor::SetScope(const Scope &scope) {
implicitRules_ = &DEREF(implicitRulesMap_).at(&scope);
prevImplicit_ = std::nullopt;
prevImplicitNone_ = std::nullopt;
prevImplicitNoneType_ = std::nullopt;
prevParameterStmt_ = std::nullopt;
}
void ImplicitRulesVisitor::BeginScope(const Scope &scope) {
// find or create implicit rules for this scope
DEREF(implicitRulesMap_).try_emplace(&scope, context(), implicitRules_);
SetScope(scope);
}
// TODO: for all of these errors, reference previous statement too
bool ImplicitRulesVisitor::HandleImplicitNone(
const std::list<ImplicitNoneNameSpec> &nameSpecs) {
if (prevImplicitNone_) {
Say("More than one IMPLICIT NONE statement"_err_en_US);
Say(*prevImplicitNone_, "Previous IMPLICIT NONE statement"_en_US);
return false;
}
if (prevParameterStmt_) {
Say("IMPLICIT NONE statement after PARAMETER statement"_err_en_US);
return false;
}
prevImplicitNone_ = currStmtSource();
bool implicitNoneTypeNever{
context().IsEnabled(common::LanguageFeature::ImplicitNoneTypeNever)};
if (nameSpecs.empty()) {
if (!implicitNoneTypeNever) {
prevImplicitNoneType_ = currStmtSource();
implicitRules_->set_isImplicitNoneType(true);
if (prevImplicit_) {
Say("IMPLICIT NONE statement after IMPLICIT statement"_err_en_US);
return false;
}
}
} else {
int sawType{0};
int sawExternal{0};
for (const auto noneSpec : nameSpecs) {
switch (noneSpec) {
case ImplicitNoneNameSpec::External:
implicitRules_->set_isImplicitNoneExternal(true);
++sawExternal;
break;
case ImplicitNoneNameSpec::Type:
if (!implicitNoneTypeNever) {
prevImplicitNoneType_ = currStmtSource();
implicitRules_->set_isImplicitNoneType(true);
if (prevImplicit_) {
Say("IMPLICIT NONE(TYPE) after IMPLICIT statement"_err_en_US);
return false;
}
++sawType;
}
break;
}
}
if (sawType > 1) {
Say("TYPE specified more than once in IMPLICIT NONE statement"_err_en_US);
return false;
}
if (sawExternal > 1) {
Say("EXTERNAL specified more than once in IMPLICIT NONE statement"_err_en_US);
return false;
}
}
return true;
}
// ArraySpecVisitor implementation
void ArraySpecVisitor::Post(const parser::ArraySpec &x) {
CHECK(arraySpec_.empty());
arraySpec_ = AnalyzeArraySpec(context(), x);
}
void ArraySpecVisitor::Post(const parser::ComponentArraySpec &x) {
CHECK(arraySpec_.empty());
arraySpec_ = AnalyzeArraySpec(context(), x);
}
void ArraySpecVisitor::Post(const parser::CoarraySpec &x) {
CHECK(coarraySpec_.empty());
coarraySpec_ = AnalyzeCoarraySpec(context(), x);
}
const ArraySpec &ArraySpecVisitor::arraySpec() {
return !arraySpec_.empty() ? arraySpec_ : attrArraySpec_;
}
const ArraySpec &ArraySpecVisitor::coarraySpec() {
return !coarraySpec_.empty() ? coarraySpec_ : attrCoarraySpec_;
}
void ArraySpecVisitor::BeginArraySpec() {
CHECK(arraySpec_.empty());
CHECK(coarraySpec_.empty());
CHECK(attrArraySpec_.empty());
CHECK(attrCoarraySpec_.empty());
}
void ArraySpecVisitor::EndArraySpec() {
CHECK(arraySpec_.empty());
CHECK(coarraySpec_.empty());
attrArraySpec_.clear();
attrCoarraySpec_.clear();
}
void ArraySpecVisitor::PostAttrSpec() {
// Save dimension/codimension from attrs so we can process array/coarray-spec
// on the entity-decl
if (!arraySpec_.empty()) {
if (attrArraySpec_.empty()) {
attrArraySpec_ = arraySpec_;
arraySpec_.clear();
} else {
Say(currStmtSource().value(),
"Attribute 'DIMENSION' cannot be used more than once"_err_en_US);
}
}
if (!coarraySpec_.empty()) {
if (attrCoarraySpec_.empty()) {
attrCoarraySpec_ = coarraySpec_;
coarraySpec_.clear();
} else {
Say(currStmtSource().value(),
"Attribute 'CODIMENSION' cannot be used more than once"_err_en_US);
}
}
}
// FuncResultStack implementation
FuncResultStack::~FuncResultStack() { CHECK(stack_.empty()); }
void FuncResultStack::CompleteFunctionResultType() {
// If the function has a type in the prefix, process it now.
FuncInfo *info{Top()};
if (info && &info->scope == &scopeHandler_.currScope()) {
if (info->parsedType && info->resultSymbol) {
scopeHandler_.messageHandler().set_currStmtSource(info->source);
if (const auto *type{
scopeHandler_.ProcessTypeSpec(*info->parsedType, true)}) {
Symbol &symbol{*info->resultSymbol};
if (!scopeHandler_.context().HasError(symbol)) {
if (symbol.GetType()) {
scopeHandler_.Say(symbol.name(),
"Function cannot have both an explicit type prefix and a RESULT suffix"_err_en_US);
scopeHandler_.context().SetError(symbol);
} else {
symbol.SetType(*type);
}
}
}
info->parsedType = nullptr;
}
}
}
// Called from ConvertTo{Object/Proc}Entity to cope with any appearance
// of the function result in a specification expression.
void FuncResultStack::CompleteTypeIfFunctionResult(Symbol &symbol) {
if (FuncInfo * info{Top()}) {
if (info->resultSymbol == &symbol) {
CompleteFunctionResultType();
}
}
}
void FuncResultStack::Pop() {
if (!stack_.empty() && &stack_.back().scope == &scopeHandler_.currScope()) {
stack_.pop_back();
}
}
// ScopeHandler implementation
void ScopeHandler::SayAlreadyDeclared(const parser::Name &name, Symbol &prev) {
SayAlreadyDeclared(name.source, prev);
}
void ScopeHandler::SayAlreadyDeclared(const SourceName &name, Symbol &prev) {
if (context().HasError(prev)) {
// don't report another error about prev
} else {
if (const auto *details{prev.detailsIf<UseDetails>()}) {
Say(name, "'%s' is already declared in this scoping unit"_err_en_US)
.Attach(details->location(),
"It is use-associated with '%s' in module '%s'"_en_US,
details->symbol().name(), GetUsedModule(*details).name());
} else {
SayAlreadyDeclared(name, prev.name());
}
context().SetError(prev);
}
}
void ScopeHandler::SayAlreadyDeclared(
const SourceName &name1, const SourceName &name2) {
if (name1.begin() < name2.begin()) {
SayAlreadyDeclared(name2, name1);
} else {
Say(name1, "'%s' is already declared in this scoping unit"_err_en_US)
.Attach(name2, "Previous declaration of '%s'"_en_US, name2);
}
}
void ScopeHandler::SayWithReason(const parser::Name &name, Symbol &symbol,
MessageFixedText &&msg1, Message &&msg2) {
bool isFatal{msg1.IsFatal()};
Say(name, std::move(msg1), symbol.name()).Attach(std::move(msg2));
context().SetError(symbol, isFatal);
}
template <typename... A>
Message &ScopeHandler::SayWithDecl(const parser::Name &name, Symbol &symbol,
MessageFixedText &&msg, A &&...args) {
auto &message{
Say(name.source, std::move(msg), symbol.name(), std::forward<A>(args)...)
.Attach(symbol.name(),
symbol.test(Symbol::Flag::Implicit)
? "Implicit declaration of '%s'"_en_US
: "Declaration of '%s'"_en_US,
name.source)};
if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
if (auto usedAsProc{proc->usedAsProcedureHere()}) {
if (usedAsProc->begin() != symbol.name().begin()) {
message.Attach(*usedAsProc, "Referenced as a procedure"_en_US);
}
}
}
return message;
}
void ScopeHandler::SayLocalMustBeVariable(
const parser::Name &name, Symbol &symbol) {
SayWithDecl(name, symbol,
"The name '%s' must be a variable to appear"
" in a locality-spec"_err_en_US);
}
Message &ScopeHandler::SayDerivedType(
const SourceName &name, MessageFixedText &&msg, const Scope &type) {
const Symbol &typeSymbol{DEREF(type.GetSymbol())};
return Say(name, std::move(msg), name, typeSymbol.name())
.Attach(typeSymbol.name(), "Declaration of derived type '%s'"_en_US,
typeSymbol.name());
}
Message &ScopeHandler::Say2(const SourceName &name1, MessageFixedText &&msg1,
const SourceName &name2, MessageFixedText &&msg2) {
return Say(name1, std::move(msg1)).Attach(name2, std::move(msg2), name2);
}
Message &ScopeHandler::Say2(const SourceName &name, MessageFixedText &&msg1,
Symbol &symbol, MessageFixedText &&msg2) {
bool isFatal{msg1.IsFatal()};
Message &result{Say2(name, std::move(msg1), symbol.name(), std::move(msg2))};
context().SetError(symbol, isFatal);
return result;
}
Message &ScopeHandler::Say2(const parser::Name &name, MessageFixedText &&msg1,
Symbol &symbol, MessageFixedText &&msg2) {
bool isFatal{msg1.IsFatal()};
Message &result{
Say2(name.source, std::move(msg1), symbol.name(), std::move(msg2))};
context().SetError(symbol, isFatal);
return result;
}
// This is essentially GetProgramUnitContaining(), but it can return
// a mutable Scope &, it ignores statement functions, and it fails
// gracefully for error recovery (returning the original Scope).
template <typename T> static T &GetInclusiveScope(T &scope) {
for (T *s{&scope}; !s->IsGlobal(); s = &s->parent()) {
switch (s->kind()) {
case Scope::Kind::Module:
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
case Scope::Kind::BlockData:
if (!s->IsStmtFunction()) {
return *s;
}
break;
default:;
}
}
return scope;
}
Scope &ScopeHandler::InclusiveScope() { return GetInclusiveScope(currScope()); }
Scope *ScopeHandler::GetHostProcedure() {
Scope &parent{InclusiveScope().parent()};
switch (parent.kind()) {
case Scope::Kind::Subprogram:
return &parent;
case Scope::Kind::MainProgram:
return &parent;
default:
return nullptr;
}
}
Scope &ScopeHandler::NonDerivedTypeScope() {
return currScope_->IsDerivedType() ? currScope_->parent() : *currScope_;
}
void ScopeHandler::PushScope(Scope::Kind kind, Symbol *symbol) {
PushScope(currScope().MakeScope(kind, symbol));
}
void ScopeHandler::PushScope(Scope &scope) {
currScope_ = &scope;
auto kind{currScope_->kind()};
if (kind != Scope::Kind::BlockConstruct &&
kind != Scope::Kind::OtherConstruct) {
BeginScope(scope);
}
// The name of a module or submodule cannot be "used" in its scope,
// as we read 19.3.1(2), so we allow the name to be used as a local
// identifier in the module or submodule too. Same with programs
// (14.1(3)) and BLOCK DATA.
if (!currScope_->IsDerivedType() && kind != Scope::Kind::Module &&
kind != Scope::Kind::MainProgram && kind != Scope::Kind::BlockData) {
if (auto *symbol{scope.symbol()}) {
// Create a dummy symbol so we can't create another one with the same
// name. It might already be there if we previously pushed the scope.
SourceName name{symbol->name()};
if (!FindInScope(scope, name)) {
auto &newSymbol{MakeSymbol(name)};
if (kind == Scope::Kind::Subprogram) {
// Allow for recursive references. If this symbol is a function
// without an explicit RESULT(), this new symbol will be discarded
// and replaced with an object of the same name.
newSymbol.set_details(HostAssocDetails{*symbol});
} else {
newSymbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName});
}
}
}
}
}
void ScopeHandler::PopScope() {
CHECK(currScope_ && !currScope_->IsGlobal());
// Entities that are not yet classified as objects or procedures are now
// assumed to be objects.
// TODO: Statement functions
for (auto &pair : currScope()) {
ConvertToObjectEntity(*pair.second);
}
funcResultStack_.Pop();
// If popping back into a global scope, pop back to the main global scope.
SetScope(currScope_->parent().IsGlobal() ? context().globalScope()
: currScope_->parent());
}
void ScopeHandler::SetScope(Scope &scope) {
currScope_ = &scope;
ImplicitRulesVisitor::SetScope(InclusiveScope());
}
Symbol *ScopeHandler::FindSymbol(const parser::Name &name) {
return FindSymbol(currScope(), name);
}
Symbol *ScopeHandler::FindSymbol(const Scope &scope, const parser::Name &name) {
if (scope.IsDerivedType()) {
if (Symbol * symbol{scope.FindComponent(name.source)}) {
if (symbol->has<TypeParamDetails>()) {
return Resolve(name, symbol);
}
}
return FindSymbol(scope.parent(), name);
} else {
// In EQUIVALENCE statements only resolve names in the local scope, see
// 19.5.1.4, paragraph 2, item (10)
return Resolve(name,
inEquivalenceStmt_ ? FindInScope(scope, name)
: scope.FindSymbol(name.source));
}
}
Symbol &ScopeHandler::MakeSymbol(
Scope &scope, const SourceName &name, Attrs attrs) {
if (Symbol * symbol{FindInScope(scope, name)}) {
CheckDuplicatedAttrs(name, *symbol, attrs);
SetExplicitAttrs(*symbol, attrs);
return *symbol;
} else {
const auto pair{scope.try_emplace(name, attrs, UnknownDetails{})};
CHECK(pair.second); // name was not found, so must be able to add
return *pair.first->second;
}
}
Symbol &ScopeHandler::MakeSymbol(const SourceName &name, Attrs attrs) {
return MakeSymbol(currScope(), name, attrs);
}
Symbol &ScopeHandler::MakeSymbol(const parser::Name &name, Attrs attrs) {
return Resolve(name, MakeSymbol(name.source, attrs));
}
Symbol &ScopeHandler::MakeHostAssocSymbol(
const parser::Name &name, const Symbol &hostSymbol) {
Symbol &symbol{*NonDerivedTypeScope()
.try_emplace(name.source, HostAssocDetails{hostSymbol})
.first->second};
name.symbol = &symbol;
symbol.attrs() = hostSymbol.attrs(); // TODO: except PRIVATE, PUBLIC?
// These attributes can be redundantly reapplied without error
// on the host-associated name, at most once (C815).
symbol.implicitAttrs() =
symbol.attrs() & Attrs{Attr::ASYNCHRONOUS, Attr::VOLATILE};
// SAVE statement in the inner scope will create a new symbol.
// If the host variable is used via host association,
// we have to propagate whether SAVE is implicit in the host scope.
// Otherwise, verifications that do not allow explicit SAVE
// attribute would fail.
symbol.implicitAttrs() |= hostSymbol.implicitAttrs() & Attrs{Attr::SAVE};
symbol.flags() = hostSymbol.flags();
return symbol;
}
Symbol &ScopeHandler::CopySymbol(const SourceName &name, const Symbol &symbol) {
CHECK(!FindInScope(name));
return MakeSymbol(currScope(), name, symbol.attrs());
}
// Look for name only in scope, not in enclosing scopes.
Symbol *ScopeHandler::FindInScope(
const Scope &scope, const parser::Name &name) {
return Resolve(name, FindInScope(scope, name.source));
}
Symbol *ScopeHandler::FindInScope(const Scope &scope, const SourceName &name) {
// all variants of names, e.g. "operator(.ne.)" for "operator(/=)"
for (const std::string &n : GetAllNames(context(), name)) {
auto it{scope.find(SourceName{n})};
if (it != scope.end()) {
return &*it->second;
}
}
return nullptr;
}
// Find a component or type parameter by name in a derived type or its parents.
Symbol *ScopeHandler::FindInTypeOrParents(
const Scope &scope, const parser::Name &name) {
return Resolve(name, scope.FindComponent(name.source));
}
Symbol *ScopeHandler::FindInTypeOrParents(const parser::Name &name) {
return FindInTypeOrParents(currScope(), name);
}
Symbol *ScopeHandler::FindInScopeOrBlockConstructs(
const Scope &scope, SourceName name) {
if (Symbol * symbol{FindInScope(scope, name)}) {
return symbol;
}
for (const Scope &child : scope.children()) {
if (child.kind() == Scope::Kind::BlockConstruct) {
if (Symbol * symbol{FindInScopeOrBlockConstructs(child, name)}) {
return symbol;
}
}
}
return nullptr;
}
void ScopeHandler::EraseSymbol(const parser::Name &name) {
currScope().erase(name.source);
name.symbol = nullptr;
}
static bool NeedsType(const Symbol &symbol) {
return !symbol.GetType() &&
common::visit(common::visitors{
[](const EntityDetails &) { return true; },
[](const ObjectEntityDetails &) { return true; },
[](const AssocEntityDetails &) { return true; },
[&](const ProcEntityDetails &p) {
return symbol.test(Symbol::Flag::Function) &&
!symbol.attrs().test(Attr::INTRINSIC) &&
!p.type() && !p.procInterface();
},
[](const auto &) { return false; },
},
symbol.details());
}
void ScopeHandler::ApplyImplicitRules(
Symbol &symbol, bool allowForwardReference) {
funcResultStack_.CompleteTypeIfFunctionResult(symbol);
if (context().HasError(symbol) || !NeedsType(symbol)) {
return;
}
if (const DeclTypeSpec * type{GetImplicitType(symbol)}) {
symbol.set(Symbol::Flag::Implicit);
symbol.SetType(*type);
return;
}
if (symbol.has<ProcEntityDetails>() && !symbol.attrs().test(Attr::EXTERNAL)) {
std::optional<Symbol::Flag> functionOrSubroutineFlag;
if (symbol.test(Symbol::Flag::Function)) {
functionOrSubroutineFlag = Symbol::Flag::Function;
} else if (symbol.test(Symbol::Flag::Subroutine)) {
functionOrSubroutineFlag = Symbol::Flag::Subroutine;
}
if (IsIntrinsic(symbol.name(), functionOrSubroutineFlag)) {
// type will be determined in expression semantics
AcquireIntrinsicProcedureFlags(symbol);
return;
}
}
if (allowForwardReference && ImplicitlyTypeForwardRef(symbol)) {
return;
}
if (const auto *entity{symbol.detailsIf<EntityDetails>()};
entity && entity->isDummy()) {
// Dummy argument, no declaration or reference; if it turns
// out to be a subroutine, it's fine, and if it is a function
// or object, it'll be caught later.
return;
}
if (deferImplicitTyping_) {
return;
}
if (!context().HasError(symbol)) {
Say(symbol.name(), "No explicit type declared for '%s'"_err_en_US);
context().SetError(symbol);
}
}
// Extension: Allow forward references to scalar integer dummy arguments
// or variables in COMMON to appear in specification expressions under
// IMPLICIT NONE(TYPE) when what would otherwise have been their implicit
// type is default INTEGER.
bool ScopeHandler::ImplicitlyTypeForwardRef(Symbol &symbol) {
if (!inSpecificationPart_ || context().HasError(symbol) ||
!(IsDummy(symbol) || FindCommonBlockContaining(symbol)) ||
symbol.Rank() != 0 ||
!context().languageFeatures().IsEnabled(
common::LanguageFeature::ForwardRefImplicitNone)) {
return false;
}
const DeclTypeSpec *type{
GetImplicitType(symbol, false /*ignore IMPLICIT NONE*/)};
if (!type || !type->IsNumeric(TypeCategory::Integer)) {
return false;
}
auto kind{evaluate::ToInt64(type->numericTypeSpec().kind())};
if (!kind || *kind != context().GetDefaultKind(TypeCategory::Integer)) {
return false;
}
if (!ConvertToObjectEntity(symbol)) {
return false;
}
// TODO: check no INTENT(OUT) if dummy?
context().Warn(common::LanguageFeature::ForwardRefImplicitNone, symbol.name(),
"'%s' was used without (or before) being explicitly typed"_warn_en_US,
symbol.name());
symbol.set(Symbol::Flag::Implicit);
symbol.SetType(*type);
return true;
}
// Ensure that the symbol for an intrinsic procedure is marked with
// the INTRINSIC attribute. Also set PURE &/or ELEMENTAL as
// appropriate.
void ScopeHandler::AcquireIntrinsicProcedureFlags(Symbol &symbol) {
SetImplicitAttr(symbol, Attr::INTRINSIC);
switch (context().intrinsics().GetIntrinsicClass(symbol.name().ToString())) {
case evaluate::IntrinsicClass::elementalFunction:
case evaluate::IntrinsicClass::elementalSubroutine:
SetExplicitAttr(symbol, Attr::ELEMENTAL);
SetExplicitAttr(symbol, Attr::PURE);
break;
case evaluate::IntrinsicClass::impureSubroutine:
break;
default:
SetExplicitAttr(symbol, Attr::PURE);
}
}
const DeclTypeSpec *ScopeHandler::GetImplicitType(
Symbol &symbol, bool respectImplicitNoneType) {
const Scope *scope{&symbol.owner()};
if (scope->IsGlobal()) {
scope = &currScope();
}
scope = &GetInclusiveScope(*scope);
const auto *type{implicitRulesMap_->at(scope).GetType(
symbol.name(), respectImplicitNoneType)};
if (type) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
// Resolve any forward-referenced derived type; a quick no-op else.
auto &instantiatable{*const_cast<DerivedTypeSpec *>(derived)};
instantiatable.Instantiate(currScope());
}
}
return type;
}
void ScopeHandler::CheckEntryDummyUse(SourceName source, Symbol *symbol) {
if (!inSpecificationPart_ && symbol &&
symbol->test(Symbol::Flag::EntryDummyArgument)) {
Say(source,
"Dummy argument '%s' may not be used before its ENTRY statement"_err_en_US,
symbol->name());
symbol->set(Symbol::Flag::EntryDummyArgument, false);
}
}
// Convert symbol to be a ObjectEntity or return false if it can't be.
bool ScopeHandler::ConvertToObjectEntity(Symbol &symbol) {
if (symbol.has<ObjectEntityDetails>()) {
// nothing to do
} else if (symbol.has<UnknownDetails>()) {
// These are attributes that a name could have picked up from
// an attribute statement or type declaration statement.
if (symbol.attrs().HasAny({Attr::EXTERNAL, Attr::INTRINSIC})) {
return false;
}
symbol.set_details(ObjectEntityDetails{});
} else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
if (symbol.attrs().HasAny({Attr::EXTERNAL, Attr::INTRINSIC})) {
return false;
}
funcResultStack_.CompleteTypeIfFunctionResult(symbol);
symbol.set_details(ObjectEntityDetails{std::move(*details)});
} else if (auto *useDetails{symbol.detailsIf<UseDetails>()}) {
return useDetails->symbol().has<ObjectEntityDetails>();
} else if (auto *hostDetails{symbol.detailsIf<HostAssocDetails>()}) {
return hostDetails->symbol().has<ObjectEntityDetails>();
} else {
return false;
}
return true;
}
// Convert symbol to be a ProcEntity or return false if it can't be.
bool ScopeHandler::ConvertToProcEntity(
Symbol &symbol, std::optional<SourceName> usedHere) {
if (symbol.has<ProcEntityDetails>()) {
} else if (symbol.has<UnknownDetails>()) {
symbol.set_details(ProcEntityDetails{});
} else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
if (IsFunctionResult(symbol) &&
!(IsPointer(symbol) && symbol.attrs().test(Attr::EXTERNAL))) {
// Don't turn function result into a procedure pointer unless both
// POINTER and EXTERNAL
return false;
}
funcResultStack_.CompleteTypeIfFunctionResult(symbol);
symbol.set_details(ProcEntityDetails{std::move(*details)});
if (symbol.GetType() && !symbol.test(Symbol::Flag::Implicit)) {
CHECK(!symbol.test(Symbol::Flag::Subroutine));
symbol.set(Symbol::Flag::Function);
}
} else if (auto *useDetails{symbol.detailsIf<UseDetails>()}) {
return useDetails->symbol().has<ProcEntityDetails>();
} else if (auto *hostDetails{symbol.detailsIf<HostAssocDetails>()}) {
return hostDetails->symbol().has<ProcEntityDetails>();
} else {
return false;
}
auto &proc{symbol.get<ProcEntityDetails>()};
if (usedHere && !proc.usedAsProcedureHere()) {
proc.set_usedAsProcedureHere(*usedHere);
}
return true;
}
const DeclTypeSpec &ScopeHandler::MakeNumericType(
TypeCategory category, const std::optional<parser::KindSelector> &kind) {
KindExpr value{GetKindParamExpr(category, kind)};
if (auto known{evaluate::ToInt64(value)}) {
return MakeNumericType(category, static_cast<int>(*known));
} else {
return currScope_->MakeNumericType(category, std::move(value));
}
}
const DeclTypeSpec &ScopeHandler::MakeNumericType(
TypeCategory category, int kind) {
return context().MakeNumericType(category, kind);
}
const DeclTypeSpec &ScopeHandler::MakeLogicalType(
const std::optional<parser::KindSelector> &kind) {
KindExpr value{GetKindParamExpr(TypeCategory::Logical, kind)};
if (auto known{evaluate::ToInt64(value)}) {
return MakeLogicalType(static_cast<int>(*known));
} else {
return currScope_->MakeLogicalType(std::move(value));
}
}
const DeclTypeSpec &ScopeHandler::MakeLogicalType(int kind) {
return context().MakeLogicalType(kind);
}
void ScopeHandler::NotePossibleBadForwardRef(const parser::Name &name) {
if (inSpecificationPart_ && !deferImplicitTyping_ && name.symbol) {
auto kind{currScope().kind()};
if ((kind == Scope::Kind::Subprogram && !currScope().IsStmtFunction()) ||
kind == Scope::Kind::BlockConstruct) {
bool isHostAssociated{&name.symbol->owner() == &currScope()
? name.symbol->has<HostAssocDetails>()
: name.symbol->owner().Contains(currScope())};
if (isHostAssociated) {
specPartState_.forwardRefs.insert(name.source);
}
}
}
}
std::optional<SourceName> ScopeHandler::HadForwardRef(
const Symbol &symbol) const {
auto iter{specPartState_.forwardRefs.find(symbol.name())};
if (iter != specPartState_.forwardRefs.end()) {
return *iter;
}
return std::nullopt;
}
bool ScopeHandler::CheckPossibleBadForwardRef(const Symbol &symbol) {
if (!context().HasError(symbol)) {
if (auto fwdRef{HadForwardRef(symbol)}) {
const Symbol *outer{symbol.owner().FindSymbol(symbol.name())};
if (outer && symbol.has<UseDetails>() &&
&symbol.GetUltimate() == &outer->GetUltimate()) {
// e.g. IMPORT of host's USE association
return false;
}
Say(*fwdRef,
"Forward reference to '%s' is not allowed in the same specification part"_err_en_US,
*fwdRef)
.Attach(symbol.name(), "Later declaration of '%s'"_en_US, *fwdRef);
context().SetError(symbol);
return true;
}
if ((IsDummy(symbol) || FindCommonBlockContaining(symbol)) &&
isImplicitNoneType() && symbol.test(Symbol::Flag::Implicit) &&
!context().HasError(symbol)) {
// Dummy or COMMON was implicitly typed despite IMPLICIT NONE(TYPE) in
// ApplyImplicitRules() due to use in a specification expression,
// and no explicit type declaration appeared later.
Say(symbol.name(), "No explicit type declared for '%s'"_err_en_US);
context().SetError(symbol);
return true;
}
}
return false;
}
void ScopeHandler::MakeExternal(Symbol &symbol) {
if (!symbol.attrs().test(Attr::EXTERNAL)) {
SetImplicitAttr(symbol, Attr::EXTERNAL);
if (symbol.attrs().test(Attr::INTRINSIC)) { // C840
Say(symbol.name(),
"Symbol '%s' cannot have both EXTERNAL and INTRINSIC attributes"_err_en_US,
symbol.name());
}
}
}
bool ScopeHandler::CheckDuplicatedAttr(
SourceName name, Symbol &symbol, Attr attr) {
if (attr == Attr::SAVE) {
// checked elsewhere
} else if (symbol.attrs().test(attr)) { // C815
if (symbol.implicitAttrs().test(attr)) {
// Implied attribute is now confirmed explicitly
symbol.implicitAttrs().reset(attr);
} else {
Say(name, "%s attribute was already specified on '%s'"_err_en_US,
EnumToString(attr), name);
return false;
}
}
return true;
}
bool ScopeHandler::CheckDuplicatedAttrs(
SourceName name, Symbol &symbol, Attrs attrs) {
bool ok{true};
attrs.IterateOverMembers(
[&](Attr x) { ok &= CheckDuplicatedAttr(name, symbol, x); });
return ok;
}
void ScopeHandler::SetCUDADataAttr(SourceName source, Symbol &symbol,
std::optional<common::CUDADataAttr> attr) {
if (attr) {
ConvertToObjectEntity(symbol);
if (auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (*attr != object->cudaDataAttr().value_or(*attr)) {
Say(source,
"'%s' already has another CUDA data attribute ('%s')"_err_en_US,
symbol.name(),
std::string{common::EnumToString(*object->cudaDataAttr())}.c_str());
} else {
object->set_cudaDataAttr(attr);
}
} else {
Say(source,
"'%s' is not an object and may not have a CUDA data attribute"_err_en_US,
symbol.name());
}
}
}
// ModuleVisitor implementation
bool ModuleVisitor::Pre(const parser::Only &x) {
common::visit(common::visitors{
[&](const Indirection<parser::GenericSpec> &generic) {
GenericSpecInfo genericSpecInfo{generic.value()};
AddUseOnly(genericSpecInfo.symbolName());
AddUse(genericSpecInfo);
},
[&](const parser::Name &name) {
AddUseOnly(name.source);
Resolve(name, AddUse(name.source, name.source).use);
},
[&](const parser::Rename &rename) { Walk(rename); },
},
x.u);
return false;
}
void ModuleVisitor::CollectUseRenames(const parser::UseStmt &useStmt) {
auto doRename{[&](const parser::Rename &rename) {
if (const auto *names{std::get_if<parser::Rename::Names>(&rename.u)}) {
AddUseRename(std::get<1>(names->t).source, useStmt.moduleName.source);
}
}};
common::visit(
common::visitors{
[&](const std::list<parser::Rename> &renames) {
for (const auto &rename : renames) {
doRename(rename);
}
},
[&](const std::list<parser::Only> &onlys) {
for (const auto &only : onlys) {
if (const auto *rename{std::get_if<parser::Rename>(&only.u)}) {
doRename(*rename);
}
}
},
},
useStmt.u);
}
bool ModuleVisitor::Pre(const parser::Rename::Names &x) {
const auto &localName{std::get<0>(x.t)};
const auto &useName{std::get<1>(x.t)};
SymbolRename rename{AddUse(localName.source, useName.source)};
Resolve(useName, rename.use);
Resolve(localName, rename.local);
return false;
}
bool ModuleVisitor::Pre(const parser::Rename::Operators &x) {
const parser::DefinedOpName &local{std::get<0>(x.t)};
const parser::DefinedOpName &use{std::get<1>(x.t)};
GenericSpecInfo localInfo{local};
GenericSpecInfo useInfo{use};
if (IsIntrinsicOperator(context(), local.v.source)) {
Say(local.v,
"Intrinsic operator '%s' may not be used as a defined operator"_err_en_US);
} else if (IsLogicalConstant(context(), local.v.source)) {
Say(local.v,
"Logical constant '%s' may not be used as a defined operator"_err_en_US);
} else {
SymbolRename rename{AddUse(localInfo.symbolName(), useInfo.symbolName())};
useInfo.Resolve(rename.use);
localInfo.Resolve(rename.local);
}
return false;
}
// Set useModuleScope_ to the Scope of the module being used.
bool ModuleVisitor::Pre(const parser::UseStmt &x) {
std::optional<bool> isIntrinsic;
if (x.nature) {
isIntrinsic = *x.nature == parser::UseStmt::ModuleNature::Intrinsic;
} else if (currScope().IsModule() && currScope().symbol() &&
currScope().symbol()->attrs().test(Attr::INTRINSIC)) {
// Intrinsic modules USE only other intrinsic modules
isIntrinsic = true;
}
useModuleScope_ = FindModule(x.moduleName, isIntrinsic);
if (!useModuleScope_) {
return false;
}
AddAndCheckModuleUse(x.moduleName.source,
useModuleScope_->parent().kind() == Scope::Kind::IntrinsicModules);
// use the name from this source file
useModuleScope_->symbol()->ReplaceName(x.moduleName.source);
return true;
}
void ModuleVisitor::Post(const parser::UseStmt &x) {
if (const auto *list{std::get_if<std::list<parser::Rename>>(&x.u)}) {
// Not a use-only: collect the names that were used in renames,
// then add a use for each public name that was not renamed.
std::set<SourceName> useNames;
for (const auto &rename : *list) {
common::visit(common::visitors{
[&](const parser::Rename::Names &names) {
useNames.insert(std::get<1>(names.t).source);
},
[&](const parser::Rename::Operators &ops) {
useNames.insert(std::get<1>(ops.t).v.source);
},
},
rename.u);
}
for (const auto &[name, symbol] : *useModuleScope_) {
if (symbol->attrs().test(Attr::PUBLIC) && !IsUseRenamed(symbol->name()) &&
(!symbol->implicitAttrs().test(Attr::INTRINSIC) ||
symbol->has<UseDetails>()) &&
!symbol->has<MiscDetails>() && useNames.count(name) == 0) {
SourceName location{x.moduleName.source};
if (auto *localSymbol{FindInScope(name)}) {
DoAddUse(location, localSymbol->name(), *localSymbol, *symbol);
} else {
DoAddUse(location, location, CopySymbol(name, *symbol), *symbol);
}
}
}
}
useModuleScope_ = nullptr;
}
ModuleVisitor::SymbolRename ModuleVisitor::AddUse(
const SourceName &localName, const SourceName &useName) {
return AddUse(localName, useName, FindInScope(*useModuleScope_, useName));
}
ModuleVisitor::SymbolRename ModuleVisitor::AddUse(
const SourceName &localName, const SourceName &useName, Symbol *useSymbol) {
if (!useModuleScope_) {
return {}; // error occurred finding module
}
if (!useSymbol) {
Say(useName, "'%s' not found in module '%s'"_err_en_US, MakeOpName(useName),
useModuleScope_->GetName().value());
return {};
}
if (useSymbol->attrs().test(Attr::PRIVATE) &&
!FindModuleFileContaining(currScope())) {
// Privacy is not enforced in module files so that generic interfaces
// can be resolved to private specific procedures in specification
// expressions.
Say(useName, "'%s' is PRIVATE in '%s'"_err_en_US, MakeOpName(useName),
useModuleScope_->GetName().value());
return {};
}
auto &localSymbol{MakeSymbol(localName)};
DoAddUse(useName, localName, localSymbol, *useSymbol);
return {&localSymbol, useSymbol};
}
// symbol must be either a Use or a Generic formed by merging two uses.
// Convert it to a UseError with this additional location.
static bool ConvertToUseError(
Symbol &symbol, const SourceName &location, const Scope &module) {
const auto *useDetails{symbol.detailsIf<UseDetails>()};
if (!useDetails) {
if (auto *genericDetails{symbol.detailsIf<GenericDetails>()}) {
if (!genericDetails->uses().empty()) {
useDetails = &genericDetails->uses().at(0)->get<UseDetails>();
}
}
}
if (useDetails) {
symbol.set_details(
UseErrorDetails{*useDetails}.add_occurrence(location, module));
return true;
} else {
return false;
}
}
void ModuleVisitor::DoAddUse(SourceName location, SourceName localName,
Symbol &originalLocal, const Symbol &useSymbol) {
Symbol *localSymbol{&originalLocal};
if (auto *details{localSymbol->detailsIf<UseErrorDetails>()}) {
details->add_occurrence(location, *useModuleScope_);
return;
}
const Symbol &useUltimate{useSymbol.GetUltimate()};
const auto *useGeneric{useUltimate.detailsIf<GenericDetails>()};
if (localSymbol->has<UnknownDetails>()) {
if (useGeneric &&
((useGeneric->specific() &&
IsProcedurePointer(*useGeneric->specific())) ||
(useGeneric->derivedType() &&
useUltimate.name() != localSymbol->name()))) {
// We are use-associating a generic that either shadows a procedure
// pointer or shadows a derived type with a distinct name.
// Local references that might be made to the procedure pointer should
// use a UseDetails symbol for proper data addressing, and a derived
// type needs to be in scope with its local name. So create an
// empty local generic now into which the use-associated generic may
// be copied.
localSymbol->set_details(GenericDetails{});
localSymbol->get<GenericDetails>().set_kind(useGeneric->kind());
} else { // just create UseDetails
localSymbol->set_details(UseDetails{localName, useSymbol});
localSymbol->attrs() =
useSymbol.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE, Attr::SAVE};
localSymbol->implicitAttrs() =
localSymbol->attrs() & Attrs{Attr::ASYNCHRONOUS, Attr::VOLATILE};
localSymbol->flags() = useSymbol.flags();
return;
}
}
Symbol &localUltimate{localSymbol->GetUltimate()};
if (&localUltimate == &useUltimate) {
// use-associating the same symbol again -- ok
return;
}
// There are many possible combinations of symbol types that could arrive
// with the same (local) name vie USE association from distinct modules.
// Fortran allows a generic interface to share its name with a derived type,
// or with the name of a non-generic procedure (which should be one of the
// generic's specific procedures). Implementing all these possibilities is
// complicated.
// Error cases are converted into UseErrorDetails symbols to trigger error
// messages when/if bad combinations are actually used later in the program.
// The error cases are:
// - two distinct derived types
// - two distinct non-generic procedures
// - a generic and a non-generic that is not already one of its specifics
// - anything other than a derived type, non-generic procedure, or
// generic procedure being combined with something other than an
// prior USE association of itself
auto *localGeneric{localUltimate.detailsIf<GenericDetails>()};
Symbol *localDerivedType{nullptr};
if (localUltimate.has<DerivedTypeDetails>()) {
localDerivedType = &localUltimate;
} else if (localGeneric) {
if (auto *dt{localGeneric->derivedType()};
dt && !dt->attrs().test(Attr::PRIVATE)) {
localDerivedType = dt;
}
}
const Symbol *useDerivedType{nullptr};
if (useUltimate.has<DerivedTypeDetails>()) {
useDerivedType = &useUltimate;
} else if (useGeneric) {
if (const auto *dt{useGeneric->derivedType()};
dt && !dt->attrs().test(Attr::PRIVATE)) {
useDerivedType = dt;
}
}
Symbol *localProcedure{nullptr};
if (localGeneric) {
if (localGeneric->specific() &&
!localGeneric->specific()->attrs().test(Attr::PRIVATE)) {
localProcedure = localGeneric->specific();
}
} else if (IsProcedure(localUltimate)) {
localProcedure = &localUltimate;
}
const Symbol *useProcedure{nullptr};
if (useGeneric) {
if (useGeneric->specific() &&
!useGeneric->specific()->attrs().test(Attr::PRIVATE)) {
useProcedure = useGeneric->specific();
}
} else if (IsProcedure(useUltimate)) {
useProcedure = &useUltimate;
}
// Creates a UseErrorDetails symbol in the current scope for a
// current UseDetails symbol, but leaves the UseDetails in the
// scope's name map.
auto CreateLocalUseError{[&]() {
EraseSymbol(*localSymbol);
CHECK(localSymbol->has<UseDetails>());
UseErrorDetails details{localSymbol->get<UseDetails>()};
details.add_occurrence(location, *useModuleScope_);
Symbol *newSymbol{&MakeSymbol(localName, Attrs{}, std::move(details))};
// Restore *localSymbol in currScope
auto iter{currScope().find(localName)};
CHECK(iter != currScope().end() && &*iter->second == newSymbol);
iter->second = MutableSymbolRef{*localSymbol};
return newSymbol;
}};
// When two derived types arrived, try to combine them.
const Symbol *combinedDerivedType{nullptr};
if (!useDerivedType) {
combinedDerivedType = localDerivedType;
} else if (!localDerivedType) {
if (useDerivedType->name() == localName) {
combinedDerivedType = useDerivedType;
} else {
combinedDerivedType =
&currScope().MakeSymbol(localSymbol->name(), useDerivedType->attrs(),
UseDetails{localSymbol->name(), *useDerivedType});
}
} else if (&localDerivedType->GetUltimate() ==
&useDerivedType->GetUltimate()) {
combinedDerivedType = localDerivedType;
} else {
const Scope *localScope{localDerivedType->GetUltimate().scope()};
const Scope *useScope{useDerivedType->GetUltimate().scope()};
if (localScope && useScope && localScope->derivedTypeSpec() &&
useScope->derivedTypeSpec() &&
evaluate::AreSameDerivedType(
*localScope->derivedTypeSpec(), *useScope->derivedTypeSpec())) {
combinedDerivedType = localDerivedType;
} else {
// Create a local UseErrorDetails for the ambiguous derived type
if (localGeneric) {
combinedDerivedType = CreateLocalUseError();
} else {
ConvertToUseError(*localSymbol, location, *useModuleScope_);
combinedDerivedType = localSymbol;
}
}
if (!localGeneric && !useGeneric) {
return; // both symbols are derived types; done
}
}
auto AreSameProcedure{[&](const Symbol &p1, const Symbol &p2) {
if (&p1 == &p2) {
return true;
} else if (p1.name() != p2.name()) {
return false;
} else if (p1.attrs().test(Attr::INTRINSIC) ||
p2.attrs().test(Attr::INTRINSIC)) {
return p1.attrs().test(Attr::INTRINSIC) &&
p2.attrs().test(Attr::INTRINSIC);
} else if (!IsProcedure(p1) || !IsProcedure(p2)) {
return false;
} else if (IsPointer(p1) || IsPointer(p2)) {
return false;
} else if (const auto *subp{p1.detailsIf<SubprogramDetails>()};
subp && !subp->isInterface()) {
return false; // defined in module, not an external
} else if (const auto *subp{p2.detailsIf<SubprogramDetails>()};
subp && !subp->isInterface()) {
return false; // defined in module, not an external
} else {
// Both are external interfaces, perhaps to the same procedure
auto class1{ClassifyProcedure(p1)};
auto class2{ClassifyProcedure(p2)};
if (class1 == ProcedureDefinitionClass::External &&
class2 == ProcedureDefinitionClass::External) {
auto chars1{evaluate::characteristics::Procedure::Characterize(
p1, GetFoldingContext())};
auto chars2{evaluate::characteristics::Procedure::Characterize(
p2, GetFoldingContext())};
// same procedure interface defined identically in two modules?
return chars1 && chars2 && *chars1 == *chars2;
} else {
return false;
}
}
}};
// When two non-generic procedures arrived, try to combine them.
const Symbol *combinedProcedure{nullptr};
if (!localProcedure) {
combinedProcedure = useProcedure;
} else if (!useProcedure) {
combinedProcedure = localProcedure;
} else {
if (AreSameProcedure(
localProcedure->GetUltimate(), useProcedure->GetUltimate())) {
if (!localGeneric && !useGeneric) {
return; // both symbols are non-generic procedures
}
combinedProcedure = localProcedure;
}
}
// Prepare to merge generics
bool cantCombine{false};
if (localGeneric) {
if (useGeneric || useDerivedType) {
} else if (&useUltimate == &BypassGeneric(localUltimate).GetUltimate()) {
return; // nothing to do; used subprogram is local's specific
} else if (useUltimate.attrs().test(Attr::INTRINSIC) &&
useUltimate.name() == localSymbol->name()) {
return; // local generic can extend intrinsic
} else {
for (const auto &ref : localGeneric->specificProcs()) {
if (&ref->GetUltimate() == &useUltimate) {
return; // used non-generic is already a specific of local generic
}
}
cantCombine = true;
}
} else if (useGeneric) {
if (localDerivedType) {
} else if (&localUltimate == &BypassGeneric(useUltimate).GetUltimate() ||
(localSymbol->attrs().test(Attr::INTRINSIC) &&
localUltimate.name() == useUltimate.name())) {
// Local is the specific of the used generic or an intrinsic with the
// same name; replace it.
EraseSymbol(*localSymbol);
Symbol &newSymbol{MakeSymbol(localName,
useUltimate.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE},
UseDetails{localName, useUltimate})};
newSymbol.flags() = useSymbol.flags();
return;
} else {
for (const auto &ref : useGeneric->specificProcs()) {
if (&ref->GetUltimate() == &localUltimate) {
return; // local non-generic is already a specific of used generic
}
}
cantCombine = true;
}
} else {
cantCombine = true;
}
// If symbols are not combinable, create a use error.
if (cantCombine) {
if (!ConvertToUseError(*localSymbol, location, *useModuleScope_)) {
Say(location,
"Cannot use-associate '%s'; it is already declared in this scope"_err_en_US,
localName)
.Attach(localSymbol->name(), "Previous declaration of '%s'"_en_US,
localName);
}
return;
}
// At this point, there must be at least one generic interface.
CHECK(localGeneric || (useGeneric && (localDerivedType || localProcedure)));
// Ensure that a use-associated specific procedure that is a procedure
// pointer is properly represented as a USE association of an entity.
if (IsProcedurePointer(useProcedure)) {
Symbol &combined{currScope().MakeSymbol(localSymbol->name(),
useProcedure->attrs(), UseDetails{localName, *useProcedure})};
combined.flags() |= useProcedure->flags();
combinedProcedure = &combined;
}
if (localGeneric) {
// Create a local copy of a previously use-associated generic so that
// it can be locally extended without corrupting the original.
if (localSymbol->has<UseDetails>()) {
GenericDetails generic;
generic.CopyFrom(DEREF(localGeneric));
EraseSymbol(*localSymbol);
Symbol &newSymbol{MakeSymbol(
localSymbol->name(), localSymbol->attrs(), std::move(generic))};
newSymbol.flags() = localSymbol->flags();
localGeneric = &newSymbol.get<GenericDetails>();
localGeneric->AddUse(*localSymbol);
localSymbol = &newSymbol;
}
if (useGeneric) {
// Combine two use-associated generics
localSymbol->attrs() =
useSymbol.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE};
localSymbol->flags() = useSymbol.flags();
AddGenericUse(*localGeneric, localName, useUltimate);
localGeneric->clear_derivedType();
localGeneric->CopyFrom(*useGeneric);
}
localGeneric->clear_derivedType();
if (combinedDerivedType) {
localGeneric->set_derivedType(*const_cast<Symbol *>(combinedDerivedType));
}
localGeneric->clear_specific();
if (combinedProcedure) {
localGeneric->set_specific(*const_cast<Symbol *>(combinedProcedure));
}
} else {
CHECK(localSymbol->has<UseDetails>());
// Create a local copy of the use-associated generic, then extend it
// with the combined derived type &/or non-generic procedure.
GenericDetails generic;
generic.CopyFrom(*useGeneric);
EraseSymbol(*localSymbol);
Symbol &newSymbol{MakeSymbol(localName,
useUltimate.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE},
std::move(generic))};
newSymbol.flags() = useUltimate.flags();
auto &newUseGeneric{newSymbol.get<GenericDetails>()};
AddGenericUse(newUseGeneric, localName, useUltimate);
newUseGeneric.AddUse(*localSymbol);
if (combinedDerivedType) {
if (const auto *oldDT{newUseGeneric.derivedType()}) {
CHECK(&oldDT->GetUltimate() == &combinedDerivedType->GetUltimate());
} else {
newUseGeneric.set_derivedType(
*const_cast<Symbol *>(combinedDerivedType));
}
}
if (combinedProcedure) {
newUseGeneric.set_specific(*const_cast<Symbol *>(combinedProcedure));
}
}
}
void ModuleVisitor::AddUse(const GenericSpecInfo &info) {
if (useModuleScope_) {
const auto &name{info.symbolName()};
auto rename{AddUse(name, name, FindInScope(*useModuleScope_, name))};
info.Resolve(rename.use);
}
}
// Create a UseDetails symbol for this USE and add it to generic
Symbol &ModuleVisitor::AddGenericUse(
GenericDetails &generic, const SourceName &name, const Symbol &useSymbol) {
Symbol &newSymbol{
currScope().MakeSymbol(name, {}, UseDetails{name, useSymbol})};
generic.AddUse(newSymbol);
return newSymbol;
}
// Enforce F'2023 C1406 as a warning
void ModuleVisitor::AddAndCheckModuleUse(SourceName name, bool isIntrinsic) {
if (isIntrinsic) {
if (auto iter{nonIntrinsicUses_.find(name)};
iter != nonIntrinsicUses_.end()) {
if (auto *msg{context().Warn(common::LanguageFeature::MiscUseExtensions,
name,
"Should not USE the intrinsic module '%s' in the same scope as a USE of the non-intrinsic module"_port_en_US,
name)}) {
msg->Attach(*iter, "Previous USE of '%s'"_en_US, *iter);
}
}
intrinsicUses_.insert(name);
} else {
if (auto iter{intrinsicUses_.find(name)}; iter != intrinsicUses_.end()) {
if (auto *msg{context().Warn(common::LanguageFeature::MiscUseExtensions,
name,
"Should not USE the non-intrinsic module '%s' in the same scope as a USE of the intrinsic module"_port_en_US,
name)}) {
msg->Attach(*iter, "Previous USE of '%s'"_en_US, *iter);
}
}
nonIntrinsicUses_.insert(name);
}
}
bool ModuleVisitor::BeginSubmodule(
const parser::Name &name, const parser::ParentIdentifier &parentId) {
const auto &ancestorName{std::get<parser::Name>(parentId.t)};
Scope *parentScope{nullptr};
Scope *ancestor{FindModule(ancestorName, false /*not intrinsic*/)};
if (ancestor) {
if (const auto &parentName{
std::get<std::optional<parser::Name>>(parentId.t)}) {
parentScope = FindModule(*parentName, false /*not intrinsic*/, ancestor);
} else {
parentScope = ancestor;
}
}
if (parentScope) {
PushScope(*parentScope);
} else {
// Error recovery: there's no ancestor scope, so create a dummy one to
// hold the submodule's scope.
SourceName dummyName{context().GetTempName(currScope())};
Symbol &dummySymbol{MakeSymbol(dummyName, Attrs{}, ModuleDetails{false})};
PushScope(Scope::Kind::Module, &dummySymbol);
parentScope = &currScope();
}
BeginModule(name, true);
set_inheritFromParent(false); // submodules don't inherit parents' implicits
if (ancestor && !ancestor->AddSubmodule(name.source, currScope())) {
Say(name, "Module '%s' already has a submodule named '%s'"_err_en_US,
ancestorName.source, name.source);
}
return true;
}
void ModuleVisitor::BeginModule(const parser::Name &name, bool isSubmodule) {
// Submodule symbols are not visible in their parents' scopes.
Symbol &symbol{isSubmodule ? Resolve(name,
currScope().MakeSymbol(name.source, Attrs{},
ModuleDetails{true}))
: MakeSymbol(name, ModuleDetails{false})};
auto &details{symbol.get<ModuleDetails>()};
PushScope(Scope::Kind::Module, &symbol);
details.set_scope(&currScope());
prevAccessStmt_ = std::nullopt;
}
// Find a module or submodule by name and return its scope.
// If ancestor is present, look for a submodule of that ancestor module.
// May have to read a .mod file to find it.
// If an error occurs, report it and return nullptr.
Scope *ModuleVisitor::FindModule(const parser::Name &name,
std::optional<bool> isIntrinsic, Scope *ancestor) {
ModFileReader reader{context()};
Scope *scope{
reader.Read(name.source, isIntrinsic, ancestor, /*silent=*/false)};
if (!scope) {
return nullptr;
}
if (DoesScopeContain(scope, currScope())) { // 14.2.2(1)
Say(name, "Module '%s' cannot USE itself"_err_en_US);
}
Resolve(name, scope->symbol());
return scope;
}
void ModuleVisitor::ApplyDefaultAccess() {
const auto *moduleDetails{
DEREF(currScope().symbol()).detailsIf<ModuleDetails>()};
CHECK(moduleDetails);
Attr defaultAttr{
DEREF(moduleDetails).isDefaultPrivate() ? Attr::PRIVATE : Attr::PUBLIC};
for (auto &pair : currScope()) {
Symbol &symbol{*pair.second};
if (!symbol.attrs().HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
Attr attr{defaultAttr};
if (auto *generic{symbol.detailsIf<GenericDetails>()}) {
if (generic->derivedType()) {
// If a generic interface has a derived type of the same
// name that has an explicit accessibility attribute, then
// the generic must have the same accessibility.
if (generic->derivedType()->attrs().test(Attr::PUBLIC)) {
attr = Attr::PUBLIC;
} else if (generic->derivedType()->attrs().test(Attr::PRIVATE)) {
attr = Attr::PRIVATE;
}
}
}
SetImplicitAttr(symbol, attr);
}
}
}
// InterfaceVistor implementation
bool InterfaceVisitor::Pre(const parser::InterfaceStmt &x) {
bool isAbstract{std::holds_alternative<parser::Abstract>(x.u)};
genericInfo_.emplace(/*isInterface*/ true, isAbstract);
return BeginAttrs();
}
void InterfaceVisitor::Post(const parser::InterfaceStmt &) { EndAttrs(); }
void InterfaceVisitor::Post(const parser::EndInterfaceStmt &) {
ResolveNewSpecifics();
genericInfo_.pop();
}
// Create a symbol in genericSymbol_ for this GenericSpec.
bool InterfaceVisitor::Pre(const parser::GenericSpec &x) {
if (auto *symbol{FindInScope(GenericSpecInfo{x}.symbolName())}) {
SetGenericSymbol(*symbol);
}
return false;
}
bool InterfaceVisitor::Pre(const parser::ProcedureStmt &x) {
if (!isGeneric()) {
Say("A PROCEDURE statement is only allowed in a generic interface block"_err_en_US);
} else {
auto kind{std::get<parser::ProcedureStmt::Kind>(x.t)};
const auto &names{std::get<std::list<parser::Name>>(x.t)};
AddSpecificProcs(names, kind);
}
return false;
}
bool InterfaceVisitor::Pre(const parser::GenericStmt &) {
genericInfo_.emplace(/*isInterface*/ false);
return BeginAttrs();
}
void InterfaceVisitor::Post(const parser::GenericStmt &x) {
auto attrs{EndAttrs()};
if (Symbol * symbol{GetGenericInfo().symbol}) {
SetExplicitAttrs(*symbol, attrs);
}
const auto &names{std::get<std::list<parser::Name>>(x.t)};
AddSpecificProcs(names, ProcedureKind::Procedure);
ResolveNewSpecifics();
genericInfo_.pop();
}
bool InterfaceVisitor::inInterfaceBlock() const {
return !genericInfo_.empty() && GetGenericInfo().isInterface;
}
bool InterfaceVisitor::isGeneric() const {
return !genericInfo_.empty() && GetGenericInfo().symbol;
}
bool InterfaceVisitor::isAbstract() const {
return !genericInfo_.empty() && GetGenericInfo().isAbstract;
}
void InterfaceVisitor::AddSpecificProcs(
const std::list<parser::Name> &names, ProcedureKind kind) {
if (Symbol * symbol{GetGenericInfo().symbol};
symbol && symbol->has<GenericDetails>()) {
for (const auto &name : names) {
specificsForGenericProcs_.emplace(symbol, std::make_pair(&name, kind));
genericsForSpecificProcs_.emplace(name.source, symbol);
}
}
}
// By now we should have seen all specific procedures referenced by name in
// this generic interface. Resolve those names to symbols.
void GenericHandler::ResolveSpecificsInGeneric(
Symbol &generic, bool isEndOfSpecificationPart) {
auto &details{generic.get<GenericDetails>()};
UnorderedSymbolSet symbolsSeen;
for (const Symbol &symbol : details.specificProcs()) {
symbolsSeen.insert(symbol.GetUltimate());
}
auto range{specificsForGenericProcs_.equal_range(&generic)};
SpecificProcMapType retain;
for (auto it{range.first}; it != range.second; ++it) {
const parser::Name *name{it->second.first};
auto kind{it->second.second};
const Symbol *symbol{isEndOfSpecificationPart
? FindSymbol(*name)
: FindInScope(generic.owner(), *name)};
ProcedureDefinitionClass defClass{ProcedureDefinitionClass::None};
const Symbol *specific{symbol};
const Symbol *ultimate{nullptr};
if (symbol) {
// Subtlety: when *symbol is a use- or host-association, the specific
// procedure that is recorded in the GenericDetails below must be *symbol,
// not the specific procedure shadowed by a generic, because that specific
// procedure may be a symbol from another module and its name unavailable
// to emit to a module file.
const Symbol &bypassed{BypassGeneric(*symbol)};
if (symbol == &symbol->GetUltimate()) {
specific = &bypassed;
}
ultimate = &bypassed.GetUltimate();
defClass = ClassifyProcedure(*ultimate);
}
std::optional<MessageFixedText> error;
if (defClass == ProcedureDefinitionClass::Module) {
// ok
} else if (kind == ProcedureKind::ModuleProcedure) {
error = "'%s' is not a module procedure"_err_en_US;
} else {
switch (defClass) {
case ProcedureDefinitionClass::Intrinsic:
case ProcedureDefinitionClass::External:
case ProcedureDefinitionClass::Internal:
case ProcedureDefinitionClass::Dummy:
case ProcedureDefinitionClass::Pointer:
break;
case ProcedureDefinitionClass::None:
error = "'%s' is not a procedure"_err_en_US;
break;
default:
error =
"'%s' is not a procedure that can appear in a generic interface"_err_en_US;
break;
}
}
if (error) {
if (isEndOfSpecificationPart) {
Say(*name, std::move(*error));
} else {
// possible forward reference, catch it later
retain.emplace(&generic, std::make_pair(name, kind));
}
} else if (!ultimate) {
} else if (symbolsSeen.insert(*ultimate).second /*true if added*/) {
// When a specific procedure is a USE association, that association
// is saved in the generic's specifics, not its ultimate symbol,
// so that module file output of interfaces can distinguish them.
details.AddSpecificProc(*specific, name->source);
} else if (specific == ultimate) {
Say(name->source,
"Procedure '%s' is already specified in generic '%s'"_err_en_US,
name->source, MakeOpName(generic.name()));
} else {
Say(name->source,
"Procedure '%s' from module '%s' is already specified in generic '%s'"_err_en_US,
ultimate->name(), ultimate->owner().GetName().value(),
MakeOpName(generic.name()));
}
}
specificsForGenericProcs_.erase(range.first, range.second);
specificsForGenericProcs_.merge(std::move(retain));
}
void GenericHandler::DeclaredPossibleSpecificProc(Symbol &proc) {
auto range{genericsForSpecificProcs_.equal_range(proc.name())};
for (auto iter{range.first}; iter != range.second; ++iter) {
ResolveSpecificsInGeneric(*iter->second, false);
}
}
void InterfaceVisitor::ResolveNewSpecifics() {
if (Symbol * generic{genericInfo_.top().symbol};
generic && generic->has<GenericDetails>()) {
ResolveSpecificsInGeneric(*generic, false);
}
}
// Mixed interfaces are allowed by the standard.
// If there is a derived type with the same name, they must all be functions.
void InterfaceVisitor::CheckGenericProcedures(Symbol &generic) {
ResolveSpecificsInGeneric(generic, true);
auto &details{generic.get<GenericDetails>()};
if (auto *proc{details.CheckSpecific()}) {
context().Warn(common::UsageWarning::HomonymousSpecific,
proc->name().begin() > generic.name().begin() ? proc->name()
: generic.name(),
"'%s' should not be the name of both a generic interface and a procedure unless it is a specific procedure of the generic"_warn_en_US,
generic.name());
}
auto &specifics{details.specificProcs()};
if (specifics.empty()) {
if (details.derivedType()) {
generic.set(Symbol::Flag::Function);
}
return;
}
const Symbol *function{nullptr};
const Symbol *subroutine{nullptr};
for (const Symbol &specific : specifics) {
if (!function && specific.test(Symbol::Flag::Function)) {
function = &specific;
} else if (!subroutine && specific.test(Symbol::Flag::Subroutine)) {
subroutine = &specific;
if (details.derivedType() &&
context().ShouldWarn(
common::LanguageFeature::SubroutineAndFunctionSpecifics) &&
!InModuleFile()) {
SayDerivedType(generic.name(),
"Generic interface '%s' should only contain functions due to derived type with same name"_warn_en_US,
*details.derivedType()->GetUltimate().scope())
.set_languageFeature(
common::LanguageFeature::SubroutineAndFunctionSpecifics);
}
}
if (function && subroutine) { // F'2023 C1514
if (auto *msg{context().Warn(
common::LanguageFeature::SubroutineAndFunctionSpecifics,
generic.name(),
"Generic interface '%s' has both a function and a subroutine"_warn_en_US,
generic.name())}) {
msg->Attach(function->name(), "Function declaration"_en_US)
.Attach(subroutine->name(), "Subroutine declaration"_en_US);
}
break;
}
}
if (function && !subroutine) {
generic.set(Symbol::Flag::Function);
} else if (subroutine && !function) {
generic.set(Symbol::Flag::Subroutine);
}
}
// SubprogramVisitor implementation
// Return false if it is actually an assignment statement.
bool SubprogramVisitor::HandleStmtFunction(const parser::StmtFunctionStmt &x) {
const auto &name{std::get<parser::Name>(x.t)};
const DeclTypeSpec *resultType{nullptr};
// Look up name: provides return type or tells us if it's an array
if (auto *symbol{FindSymbol(name)}) {
Symbol &ultimate{symbol->GetUltimate()};
if (ultimate.has<ObjectEntityDetails>() ||
ultimate.has<AssocEntityDetails>() ||
CouldBeDataPointerValuedFunction(&ultimate) ||
(&symbol->owner() == &currScope() && IsFunctionResult(*symbol))) {
misparsedStmtFuncFound_ = true;
return false;
}
if (IsHostAssociated(*symbol, currScope())) {
context().Warn(common::LanguageFeature::StatementFunctionExtensions,
name.source,
"Name '%s' from host scope should have a type declaration before its local statement function definition"_port_en_US,
name.source);
MakeSymbol(name, Attrs{}, UnknownDetails{});
} else if (auto *entity{ultimate.detailsIf<EntityDetails>()};
entity && !ultimate.has<ProcEntityDetails>()) {
resultType = entity->type();
ultimate.details() = UnknownDetails{}; // will be replaced below
} else {
misparsedStmtFuncFound_ = true;
}
}
if (misparsedStmtFuncFound_) {
Say(name,
"'%s' has not been declared as an array or pointer-valued function"_err_en_US);
return false;
}
auto &symbol{PushSubprogramScope(name, Symbol::Flag::Function)};
symbol.set(Symbol::Flag::StmtFunction);
EraseSymbol(symbol); // removes symbol added by PushSubprogramScope
auto &details{symbol.get<SubprogramDetails>()};
for (const auto &dummyName : std::get<std::list<parser::Name>>(x.t)) {
ObjectEntityDetails dummyDetails{true};
if (auto *dummySymbol{FindInScope(currScope().parent(), dummyName)}) {
if (auto *d{dummySymbol->GetType()}) {
dummyDetails.set_type(*d);
}
}
Symbol &dummy{MakeSymbol(dummyName, std::move(dummyDetails))};
ApplyImplicitRules(dummy);
details.add_dummyArg(dummy);
}
ObjectEntityDetails resultDetails;
if (resultType) {
resultDetails.set_type(*resultType);
}
resultDetails.set_funcResult(true);
Symbol &result{MakeSymbol(name, std::move(resultDetails))};
result.flags().set(Symbol::Flag::StmtFunction);
ApplyImplicitRules(result);
details.set_result(result);
// The analysis of the expression that constitutes the body of the
// statement function is deferred to FinishSpecificationPart() so that
// all declarations and implicit typing are complete.
PopScope();
return true;
}
bool SubprogramVisitor::Pre(const parser::Suffix &suffix) {
if (suffix.resultName) {
if (IsFunction(currScope())) {
if (FuncResultStack::FuncInfo * info{funcResultStack().Top()}) {
if (info->inFunctionStmt) {
info->resultName = &suffix.resultName.value();
} else {
// will check the result name in Post(EntryStmt)
}
}
} else {
Message &msg{Say(*suffix.resultName,
"RESULT(%s) may appear only in a function"_err_en_US)};
if (const Symbol * subprogram{InclusiveScope().symbol()}) {
msg.Attach(subprogram->name(), "Containing subprogram"_en_US);
}
}
}
// LanguageBindingSpec deferred to Post(EntryStmt) or, for FunctionStmt,
// all the way to EndSubprogram().
return false;
}
bool SubprogramVisitor::Pre(const parser::PrefixSpec &x) {
// Save this to process after UseStmt and ImplicitPart
if (const auto *parsedType{std::get_if<parser::DeclarationTypeSpec>(&x.u)}) {
if (FuncResultStack::FuncInfo * info{funcResultStack().Top()}) {
if (info->parsedType) { // C1543
Say(currStmtSource().value_or(info->source),
"FUNCTION prefix cannot specify the type more than once"_err_en_US);
} else {
info->parsedType = parsedType;
if (auto at{currStmtSource()}) {
info->source = *at;
}
}
} else {
Say(currStmtSource().value(),
"SUBROUTINE prefix cannot specify a type"_err_en_US);
}
return false;
} else {
return true;
}
}
bool SubprogramVisitor::Pre(const parser::PrefixSpec::Attributes &attrs) {
if (auto *subp{currScope().symbol()
? currScope().symbol()->detailsIf<SubprogramDetails>()
: nullptr}) {
for (auto attr : attrs.v) {
if (auto current{subp->cudaSubprogramAttrs()}) {
if (attr == *current ||
(*current == common::CUDASubprogramAttrs::HostDevice &&
(attr == common::CUDASubprogramAttrs::Host ||
attr == common::CUDASubprogramAttrs::Device))) {
context().Warn(common::LanguageFeature::RedundantAttribute,
currStmtSource().value(),
"ATTRIBUTES(%s) appears more than once"_warn_en_US,
common::EnumToString(attr));
} else if ((attr == common::CUDASubprogramAttrs::Host ||
attr == common::CUDASubprogramAttrs::Device) &&
(*current == common::CUDASubprogramAttrs::Host ||
*current == common::CUDASubprogramAttrs::Device ||
*current == common::CUDASubprogramAttrs::HostDevice)) {
// HOST,DEVICE or DEVICE,HOST -> HostDevice
subp->set_cudaSubprogramAttrs(
common::CUDASubprogramAttrs::HostDevice);
} else {
Say(currStmtSource().value(),
"ATTRIBUTES(%s) conflicts with earlier ATTRIBUTES(%s)"_err_en_US,
common::EnumToString(attr), common::EnumToString(*current));
}
} else {
subp->set_cudaSubprogramAttrs(attr);
}
}
if (auto attrs{subp->cudaSubprogramAttrs()}) {
if (*attrs == common::CUDASubprogramAttrs::Global ||
*attrs == common::CUDASubprogramAttrs::Device) {
const Scope &scope{currScope()};
const Scope *mod{FindModuleContaining(scope)};
if (mod && mod->GetName().value() == "cudadevice") {
return false;
}
// Implicitly USE the cudadevice module by copying its symbols in the
// current scope.
const Scope &cudaDeviceScope{context().GetCUDADeviceScope()};
for (auto sym : cudaDeviceScope.GetSymbols()) {
if (!currScope().FindSymbol(sym->name())) {
auto &localSymbol{MakeSymbol(
sym->name(), Attrs{}, UseDetails{sym->name(), *sym})};
localSymbol.flags() = sym->flags();
}
}
}
}
}
return false;
}
void SubprogramVisitor::Post(const parser::PrefixSpec::Launch_Bounds &x) {
std::vector<std::int64_t> bounds;
bool ok{true};
for (const auto &sicx : x.v) {
if (auto value{evaluate::ToInt64(EvaluateExpr(sicx))}) {
bounds.push_back(*value);
} else {
ok = false;
}
}
if (!ok || bounds.size() < 2 || bounds.size() > 3) {
Say(currStmtSource().value(),
"Operands of LAUNCH_BOUNDS() must be 2 or 3 integer constants"_err_en_US);
} else if (auto *subp{currScope().symbol()
? currScope().symbol()->detailsIf<SubprogramDetails>()
: nullptr}) {
if (subp->cudaLaunchBounds().empty()) {
subp->set_cudaLaunchBounds(std::move(bounds));
} else {
Say(currStmtSource().value(),
"LAUNCH_BOUNDS() may only appear once"_err_en_US);
}
}
}
void SubprogramVisitor::Post(const parser::PrefixSpec::Cluster_Dims &x) {
std::vector<std::int64_t> dims;
bool ok{true};
for (const auto &sicx : x.v) {
if (auto value{evaluate::ToInt64(EvaluateExpr(sicx))}) {
dims.push_back(*value);
} else {
ok = false;
}
}
if (!ok || dims.size() != 3) {
Say(currStmtSource().value(),
"Operands of CLUSTER_DIMS() must be three integer constants"_err_en_US);
} else if (auto *subp{currScope().symbol()
? currScope().symbol()->detailsIf<SubprogramDetails>()
: nullptr}) {
if (subp->cudaClusterDims().empty()) {
subp->set_cudaClusterDims(std::move(dims));
} else {
Say(currStmtSource().value(),
"CLUSTER_DIMS() may only appear once"_err_en_US);
}
}
}
static bool HasModulePrefix(const std::list<parser::PrefixSpec> &prefixes) {
for (const auto &prefix : prefixes) {
if (std::holds_alternative<parser::PrefixSpec::Module>(prefix.u)) {
return true;
}
}
return false;
}
bool SubprogramVisitor::Pre(const parser::InterfaceBody::Subroutine &x) {
const auto &stmtTuple{
std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement.t};
return BeginSubprogram(std::get<parser::Name>(stmtTuple),
Symbol::Flag::Subroutine,
HasModulePrefix(std::get<std::list<parser::PrefixSpec>>(stmtTuple)));
}
void SubprogramVisitor::Post(const parser::InterfaceBody::Subroutine &x) {
const auto &stmt{std::get<parser::Statement<parser::SubroutineStmt>>(x.t)};
EndSubprogram(stmt.source,
&std::get<std::optional<parser::LanguageBindingSpec>>(stmt.statement.t));
}
bool SubprogramVisitor::Pre(const parser::InterfaceBody::Function &x) {
const auto &stmtTuple{
std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement.t};
return BeginSubprogram(std::get<parser::Name>(stmtTuple),
Symbol::Flag::Function,
HasModulePrefix(std::get<std::list<parser::PrefixSpec>>(stmtTuple)));
}
void SubprogramVisitor::Post(const parser::InterfaceBody::Function &x) {
const auto &stmt{std::get<parser::Statement<parser::FunctionStmt>>(x.t)};
const auto &maybeSuffix{
std::get<std::optional<parser::Suffix>>(stmt.statement.t)};
EndSubprogram(stmt.source, maybeSuffix ? &maybeSuffix->binding : nullptr);
}
bool SubprogramVisitor::Pre(const parser::SubroutineStmt &stmt) {
BeginAttrs();
Walk(std::get<std::list<parser::PrefixSpec>>(stmt.t));
Walk(std::get<parser::Name>(stmt.t));
Walk(std::get<std::list<parser::DummyArg>>(stmt.t));
// Don't traverse the LanguageBindingSpec now; it's deferred to EndSubprogram.
Symbol &symbol{PostSubprogramStmt()};
SubprogramDetails &details{symbol.get<SubprogramDetails>()};
for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) {
CreateDummyArgument(details, *dummyName);
} else {
details.add_alternateReturn();
}
}
return false;
}
bool SubprogramVisitor::Pre(const parser::FunctionStmt &) {
FuncResultStack::FuncInfo &info{DEREF(funcResultStack().Top())};
CHECK(!info.inFunctionStmt);
info.inFunctionStmt = true;
if (auto at{currStmtSource()}) {
info.source = *at;
}
return BeginAttrs();
}
bool SubprogramVisitor::Pre(const parser::EntryStmt &) { return BeginAttrs(); }
void SubprogramVisitor::Post(const parser::FunctionStmt &stmt) {
const auto &name{std::get<parser::Name>(stmt.t)};
Symbol &symbol{PostSubprogramStmt()};
SubprogramDetails &details{symbol.get<SubprogramDetails>()};
for (const auto &dummyName : std::get<std::list<parser::Name>>(stmt.t)) {
CreateDummyArgument(details, dummyName);
}
const parser::Name *funcResultName;
FuncResultStack::FuncInfo &info{DEREF(funcResultStack().Top())};
CHECK(info.inFunctionStmt);
info.inFunctionStmt = false;
bool distinctResultName{
info.resultName && info.resultName->source != name.source};
if (distinctResultName) {
// Note that RESULT is ignored if it has the same name as the function.
// The symbol created by PushScope() is retained as a place-holder
// for error detection.
funcResultName = info.resultName;
} else {
EraseSymbol(name); // was added by PushScope()
funcResultName = &name;
}
if (details.isFunction()) {
CHECK(context().HasError(currScope().symbol()));
} else {
// RESULT(x) can be the same explicitly-named RESULT(x) as an ENTRY
// statement.
Symbol *result{nullptr};
if (distinctResultName) {
if (auto iter{currScope().find(funcResultName->source)};
iter != currScope().end()) {
Symbol &entryResult{*iter->second};
if (IsFunctionResult(entryResult)) {
result = &entryResult;
}
}
}
if (result) {
Resolve(*funcResultName, *result);
} else {
// add function result to function scope
EntityDetails funcResultDetails;
funcResultDetails.set_funcResult(true);
result = &MakeSymbol(*funcResultName, std::move(funcResultDetails));
}
info.resultSymbol = result;
details.set_result(*result);
}
// C1560.
if (info.resultName && !distinctResultName) {
context().Warn(common::UsageWarning::HomonymousResult,
info.resultName->source,
"The function name should not appear in RESULT; references to '%s' "
"inside the function will be considered as references to the "
"result only"_warn_en_US,
name.source);
// RESULT name was ignored above, the only side effect from doing so will be
// the inability to make recursive calls. The related parser::Name is still
// resolved to the created function result symbol because every parser::Name
// should be resolved to avoid internal errors.
Resolve(*info.resultName, info.resultSymbol);
}
name.symbol = &symbol; // must not be function result symbol
// Clear the RESULT() name now in case an ENTRY statement in the implicit-part
// has a RESULT() suffix.
info.resultName = nullptr;
}
Symbol &SubprogramVisitor::PostSubprogramStmt() {
Symbol &symbol{*currScope().symbol()};
SetExplicitAttrs(symbol, EndAttrs());
if (symbol.attrs().test(Attr::MODULE)) {
symbol.attrs().set(Attr::EXTERNAL, false);
symbol.implicitAttrs().set(Attr::EXTERNAL, false);
}
return symbol;
}
void SubprogramVisitor::Post(const parser::EntryStmt &stmt) {
if (const auto &suffix{std::get<std::optional<parser::Suffix>>(stmt.t)}) {
Walk(suffix->binding);
}
PostEntryStmt(stmt);
EndAttrs();
}
void SubprogramVisitor::CreateDummyArgument(
SubprogramDetails &details, const parser::Name &name) {
Symbol *dummy{FindInScope(name)};
if (dummy) {
if (IsDummy(*dummy)) {
if (dummy->test(Symbol::Flag::EntryDummyArgument)) {
dummy->set(Symbol::Flag::EntryDummyArgument, false);
} else {
Say(name,
"'%s' appears more than once as a dummy argument name in this subprogram"_err_en_US,
name.source);
return;
}
} else {
SayWithDecl(name, *dummy,
"'%s' may not appear as a dummy argument name in this subprogram"_err_en_US);
return;
}
} else {
dummy = &MakeSymbol(name, EntityDetails{true});
}
details.add_dummyArg(DEREF(dummy));
}
void SubprogramVisitor::CreateEntry(
const parser::EntryStmt &stmt, Symbol &subprogram) {
const auto &entryName{std::get<parser::Name>(stmt.t)};
Scope &outer{currScope().parent()};
Symbol::Flag subpFlag{subprogram.test(Symbol::Flag::Function)
? Symbol::Flag::Function
: Symbol::Flag::Subroutine};
Attrs attrs;
const auto &suffix{std::get<std::optional<parser::Suffix>>(stmt.t)};
bool hasGlobalBindingName{outer.IsGlobal() && suffix && suffix->binding &&
std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
suffix->binding->t)
.has_value()};
if (!hasGlobalBindingName) {
if (Symbol * extant{FindSymbol(outer, entryName)}) {
if (!HandlePreviousCalls(entryName, *extant, subpFlag)) {
if (outer.IsTopLevel()) {
Say2(entryName,
"'%s' is already defined as a global identifier"_err_en_US,
*extant, "Previous definition of '%s'"_en_US);
} else {
SayAlreadyDeclared(entryName, *extant);
}
return;
}
attrs = extant->attrs();
}
}
std::optional<SourceName> distinctResultName;
if (suffix && suffix->resultName &&
suffix->resultName->source != entryName.source) {
distinctResultName = suffix->resultName->source;
}
if (outer.IsModule() && !attrs.test(Attr::PRIVATE)) {
attrs.set(Attr::PUBLIC);
}
Symbol *entrySymbol{nullptr};
if (hasGlobalBindingName) {
// Hide the entry's symbol in a new anonymous global scope so
// that its name doesn't clash with anything.
Symbol &symbol{MakeSymbol(outer, context().GetTempName(outer), Attrs{})};
symbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName});
Scope &hidden{outer.MakeScope(Scope::Kind::Global, &symbol)};
entrySymbol = &MakeSymbol(hidden, entryName.source, attrs);
} else {
entrySymbol = FindInScope(outer, entryName.source);
if (entrySymbol) {
if (auto *generic{entrySymbol->detailsIf<GenericDetails>()}) {
if (auto *specific{generic->specific()}) {
// Forward reference to ENTRY from a generic interface
entrySymbol = specific;
CheckDuplicatedAttrs(entryName.source, *entrySymbol, attrs);
SetExplicitAttrs(*entrySymbol, attrs);
}
}
} else {
entrySymbol = &MakeSymbol(outer, entryName.source, attrs);
}
}
SubprogramDetails entryDetails;
entryDetails.set_entryScope(currScope());
entrySymbol->set(subpFlag);
if (subpFlag == Symbol::Flag::Function) {
Symbol *result{nullptr};
EntityDetails resultDetails;
resultDetails.set_funcResult(true);
if (distinctResultName) {
// An explicit RESULT() can also be an explicit RESULT()
// of the function or another ENTRY.
if (auto iter{currScope().find(suffix->resultName->source)};
iter != currScope().end()) {
result = &*iter->second;
}
if (!result) {
result =
&MakeSymbol(*distinctResultName, Attrs{}, std::move(resultDetails));
} else if (!result->has<EntityDetails>()) {
Say(*distinctResultName,
"ENTRY cannot have RESULT(%s) that is not a variable"_err_en_US,
*distinctResultName)
.Attach(result->name(), "Existing declaration of '%s'"_en_US,
result->name());
result = nullptr;
}
if (result) {
Resolve(*suffix->resultName, *result);
}
} else {
result = &MakeSymbol(entryName.source, Attrs{}, std::move(resultDetails));
}
if (result) {
entryDetails.set_result(*result);
}
}
if (subpFlag == Symbol::Flag::Subroutine || distinctResultName) {
Symbol &assoc{MakeSymbol(entryName.source)};
assoc.set_details(HostAssocDetails{*entrySymbol});
assoc.set(Symbol::Flag::Subroutine);
}
Resolve(entryName, *entrySymbol);
std::set<SourceName> dummies;
for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) {
auto pair{dummies.insert(dummyName->source)};
if (!pair.second) {
Say(*dummyName,
"'%s' appears more than once as a dummy argument name in this ENTRY statement"_err_en_US,
dummyName->source);
continue;
}
Symbol *dummy{FindInScope(*dummyName)};
if (dummy) {
if (!IsDummy(*dummy)) {
evaluate::AttachDeclaration(
Say(*dummyName,
"'%s' may not appear as a dummy argument name in this ENTRY statement"_err_en_US,
dummyName->source),
*dummy);
continue;
}
} else {
dummy = &MakeSymbol(*dummyName, EntityDetails{true});
dummy->set(Symbol::Flag::EntryDummyArgument);
}
entryDetails.add_dummyArg(DEREF(dummy));
} else if (subpFlag == Symbol::Flag::Function) { // C1573
Say(entryName,
"ENTRY in a function may not have an alternate return dummy argument"_err_en_US);
break;
} else {
entryDetails.add_alternateReturn();
}
}
entrySymbol->set_details(std::move(entryDetails));
}
void SubprogramVisitor::PostEntryStmt(const parser::EntryStmt &stmt) {
// The entry symbol should have already been created and resolved
// in CreateEntry(), called by BeginSubprogram(), with one exception (below).
const auto &name{std::get<parser::Name>(stmt.t)};
Scope &inclusiveScope{InclusiveScope()};
if (!name.symbol) {
if (inclusiveScope.kind() != Scope::Kind::Subprogram) {
Say(name.source,
"ENTRY '%s' may appear only in a subroutine or function"_err_en_US,
name.source);
} else if (FindSeparateModuleSubprogramInterface(inclusiveScope.symbol())) {
Say(name.source,
"ENTRY '%s' may not appear in a separate module procedure"_err_en_US,
name.source);
} else {
// C1571 - entry is nested, so was not put into the program tree; error
// is emitted from MiscChecker in semantics.cpp.
}
return;
}
Symbol &entrySymbol{*name.symbol};
if (context().HasError(entrySymbol)) {
return;
}
if (!entrySymbol.has<SubprogramDetails>()) {
SayAlreadyDeclared(name, entrySymbol);
return;
}
SubprogramDetails &entryDetails{entrySymbol.get<SubprogramDetails>()};
CHECK(entryDetails.entryScope() == &inclusiveScope);
SetCUDADataAttr(name.source, entrySymbol, cudaDataAttr());
entrySymbol.attrs() |= GetAttrs();
SetBindNameOn(entrySymbol);
for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) {
if (Symbol * dummy{FindInScope(*dummyName)}) {
if (dummy->test(Symbol::Flag::EntryDummyArgument)) {
const auto *subp{dummy->detailsIf<SubprogramDetails>()};
if (subp && subp->isInterface()) { // ok
} else if (!dummy->has<EntityDetails>() &&
!dummy->has<ObjectEntityDetails>() &&
!dummy->has<ProcEntityDetails>()) {
SayWithDecl(*dummyName, *dummy,
"ENTRY dummy argument '%s' was previously declared as an item that may not be used as a dummy argument"_err_en_US);
}
dummy->set(Symbol::Flag::EntryDummyArgument, false);
}
}
}
}
}
Symbol *ScopeHandler::FindSeparateModuleProcedureInterface(
const parser::Name &name) {
auto *symbol{FindSymbol(name)};
if (symbol && symbol->has<SubprogramNameDetails>()) {
const Scope *parent{nullptr};
if (currScope().IsSubmodule()) {
parent = currScope().symbol()->get<ModuleDetails>().parent();
}
symbol = parent ? FindSymbol(*parent, name) : nullptr;
}
if (symbol) {
if (auto *generic{symbol->detailsIf<GenericDetails>()}) {
symbol = generic->specific();
}
}
if (const Symbol * defnIface{FindSeparateModuleSubprogramInterface(symbol)}) {
// Error recovery in case of multiple definitions
symbol = const_cast<Symbol *>(defnIface);
}
if (!IsSeparateModuleProcedureInterface(symbol)) {
Say(name, "'%s' was not declared a separate module procedure"_err_en_US);
symbol = nullptr;
}
return symbol;
}
// A subprogram declared with MODULE PROCEDURE
bool SubprogramVisitor::BeginMpSubprogram(const parser::Name &name) {
Symbol *symbol{FindSeparateModuleProcedureInterface(name)};
if (!symbol) {
return false;
}
if (symbol->owner() == currScope() && symbol->scope()) {
// This is a MODULE PROCEDURE whose interface appears in its host.
// Convert the module procedure's interface into a subprogram.
SetScope(DEREF(symbol->scope()));
symbol->get<SubprogramDetails>().set_isInterface(false);
name.symbol = symbol;
} else {
// Copy the interface into a new subprogram scope.
EraseSymbol(name);
Symbol &newSymbol{MakeSymbol(name, SubprogramDetails{})};
PushScope(Scope::Kind::Subprogram, &newSymbol);
auto &newSubprogram{newSymbol.get<SubprogramDetails>()};
newSubprogram.set_moduleInterface(*symbol);
auto &subprogram{symbol->get<SubprogramDetails>()};
if (const auto *name{subprogram.bindName()}) {
newSubprogram.set_bindName(std::string{*name});
}
newSymbol.attrs() |= symbol->attrs();
newSymbol.set(symbol->test(Symbol::Flag::Subroutine)
? Symbol::Flag::Subroutine
: Symbol::Flag::Function);
MapSubprogramToNewSymbols(*symbol, newSymbol, currScope());
}
return true;
}
// A subprogram or interface declared with SUBROUTINE or FUNCTION
bool SubprogramVisitor::BeginSubprogram(const parser::Name &name,
Symbol::Flag subpFlag, bool hasModulePrefix,
const parser::LanguageBindingSpec *bindingSpec,
const ProgramTree::EntryStmtList *entryStmts) {
bool isValid{true};
if (hasModulePrefix && !currScope().IsModule() &&
!currScope().IsSubmodule()) { // C1547
Say(name,
"'%s' is a MODULE procedure which must be declared within a "
"MODULE or SUBMODULE"_err_en_US);
// Don't return here because it can be useful to have the scope set for
// other semantic checks run before we print the errors
isValid = false;
}
Symbol *moduleInterface{nullptr};
if (isValid && hasModulePrefix && !inInterfaceBlock()) {
moduleInterface = FindSeparateModuleProcedureInterface(name);
if (moduleInterface && &moduleInterface->owner() == &currScope()) {
// Subprogram is MODULE FUNCTION or MODULE SUBROUTINE with an interface
// previously defined in the same scope.
if (GenericDetails *
generic{DEREF(FindSymbol(name)).detailsIf<GenericDetails>()}) {
generic->clear_specific();
name.symbol = nullptr;
} else {
EraseSymbol(name);
}
}
}
Symbol &newSymbol{
PushSubprogramScope(name, subpFlag, bindingSpec, hasModulePrefix)};
if (moduleInterface) {
newSymbol.get<SubprogramDetails>().set_moduleInterface(*moduleInterface);
if (moduleInterface->attrs().test(Attr::PRIVATE)) {
SetImplicitAttr(newSymbol, Attr::PRIVATE);
} else if (moduleInterface->attrs().test(Attr::PUBLIC)) {
SetImplicitAttr(newSymbol, Attr::PUBLIC);
}
}
if (entryStmts) {
for (const auto &ref : *entryStmts) {
CreateEntry(*ref, newSymbol);
}
}
return true;
}
void SubprogramVisitor::HandleLanguageBinding(Symbol *symbol,
std::optional<parser::CharBlock> stmtSource,
const std::optional<parser::LanguageBindingSpec> *binding) {
if (binding && *binding && symbol) {
// Finally process the BIND(C,NAME=name) now that symbols in the name
// expression will resolve to local names if needed.
auto flagRestorer{common::ScopedSet(inSpecificationPart_, false)};
auto originalStmtSource{messageHandler().currStmtSource()};
messageHandler().set_currStmtSource(stmtSource);
BeginAttrs();
Walk(**binding);
SetBindNameOn(*symbol);
symbol->attrs() |= EndAttrs();
messageHandler().set_currStmtSource(originalStmtSource);
}
}
void SubprogramVisitor::EndSubprogram(
std::optional<parser::CharBlock> stmtSource,
const std::optional<parser::LanguageBindingSpec> *binding,
const ProgramTree::EntryStmtList *entryStmts) {
HandleLanguageBinding(currScope().symbol(), stmtSource, binding);
if (entryStmts) {
for (const auto &ref : *entryStmts) {
const parser::EntryStmt &entryStmt{*ref};
if (const auto &suffix{
std::get<std::optional<parser::Suffix>>(entryStmt.t)}) {
const auto &name{std::get<parser::Name>(entryStmt.t)};
HandleLanguageBinding(name.symbol, name.source, &suffix->binding);
}
}
}
if (inInterfaceBlock() && currScope().symbol()) {
DeclaredPossibleSpecificProc(*currScope().symbol());
}
PopScope();
}
bool SubprogramVisitor::HandlePreviousCalls(
const parser::Name &name, Symbol &symbol, Symbol::Flag subpFlag) {
// If the extant symbol is a generic, check its homonymous specific
// procedure instead if it has one.
if (auto *generic{symbol.detailsIf<GenericDetails>()}) {
return generic->specific() &&
HandlePreviousCalls(name, *generic->specific(), subpFlag);
} else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}; proc &&
!proc->isDummy() &&
!symbol.attrs().HasAny(Attrs{Attr::INTRINSIC, Attr::POINTER})) {
// There's a symbol created for previous calls to this subprogram or
// ENTRY's name. We have to replace that symbol in situ to avoid the
// obligation to rewrite symbol pointers in the parse tree.
if (!symbol.test(subpFlag)) {
auto other{subpFlag == Symbol::Flag::Subroutine
? Symbol::Flag::Function
: Symbol::Flag::Subroutine};
// External statements issue an explicit EXTERNAL attribute.
if (symbol.attrs().test(Attr::EXTERNAL) &&
!symbol.implicitAttrs().test(Attr::EXTERNAL)) {
// Warn if external statement previously declared.
context().Warn(common::LanguageFeature::RedundantAttribute, name.source,
"EXTERNAL attribute was already specified on '%s'"_warn_en_US,
name.source);
} else if (symbol.test(other)) {
Say2(name,
subpFlag == Symbol::Flag::Function
? "'%s' was previously called as a subroutine"_err_en_US
: "'%s' was previously called as a function"_err_en_US,
symbol, "Previous call of '%s'"_en_US);
} else {
symbol.set(subpFlag);
}
}
EntityDetails entity;
if (proc->type()) {
entity.set_type(*proc->type());
}
symbol.details() = std::move(entity);
return true;
} else {
return symbol.has<UnknownDetails>() || symbol.has<SubprogramNameDetails>();
}
}
void SubprogramVisitor::CheckExtantProc(
const parser::Name &name, Symbol::Flag subpFlag) {
if (auto *prev{FindSymbol(name)}) {
if (IsDummy(*prev)) {
} else if (auto *entity{prev->detailsIf<EntityDetails>()};
IsPointer(*prev) && entity && !entity->type()) {
// POINTER attribute set before interface
} else if (inInterfaceBlock() && currScope() != prev->owner()) {
// Procedures in an INTERFACE block do not resolve to symbols
// in scopes between the global scope and the current scope.
} else if (!HandlePreviousCalls(name, *prev, subpFlag)) {
SayAlreadyDeclared(name, *prev);
}
}
}
Symbol &SubprogramVisitor::PushSubprogramScope(const parser::Name &name,
Symbol::Flag subpFlag, const parser::LanguageBindingSpec *bindingSpec,
bool hasModulePrefix) {
Symbol *symbol{GetSpecificFromGeneric(name)};
if (!symbol) {
if (bindingSpec && currScope().IsGlobal() &&
std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
bindingSpec->t)
.has_value()) {
// Create this new top-level subprogram with a binding label
// in a new global scope, so that its symbol's name won't clash
// with another symbol that has a distinct binding label.
PushScope(Scope::Kind::Global,
&MakeSymbol(context().GetTempName(currScope()), Attrs{},
MiscDetails{MiscDetails::Kind::ScopeName}));
}
CheckExtantProc(name, subpFlag);
symbol = &MakeSymbol(name, SubprogramDetails{});
}
symbol->ReplaceName(name.source);
symbol->set(subpFlag);
PushScope(Scope::Kind::Subprogram, symbol);
if (subpFlag == Symbol::Flag::Function) {
funcResultStack().Push(currScope(), name.source);
}
if (inInterfaceBlock()) {
auto &details{symbol->get<SubprogramDetails>()};
details.set_isInterface();
if (isAbstract()) {
SetExplicitAttr(*symbol, Attr::ABSTRACT);
} else if (hasModulePrefix) {
SetExplicitAttr(*symbol, Attr::MODULE);
} else {
MakeExternal(*symbol);
}
if (isGeneric()) {
Symbol &genericSymbol{GetGenericSymbol()};
if (auto *details{genericSymbol.detailsIf<GenericDetails>()}) {
details->AddSpecificProc(*symbol, name.source);
} else {
CHECK(context().HasError(genericSymbol));
}
}
set_inheritFromParent(false); // interfaces don't inherit, even if MODULE
}
if (Symbol * found{FindSymbol(name)};
found && found->has<HostAssocDetails>()) {
found->set(subpFlag); // PushScope() created symbol
}
return *symbol;
}
void SubprogramVisitor::PushBlockDataScope(const parser::Name &name) {
if (auto *prev{FindSymbol(name)}) {
if (prev->attrs().test(Attr::EXTERNAL) && prev->has<ProcEntityDetails>()) {
if (prev->test(Symbol::Flag::Subroutine) ||
prev->test(Symbol::Flag::Function)) {
Say2(name, "BLOCK DATA '%s' has been called"_err_en_US, *prev,
"Previous call of '%s'"_en_US);
}
EraseSymbol(name);
}
}
if (name.source.empty()) {
// Don't let unnamed BLOCK DATA conflict with unnamed PROGRAM
PushScope(Scope::Kind::BlockData, nullptr);
} else {
PushScope(Scope::Kind::BlockData, &MakeSymbol(name, SubprogramDetails{}));
}
}
// If name is a generic, return specific subprogram with the same name.
Symbol *SubprogramVisitor::GetSpecificFromGeneric(const parser::Name &name) {
// Search for the name but don't resolve it
if (auto *symbol{currScope().FindSymbol(name.source)}) {
if (symbol->has<SubprogramNameDetails>()) {
if (inInterfaceBlock()) {
// Subtle: clear any MODULE flag so that the new interface
// symbol doesn't inherit it and ruin the ability to check it.
symbol->attrs().reset(Attr::MODULE);
}
} else if (auto *details{symbol->detailsIf<GenericDetails>()}) {
// found generic, want specific procedure
auto *specific{details->specific()};
Attrs moduleAttr;
if (inInterfaceBlock()) {
if (specific) {
// Defining an interface in a generic of the same name which is
// already shadowing another procedure. In some cases, the shadowed
// procedure is about to be replaced.
if (specific->has<SubprogramNameDetails>() &&
specific->attrs().test(Attr::MODULE)) {
// The shadowed procedure is a separate module procedure that is
// actually defined later in this (sub)module.
// Define its interface now as a new symbol.
moduleAttr.set(Attr::MODULE);
specific = nullptr;
} else if (&specific->owner() != &symbol->owner()) {
// The shadowed procedure was from an enclosing scope and will be
// overridden by this interface definition.
specific = nullptr;
}
if (!specific) {
details->clear_specific();
}
} else if (const auto *dType{details->derivedType()}) {
if (&dType->owner() != &symbol->owner()) {
// The shadowed derived type was from an enclosing scope and
// will be overridden by this interface definition.
details->clear_derivedType();
}
}
}
if (!specific) {
specific = &currScope().MakeSymbol(
name.source, std::move(moduleAttr), SubprogramDetails{});
if (details->derivedType()) {
// A specific procedure with the same name as a derived type
SayAlreadyDeclared(name, *details->derivedType());
} else {
details->set_specific(Resolve(name, *specific));
}
} else if (isGeneric()) {
SayAlreadyDeclared(name, *specific);
}
if (specific->has<SubprogramNameDetails>()) {
specific->set_details(Details{SubprogramDetails{}});
}
return specific;
}
}
return nullptr;
}
// DeclarationVisitor implementation
bool DeclarationVisitor::BeginDecl() {
BeginDeclTypeSpec();
BeginArraySpec();
return BeginAttrs();
}
void DeclarationVisitor::EndDecl() {
EndDeclTypeSpec();
EndArraySpec();
EndAttrs();
}
bool DeclarationVisitor::CheckUseError(const parser::Name &name) {
return HadUseError(context(), name.source, name.symbol);
}
// Report error if accessibility of symbol doesn't match isPrivate.
void DeclarationVisitor::CheckAccessibility(
const SourceName &name, bool isPrivate, Symbol &symbol) {
if (symbol.attrs().test(Attr::PRIVATE) != isPrivate) {
Say2(name,
"'%s' does not have the same accessibility as its previous declaration"_err_en_US,
symbol, "Previous declaration of '%s'"_en_US);
}
}
bool DeclarationVisitor::Pre(const parser::TypeDeclarationStmt &x) {
BeginDecl();
// If INTRINSIC appears as an attr-spec, handle it now as if the
// names had appeared on an INTRINSIC attribute statement beforehand.
for (const auto &attr : std::get<std::list<parser::AttrSpec>>(x.t)) {
if (std::holds_alternative<parser::Intrinsic>(attr.u)) {
for (const auto &decl : std::get<std::list<parser::EntityDecl>>(x.t)) {
DeclareIntrinsic(parser::GetFirstName(decl));
}
break;
}
}
return true;
}
void DeclarationVisitor::Post(const parser::TypeDeclarationStmt &) {
EndDecl();
}
void DeclarationVisitor::Post(const parser::DimensionStmt::Declaration &x) {
DeclareObjectEntity(std::get<parser::Name>(x.t));
}
void DeclarationVisitor::Post(const parser::CodimensionDecl &x) {
DeclareObjectEntity(std::get<parser::Name>(x.t));
}
bool DeclarationVisitor::Pre(const parser::Initialization &) {
// Defer inspection of initializers to Initialization() so that the
// symbol being initialized will be available within the initialization
// expression.
return false;
}
void DeclarationVisitor::Post(const parser::EntityDecl &x) {
const auto &name{std::get<parser::ObjectName>(x.t)};
Attrs attrs{attrs_ ? HandleSaveName(name.source, *attrs_) : Attrs{}};
attrs.set(Attr::INTRINSIC, false); // dealt with in Pre(TypeDeclarationStmt)
Symbol &symbol{DeclareUnknownEntity(name, attrs)};
symbol.ReplaceName(name.source);
SetCUDADataAttr(name.source, symbol, cudaDataAttr());
if (const auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) {
ConvertToObjectEntity(symbol) || ConvertToProcEntity(symbol);
symbol.set(
Symbol::Flag::EntryDummyArgument, false); // forestall excessive errors
Initialization(name, *init, false);
} else if (attrs.test(Attr::PARAMETER)) { // C882, C883
Say(name, "Missing initialization for parameter '%s'"_err_en_US);
}
if (auto *scopeSymbol{currScope().symbol()})
if (auto *details{scopeSymbol->detailsIf<DerivedTypeDetails>()})
if (details->isDECStructure())
details->add_component(symbol);
}
void DeclarationVisitor::Post(const parser::PointerDecl &x) {
const auto &name{std::get<parser::Name>(x.t)};
if (const auto &deferredShapeSpecs{
std::get<std::optional<parser::DeferredShapeSpecList>>(x.t)}) {
CHECK(arraySpec().empty());
BeginArraySpec();
set_arraySpec(AnalyzeDeferredShapeSpecList(context(), *deferredShapeSpecs));
Symbol &symbol{DeclareObjectEntity(name, Attrs{Attr::POINTER})};
symbol.ReplaceName(name.source);
EndArraySpec();
} else {
if (const auto *symbol{FindInScope(name)}) {
const auto *subp{symbol->detailsIf<SubprogramDetails>()};
if (!symbol->has<UseDetails>() && // error caught elsewhere
!symbol->has<ObjectEntityDetails>() &&
!symbol->has<ProcEntityDetails>() &&
!symbol->CanReplaceDetails(ObjectEntityDetails{}) &&
!symbol->CanReplaceDetails(ProcEntityDetails{}) &&
!(subp && subp->isInterface())) {
Say(name, "'%s' cannot have the POINTER attribute"_err_en_US);
}
}
HandleAttributeStmt(Attr::POINTER, std::get<parser::Name>(x.t));
}
}
bool DeclarationVisitor::Pre(const parser::BindEntity &x) {
auto kind{std::get<parser::BindEntity::Kind>(x.t)};
auto &name{std::get<parser::Name>(x.t)};
Symbol *symbol;
if (kind == parser::BindEntity::Kind::Object) {
symbol = &HandleAttributeStmt(Attr::BIND_C, name);
} else {
symbol = &MakeCommonBlockSymbol(name);
SetExplicitAttr(*symbol, Attr::BIND_C);
}
// 8.6.4(1)
// Some entities such as named constant or module name need to checked
// elsewhere. This is to skip the ICE caused by setting Bind name for non-name
// things such as data type and also checks for procedures.
if (symbol->has<CommonBlockDetails>() || symbol->has<ObjectEntityDetails>() ||
symbol->has<EntityDetails>()) {
SetBindNameOn(*symbol);
} else {
Say(name,
"Only variable and named common block can be in BIND statement"_err_en_US);
}
return false;
}
bool DeclarationVisitor::Pre(const parser::OldParameterStmt &x) {
inOldStyleParameterStmt_ = true;
Walk(x.v);
inOldStyleParameterStmt_ = false;
return false;
}
bool DeclarationVisitor::Pre(const parser::NamedConstantDef &x) {
auto &name{std::get<parser::NamedConstant>(x.t).v};
auto &symbol{HandleAttributeStmt(Attr::PARAMETER, name)};
ConvertToObjectEntity(symbol);
auto *details{symbol.detailsIf<ObjectEntityDetails>()};
if (!details || symbol.test(Symbol::Flag::CrayPointer) ||
symbol.test(Symbol::Flag::CrayPointee)) {
SayWithDecl(
name, symbol, "PARAMETER attribute not allowed on '%s'"_err_en_US);
return false;
}
const auto &expr{std::get<parser::ConstantExpr>(x.t)};
if (details->init() || symbol.test(Symbol::Flag::InDataStmt)) {
Say(name, "Named constant '%s' already has a value"_err_en_US);
}
if (inOldStyleParameterStmt_) {
// non-standard extension PARAMETER statement (no parentheses)
Walk(expr);
auto folded{EvaluateExpr(expr)};
if (details->type()) {
SayWithDecl(name, symbol,
"Alternative style PARAMETER '%s' must not already have an explicit type"_err_en_US);
} else if (folded) {
auto at{expr.thing.value().source};
if (evaluate::IsActuallyConstant(*folded)) {
if (const auto *type{currScope().GetType(*folded)}) {
if (type->IsPolymorphic()) {
Say(at, "The expression must not be polymorphic"_err_en_US);
} else if (auto shape{ToArraySpec(
GetFoldingContext(), evaluate::GetShape(*folded))}) {
// The type of the named constant is assumed from the expression.
details->set_type(*type);
details->set_init(std::move(*folded));
details->set_shape(std::move(*shape));
} else {
Say(at, "The expression must have constant shape"_err_en_US);
}
} else {
Say(at, "The expression must have a known type"_err_en_US);
}
} else {
Say(at, "The expression must be a constant of known type"_err_en_US);
}
}
} else {
// standard-conforming PARAMETER statement (with parentheses)
ApplyImplicitRules(symbol);
Walk(expr);
if (auto converted{EvaluateNonPointerInitializer(
symbol, expr, expr.thing.value().source)}) {
details->set_init(std::move(*converted));
}
}
return false;
}
bool DeclarationVisitor::Pre(const parser::NamedConstant &x) {
const parser::Name &name{x.v};
if (!FindSymbol(name)) {
Say(name, "Named constant '%s' not found"_err_en_US);
} else {
CheckUseError(name);
}
return false;
}
bool DeclarationVisitor::Pre(const parser::Enumerator &enumerator) {
const parser::Name &name{std::get<parser::NamedConstant>(enumerator.t).v};
Symbol *symbol{FindInScope(name)};
if (symbol && !symbol->has<UnknownDetails>()) {
// Contrary to named constants appearing in a PARAMETER statement,
// enumerator names should not have their type, dimension or any other
// attributes defined before they are declared in the enumerator statement,
// with the exception of accessibility.
// This is not explicitly forbidden by the standard, but they are scalars
// which type is left for the compiler to chose, so do not let users try to
// tamper with that.
SayAlreadyDeclared(name, *symbol);
symbol = nullptr;
} else {
// Enumerators are treated as PARAMETER (section 7.6 paragraph (4))
symbol = &MakeSymbol(name, Attrs{Attr::PARAMETER}, ObjectEntityDetails{});
symbol->SetType(context().MakeNumericType(
TypeCategory::Integer, evaluate::CInteger::kind));
}
if (auto &init{std::get<std::optional<parser::ScalarIntConstantExpr>>(
enumerator.t)}) {
Walk(*init); // Resolve names in expression before evaluation.
if (auto value{EvaluateInt64(context(), *init)}) {
// Cast all init expressions to C_INT so that they can then be
// safely incremented (see 7.6 Note 2).
enumerationState_.value = static_cast<int>(*value);
} else {
Say(name,
"Enumerator value could not be computed "
"from the given expression"_err_en_US);
// Prevent resolution of next enumerators value
enumerationState_.value = std::nullopt;
}
}
if (symbol) {
if (enumerationState_.value) {
symbol->get<ObjectEntityDetails>().set_init(SomeExpr{
evaluate::Expr<evaluate::CInteger>{*enumerationState_.value}});
} else {
context().SetError(*symbol);
}
}
if (enumerationState_.value) {
(*enumerationState_.value)++;
}
return false;
}
void DeclarationVisitor::Post(const parser::EnumDef &) {
enumerationState_ = EnumeratorState{};
}
bool DeclarationVisitor::Pre(const parser::AccessSpec &x) {
Attr attr{AccessSpecToAttr(x)};
if (!NonDerivedTypeScope().IsModule()) { // C817
Say(currStmtSource().value(),
"%s attribute may only appear in the specification part of a module"_err_en_US,
EnumToString(attr));
}
CheckAndSet(attr);
return false;
}
bool DeclarationVisitor::Pre(const parser::AsynchronousStmt &x) {
return HandleAttributeStmt(Attr::ASYNCHRONOUS, x.v);
}
bool DeclarationVisitor::Pre(const parser::ContiguousStmt &x) {
return HandleAttributeStmt(Attr::CONTIGUOUS, x.v);
}
bool DeclarationVisitor::Pre(const parser::ExternalStmt &x) {
HandleAttributeStmt(Attr::EXTERNAL, x.v);
for (const auto &name : x.v) {
auto *symbol{FindSymbol(name)};
if (!ConvertToProcEntity(DEREF(symbol), name.source)) {
// Check if previous symbol is an interface.
if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
if (details->isInterface()) {
// Warn if interface previously declared.
context().Warn(common::LanguageFeature::RedundantAttribute,
name.source,
"EXTERNAL attribute was already specified on '%s'"_warn_en_US,
name.source);
}
} else {
SayWithDecl(
name, *symbol, "EXTERNAL attribute not allowed on '%s'"_err_en_US);
}
} else if (symbol->attrs().test(Attr::INTRINSIC)) { // C840
Say(symbol->name(),
"Symbol '%s' cannot have both INTRINSIC and EXTERNAL attributes"_err_en_US,
symbol->name());
}
}
return false;
}
bool DeclarationVisitor::Pre(const parser::IntentStmt &x) {
auto &intentSpec{std::get<parser::IntentSpec>(x.t)};
auto &names{std::get<std::list<parser::Name>>(x.t)};
return CheckNotInBlock("INTENT") && // C1107
HandleAttributeStmt(IntentSpecToAttr(intentSpec), names);
}
bool DeclarationVisitor::Pre(const parser::IntrinsicStmt &x) {
for (const auto &name : x.v) {
DeclareIntrinsic(name);
}
return false;
}
void DeclarationVisitor::DeclareIntrinsic(const parser::Name &name) {
HandleAttributeStmt(Attr::INTRINSIC, name);
if (!IsIntrinsic(name.source, std::nullopt)) {
Say(name.source, "'%s' is not a known intrinsic procedure"_err_en_US);
}
auto &symbol{DEREF(FindSymbol(name))};
if (symbol.has<GenericDetails>()) {
// Generic interface is extending intrinsic; ok
} else if (!ConvertToProcEntity(symbol, name.source)) {
SayWithDecl(
name, symbol, "INTRINSIC attribute not allowed on '%s'"_err_en_US);
} else if (symbol.attrs().test(Attr::EXTERNAL)) { // C840
Say(symbol.name(),
"Symbol '%s' cannot have both EXTERNAL and INTRINSIC attributes"_err_en_US,
symbol.name());
} else {
if (symbol.GetType()) {
// These warnings are worded so that they should make sense in either
// order.
if (auto *msg{context().Warn(
common::UsageWarning::IgnoredIntrinsicFunctionType, symbol.name(),
"Explicit type declaration ignored for intrinsic function '%s'"_warn_en_US,
symbol.name())}) {
msg->Attach(name.source,
"INTRINSIC statement for explicitly-typed '%s'"_en_US, name.source);
}
}
if (!symbol.test(Symbol::Flag::Function) &&
!symbol.test(Symbol::Flag::Subroutine)) {
if (context().intrinsics().IsIntrinsicFunction(name.source.ToString())) {
symbol.set(Symbol::Flag::Function);
} else if (context().intrinsics().IsIntrinsicSubroutine(
name.source.ToString())) {
symbol.set(Symbol::Flag::Subroutine);
}
}
}
}
bool DeclarationVisitor::Pre(const parser::OptionalStmt &x) {
return CheckNotInBlock("OPTIONAL") && // C1107
HandleAttributeStmt(Attr::OPTIONAL, x.v);
}
bool DeclarationVisitor::Pre(const parser::ProtectedStmt &x) {
return HandleAttributeStmt(Attr::PROTECTED, x.v);
}
bool DeclarationVisitor::Pre(const parser::ValueStmt &x) {
return CheckNotInBlock("VALUE") && // C1107
HandleAttributeStmt(Attr::VALUE, x.v);
}
bool DeclarationVisitor::Pre(const parser::VolatileStmt &x) {
return HandleAttributeStmt(Attr::VOLATILE, x.v);
}
bool DeclarationVisitor::Pre(const parser::CUDAAttributesStmt &x) {
auto attr{std::get<common::CUDADataAttr>(x.t)};
for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
auto *symbol{FindInScope(name)};
if (symbol && symbol->has<UseDetails>()) {
Say(currStmtSource().value(),
"Cannot apply CUDA data attribute to use-associated '%s'"_err_en_US,
name.source);
} else {
if (!symbol) {
symbol = &MakeSymbol(name, ObjectEntityDetails{});
}
SetCUDADataAttr(name.source, *symbol, attr);
}
}
return false;
}
// Handle a statement that sets an attribute on a list of names.
bool DeclarationVisitor::HandleAttributeStmt(
Attr attr, const std::list<parser::Name> &names) {
for (const auto &name : names) {
HandleAttributeStmt(attr, name);
}
return false;
}
Symbol &DeclarationVisitor::HandleAttributeStmt(
Attr attr, const parser::Name &name) {
auto *symbol{FindInScope(name)};
if (attr == Attr::ASYNCHRONOUS || attr == Attr::VOLATILE) {
// these can be set on a symbol that is host-assoc or use-assoc
if (!symbol &&
(currScope().kind() == Scope::Kind::Subprogram ||
currScope().kind() == Scope::Kind::BlockConstruct)) {
if (auto *hostSymbol{FindSymbol(name)}) {
symbol = &MakeHostAssocSymbol(name, *hostSymbol);
}
}
} else if (symbol && symbol->has<UseDetails>()) {
if (symbol->GetUltimate().attrs().test(attr)) {
context().Warn(common::LanguageFeature::RedundantAttribute,
currStmtSource().value(),
"Use-associated '%s' already has '%s' attribute"_warn_en_US,
name.source, EnumToString(attr));
} else {
Say(currStmtSource().value(),
"Cannot change %s attribute on use-associated '%s'"_err_en_US,
EnumToString(attr), name.source);
}
return *symbol;
}
if (!symbol) {
symbol = &MakeSymbol(name, EntityDetails{});
}
if (CheckDuplicatedAttr(name.source, *symbol, attr)) {
HandleSaveName(name.source, Attrs{attr});
SetExplicitAttr(*symbol, attr);
}
return *symbol;
}
// C1107
bool DeclarationVisitor::CheckNotInBlock(const char *stmt) {
if (currScope().kind() == Scope::Kind::BlockConstruct) {
Say(MessageFormattedText{
"%s statement is not allowed in a BLOCK construct"_err_en_US, stmt});
return false;
} else {
return true;
}
}
void DeclarationVisitor::Post(const parser::ObjectDecl &x) {
CHECK(objectDeclAttr_);
const auto &name{std::get<parser::ObjectName>(x.t)};
DeclareObjectEntity(name, Attrs{*objectDeclAttr_});
}
// Declare an entity not yet known to be an object or proc.
Symbol &DeclarationVisitor::DeclareUnknownEntity(
const parser::Name &name, Attrs attrs) {
if (!arraySpec().empty() || !coarraySpec().empty()) {
return DeclareObjectEntity(name, attrs);
} else {
Symbol &symbol{DeclareEntity<EntityDetails>(name, attrs)};
if (auto *type{GetDeclTypeSpec()}) {
SetType(name, *type);
}
charInfo_.length.reset();
if (symbol.attrs().test(Attr::EXTERNAL)) {
ConvertToProcEntity(symbol);
} else if (symbol.attrs().HasAny(Attrs{Attr::ALLOCATABLE,
Attr::ASYNCHRONOUS, Attr::CONTIGUOUS, Attr::PARAMETER,
Attr::SAVE, Attr::TARGET, Attr::VALUE, Attr::VOLATILE})) {
ConvertToObjectEntity(symbol);
}
if (attrs.test(Attr::BIND_C)) {
SetBindNameOn(symbol);
}
return symbol;
}
}
bool DeclarationVisitor::HasCycle(
const Symbol &procSymbol, const Symbol *interface) {
SourceOrderedSymbolSet procsInCycle;
procsInCycle.insert(procSymbol);
while (interface) {
if (procsInCycle.count(*interface) > 0) {
for (const auto &procInCycle : procsInCycle) {
Say(procInCycle->name(),
"The interface for procedure '%s' is recursively defined"_err_en_US,
procInCycle->name());
context().SetError(*procInCycle);
}
return true;
} else if (const auto *procDetails{
interface->detailsIf<ProcEntityDetails>()}) {
procsInCycle.insert(*interface);
interface = procDetails->procInterface();
} else {
break;
}
}
return false;
}
Symbol &DeclarationVisitor::DeclareProcEntity(
const parser::Name &name, Attrs attrs, const Symbol *interface) {
Symbol *proc{nullptr};
if (auto *extant{FindInScope(name)}) {
if (auto *d{extant->detailsIf<GenericDetails>()}; d && !d->derivedType()) {
// procedure pointer with same name as a generic
if (auto *specific{d->specific()}) {
SayAlreadyDeclared(name, *specific);
} else {
// Create the ProcEntityDetails symbol in the scope as the "specific()"
// symbol behind an existing GenericDetails symbol of the same name.
proc = &Resolve(name,
currScope().MakeSymbol(name.source, attrs, ProcEntityDetails{}));
d->set_specific(*proc);
}
}
}
Symbol &symbol{proc ? *proc : DeclareEntity<ProcEntityDetails>(name, attrs)};
if (auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
if (context().HasError(symbol)) {
} else if (HasCycle(symbol, interface)) {
return symbol;
} else if (interface && (details->procInterface() || details->type())) {
SayWithDecl(name, symbol,
"The interface for procedure '%s' has already been declared"_err_en_US);
context().SetError(symbol);
} else if (interface) {
details->set_procInterfaces(
*interface, BypassGeneric(interface->GetUltimate()));
if (interface->test(Symbol::Flag::Function)) {
symbol.set(Symbol::Flag::Function);
} else if (interface->test(Symbol::Flag::Subroutine)) {
symbol.set(Symbol::Flag::Subroutine);
}
} else if (auto *type{GetDeclTypeSpec()}) {
SetType(name, *type);
symbol.set(Symbol::Flag::Function);
}
SetBindNameOn(symbol);
SetPassNameOn(symbol);
}
return symbol;
}
Symbol &DeclarationVisitor::DeclareObjectEntity(
const parser::Name &name, Attrs attrs) {
Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, attrs)};
if (auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (auto *type{GetDeclTypeSpec()}) {
SetType(name, *type);
}
if (!arraySpec().empty()) {
if (details->IsArray()) {
if (!context().HasError(symbol)) {
Say(name,
"The dimensions of '%s' have already been declared"_err_en_US);
context().SetError(symbol);
}
} else if (MustBeScalar(symbol)) {
context().Warn(common::UsageWarning::PreviousScalarUse, name.source,
"'%s' appeared earlier as a scalar actual argument to a specification function"_warn_en_US,
name.source);
} else if (details->init() || symbol.test(Symbol::Flag::InDataStmt)) {
Say(name, "'%s' was initialized earlier as a scalar"_err_en_US);
} else {
details->set_shape(arraySpec());
}
}
if (!coarraySpec().empty()) {
if (details->IsCoarray()) {
if (!context().HasError(symbol)) {
Say(name,
"The codimensions of '%s' have already been declared"_err_en_US);
context().SetError(symbol);
}
} else {
details->set_coshape(coarraySpec());
}
}
SetBindNameOn(symbol);
}
ClearArraySpec();
ClearCoarraySpec();
charInfo_.length.reset();
return symbol;
}
void DeclarationVisitor::Post(const parser::IntegerTypeSpec &x) {
if (!isVectorType_) {
SetDeclTypeSpec(MakeNumericType(TypeCategory::Integer, x.v));
}
}
void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Real &x) {
if (!isVectorType_) {
SetDeclTypeSpec(MakeNumericType(TypeCategory::Real, x.kind));
}
}
void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Complex &x) {
SetDeclTypeSpec(MakeNumericType(TypeCategory::Complex, x.kind));
}
void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Logical &x) {
SetDeclTypeSpec(MakeLogicalType(x.kind));
}
void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Character &) {
if (!charInfo_.length) {
charInfo_.length = ParamValue{1, common::TypeParamAttr::Len};
}
if (!charInfo_.kind) {
charInfo_.kind =
KindExpr{context().GetDefaultKind(TypeCategory::Character)};
}
SetDeclTypeSpec(currScope().MakeCharacterType(
std::move(*charInfo_.length), std::move(*charInfo_.kind)));
charInfo_ = {};
}
void DeclarationVisitor::Post(const parser::CharSelector::LengthAndKind &x) {
charInfo_.kind = EvaluateSubscriptIntExpr(x.kind);
std::optional<std::int64_t> intKind{ToInt64(charInfo_.kind)};
if (intKind &&
!context().targetCharacteristics().IsTypeEnabled(
TypeCategory::Character, *intKind)) { // C715, C719
Say(currStmtSource().value(),
"KIND value (%jd) not valid for CHARACTER"_err_en_US, *intKind);
charInfo_.kind = std::nullopt; // prevent further errors
}
if (x.length) {
charInfo_.length = GetParamValue(*x.length, common::TypeParamAttr::Len);
}
}
void DeclarationVisitor::Post(const parser::CharLength &x) {
if (const auto *length{std::get_if<std::uint64_t>(&x.u)}) {
charInfo_.length = ParamValue{
static_cast<ConstantSubscript>(*length), common::TypeParamAttr::Len};
} else {
charInfo_.length = GetParamValue(
std::get<parser::TypeParamValue>(x.u), common::TypeParamAttr::Len);
}
}
void DeclarationVisitor::Post(const parser::LengthSelector &x) {
if (const auto *param{std::get_if<parser::TypeParamValue>(&x.u)}) {
charInfo_.length = GetParamValue(*param, common::TypeParamAttr::Len);
}
}
bool DeclarationVisitor::Pre(const parser::KindParam &x) {
if (const auto *kind{std::get_if<
parser::Scalar<parser::Integer<parser::Constant<parser::Name>>>>(
&x.u)}) {
const parser::Name &name{kind->thing.thing.thing};
if (!FindSymbol(name)) {
Say(name, "Parameter '%s' not found"_err_en_US);
}
}
return false;
}
int DeclarationVisitor::GetVectorElementKind(
TypeCategory category, const std::optional<parser::KindSelector> &kind) {
KindExpr value{GetKindParamExpr(category, kind)};
if (auto known{evaluate::ToInt64(value)}) {
return static_cast<int>(*known);
}
common::die("Vector element kind must be known at compile-time");
}
bool DeclarationVisitor::Pre(const parser::VectorTypeSpec &) {
// PowerPC vector types are allowed only on Power architectures.
if (!currScope().context().targetCharacteristics().isPPC()) {
Say(currStmtSource().value(),
"Vector type is only supported for PowerPC"_err_en_US);
isVectorType_ = false;
return false;
}
isVectorType_ = true;
return true;
}
// Create semantic::DerivedTypeSpec for Vector types here.
void DeclarationVisitor::Post(const parser::VectorTypeSpec &x) {
llvm::StringRef typeName;
llvm::SmallVector<ParamValue> typeParams;
DerivedTypeSpec::Category vectorCategory;
isVectorType_ = false;
common::visit(
common::visitors{
[&](const parser::IntrinsicVectorTypeSpec &y) {
vectorCategory = DerivedTypeSpec::Category::IntrinsicVector;
int vecElemKind = 0;
typeName = "__builtin_ppc_intrinsic_vector";
common::visit(
common::visitors{
[&](const parser::IntegerTypeSpec &z) {
vecElemKind = GetVectorElementKind(
TypeCategory::Integer, std::move(z.v));
typeParams.push_back(ParamValue(
static_cast<common::ConstantSubscript>(
common::VectorElementCategory::Integer),
common::TypeParamAttr::Kind));
},
[&](const parser::IntrinsicTypeSpec::Real &z) {
vecElemKind = GetVectorElementKind(
TypeCategory::Real, std::move(z.kind));
typeParams.push_back(
ParamValue(static_cast<common::ConstantSubscript>(
common::VectorElementCategory::Real),
common::TypeParamAttr::Kind));
},
[&](const parser::UnsignedTypeSpec &z) {
vecElemKind = GetVectorElementKind(
TypeCategory::Integer, std::move(z.v));
typeParams.push_back(ParamValue(
static_cast<common::ConstantSubscript>(
common::VectorElementCategory::Unsigned),
common::TypeParamAttr::Kind));
},
},
y.v.u);
typeParams.push_back(
ParamValue(static_cast<common::ConstantSubscript>(vecElemKind),
common::TypeParamAttr::Kind));
},
[&](const parser::VectorTypeSpec::PairVectorTypeSpec &y) {
vectorCategory = DerivedTypeSpec::Category::PairVector;
typeName = "__builtin_ppc_pair_vector";
},
[&](const parser::VectorTypeSpec::QuadVectorTypeSpec &y) {
vectorCategory = DerivedTypeSpec::Category::QuadVector;
typeName = "__builtin_ppc_quad_vector";
},
},
x.u);
auto ppcBuiltinTypesScope = currScope().context().GetPPCBuiltinTypesScope();
if (!ppcBuiltinTypesScope) {
common::die("INTERNAL: The __ppc_types module was not found ");
}
auto iter{ppcBuiltinTypesScope->find(
semantics::SourceName{typeName.data(), typeName.size()})};
if (iter == ppcBuiltinTypesScope->cend()) {
common::die("INTERNAL: The __ppc_types module does not define "
"the type '%s'",
typeName.data());
}
const semantics::Symbol &typeSymbol{*iter->second};
DerivedTypeSpec vectorDerivedType{typeName.data(), typeSymbol};
vectorDerivedType.set_category(vectorCategory);
if (typeParams.size()) {
vectorDerivedType.AddRawParamValue(nullptr, std::move(typeParams[0]));
vectorDerivedType.AddRawParamValue(nullptr, std::move(typeParams[1]));
vectorDerivedType.CookParameters(GetFoldingContext());
}
if (const DeclTypeSpec *
extant{ppcBuiltinTypesScope->FindInstantiatedDerivedType(
vectorDerivedType, DeclTypeSpec::Category::TypeDerived)}) {
// This derived type and parameter expressions (if any) are already present
// in the __ppc_intrinsics scope.
SetDeclTypeSpec(*extant);
} else {
DeclTypeSpec &type{ppcBuiltinTypesScope->MakeDerivedType(
DeclTypeSpec::Category::TypeDerived, std::move(vectorDerivedType))};
DerivedTypeSpec &derived{type.derivedTypeSpec()};
auto restorer{
GetFoldingContext().messages().SetLocation(currStmtSource().value())};
derived.Instantiate(*ppcBuiltinTypesScope);
SetDeclTypeSpec(type);
}
}
bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Type &) {
CHECK(GetDeclTypeSpecCategory() == DeclTypeSpec::Category::TypeDerived);
return true;
}
void DeclarationVisitor::Post(const parser::DeclarationTypeSpec::Type &type) {
const parser::Name &derivedName{std::get<parser::Name>(type.derived.t)};
if (const Symbol * derivedSymbol{derivedName.symbol}) {
CheckForAbstractType(*derivedSymbol); // C706
}
}
bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Class &) {
SetDeclTypeSpecCategory(DeclTypeSpec::Category::ClassDerived);
return true;
}
void DeclarationVisitor::Post(
const parser::DeclarationTypeSpec::Class &parsedClass) {
const auto &typeName{std::get<parser::Name>(parsedClass.derived.t)};
if (auto spec{ResolveDerivedType(typeName)};
spec && !IsExtensibleType(&*spec)) { // C705
SayWithDecl(typeName, *typeName.symbol,
"Non-extensible derived type '%s' may not be used with CLASS"
" keyword"_err_en_US);
}
}
void DeclarationVisitor::Post(const parser::DerivedTypeSpec &x) {
const auto &typeName{std::get<parser::Name>(x.t)};
auto spec{ResolveDerivedType(typeName)};
if (!spec) {
return;
}
bool seenAnyName{false};
for (const auto &typeParamSpec :
std::get<std::list<parser::TypeParamSpec>>(x.t)) {
const auto &optKeyword{
std::get<std::optional<parser::Keyword>>(typeParamSpec.t)};
std::optional<SourceName> name;
if (optKeyword) {
seenAnyName = true;
name = optKeyword->v.source;
} else if (seenAnyName) {
Say(typeName.source, "Type parameter value must have a name"_err_en_US);
continue;
}
const auto &value{std::get<parser::TypeParamValue>(typeParamSpec.t)};
// The expressions in a derived type specifier whose values define
// non-defaulted type parameters are evaluated (folded) in the enclosing
// scope. The KIND/LEN distinction is resolved later in
// DerivedTypeSpec::CookParameters().
ParamValue param{GetParamValue(value, common::TypeParamAttr::Kind)};
if (!param.isExplicit() || param.GetExplicit()) {
spec->AddRawParamValue(
common::GetPtrFromOptional(optKeyword), std::move(param));
}
}
// The DerivedTypeSpec *spec is used initially as a search key.
// If it turns out to have the same name and actual parameter
// value expressions as another DerivedTypeSpec in the current
// scope does, then we'll use that extant spec; otherwise, when this
// spec is distinct from all derived types previously instantiated
// in the current scope, this spec will be moved into that collection.
const auto &dtDetails{spec->typeSymbol().get<DerivedTypeDetails>()};
auto category{GetDeclTypeSpecCategory()};
if (dtDetails.isForwardReferenced()) {
DeclTypeSpec &type{currScope().MakeDerivedType(category, std::move(*spec))};
SetDeclTypeSpec(type);
return;
}
// Normalize parameters to produce a better search key.
spec->CookParameters(GetFoldingContext());
if (!spec->MightBeParameterized()) {
spec->EvaluateParameters(context());
}
if (const DeclTypeSpec *
extant{currScope().FindInstantiatedDerivedType(*spec, category)}) {
// This derived type and parameter expressions (if any) are already present
// in this scope.
SetDeclTypeSpec(*extant);
} else {
DeclTypeSpec &type{currScope().MakeDerivedType(category, std::move(*spec))};
DerivedTypeSpec &derived{type.derivedTypeSpec()};
if (derived.MightBeParameterized() &&
currScope().IsParameterizedDerivedType()) {
// Defer instantiation; use the derived type's definition's scope.
derived.set_scope(DEREF(spec->typeSymbol().scope()));
} else if (&currScope() == spec->typeSymbol().scope()) {
// Direct recursive use of a type in the definition of one of its
// components: defer instantiation
} else {
auto restorer{
GetFoldingContext().messages().SetLocation(currStmtSource().value())};
derived.Instantiate(currScope());
}
SetDeclTypeSpec(type);
}
// Capture the DerivedTypeSpec in the parse tree for use in building
// structure constructor expressions.
x.derivedTypeSpec = &GetDeclTypeSpec()->derivedTypeSpec();
}
void DeclarationVisitor::Post(const parser::DeclarationTypeSpec::Record &rec) {
const auto &typeName{rec.v};
if (auto spec{ResolveDerivedType(typeName)}) {
spec->CookParameters(GetFoldingContext());
spec->EvaluateParameters(context());
if (const DeclTypeSpec *
extant{currScope().FindInstantiatedDerivedType(
*spec, DeclTypeSpec::TypeDerived)}) {
SetDeclTypeSpec(*extant);
} else {
Say(typeName.source, "%s is not a known STRUCTURE"_err_en_US,
typeName.source);
}
}
}
// The descendents of DerivedTypeDef in the parse tree are visited directly
// in this Pre() routine so that recursive use of the derived type can be
// supported in the components.
bool DeclarationVisitor::Pre(const parser::DerivedTypeDef &x) {
auto &stmt{std::get<parser::Statement<parser::DerivedTypeStmt>>(x.t)};
Walk(stmt);
Walk(std::get<std::list<parser::Statement<parser::TypeParamDefStmt>>>(x.t));
auto &scope{currScope()};
CHECK(scope.symbol());
CHECK(scope.symbol()->scope() == &scope);
auto &details{scope.symbol()->get<DerivedTypeDetails>()};
for (auto ¶mName : std::get<std::list<parser::Name>>(stmt.statement.t)) {
if (auto *symbol{FindInScope(scope, paramName)}) {
if (auto *details{symbol->detailsIf<TypeParamDetails>()}) {
if (!details->attr()) {
Say(paramName,
"No definition found for type parameter '%s'"_err_en_US); // C742
}
}
}
}
Walk(std::get<std::list<parser::Statement<parser::PrivateOrSequence>>>(x.t));
const auto &componentDefs{
std::get<std::list<parser::Statement<parser::ComponentDefStmt>>>(x.t)};
Walk(componentDefs);
if (derivedTypeInfo_.sequence) {
details.set_sequence(true);
if (componentDefs.empty()) {
// F'2023 C745 - not enforced by any compiler
context().Warn(common::LanguageFeature::EmptySequenceType, stmt.source,
"A sequence type should have at least one component"_warn_en_US);
}
if (!details.paramDeclOrder().empty()) { // C740
Say(stmt.source,
"A sequence type may not have type parameters"_err_en_US);
}
if (derivedTypeInfo_.extends) { // C735
Say(stmt.source,
"A sequence type may not have the EXTENDS attribute"_err_en_US);
}
}
Walk(std::get<std::optional<parser::TypeBoundProcedurePart>>(x.t));
Walk(std::get<parser::Statement<parser::EndTypeStmt>>(x.t));
details.set_isForwardReferenced(false);
derivedTypeInfo_ = {};
PopScope();
return false;
}
bool DeclarationVisitor::Pre(const parser::DerivedTypeStmt &) {
return BeginAttrs();
}
void DeclarationVisitor::Post(const parser::DerivedTypeStmt &x) {
auto &name{std::get<parser::Name>(x.t)};
// Resolve the EXTENDS() clause before creating the derived
// type's symbol to foil attempts to recursively extend a type.
auto *extendsName{derivedTypeInfo_.extends};
std::optional<DerivedTypeSpec> extendsType{
ResolveExtendsType(name, extendsName)};
DerivedTypeDetails derivedTypeDetails;
// Catch any premature structure constructors within the definition
derivedTypeDetails.set_isForwardReferenced(true);
auto &symbol{MakeSymbol(name, GetAttrs(), std::move(derivedTypeDetails))};
symbol.ReplaceName(name.source);
derivedTypeInfo_.type = &symbol;
PushScope(Scope::Kind::DerivedType, &symbol);
if (extendsType) {
// Declare the "parent component"; private if the type is.
// Any symbol stored in the EXTENDS() clause is temporarily
// hidden so that a new symbol can be created for the parent
// component without producing spurious errors about already
// existing.
const Symbol &extendsSymbol{extendsType->typeSymbol()};
auto restorer{common::ScopedSet(extendsName->symbol, nullptr)};
if (OkToAddComponent(*extendsName, &extendsSymbol)) {
auto &comp{DeclareEntity<ObjectEntityDetails>(*extendsName, Attrs{})};
comp.attrs().set(
Attr::PRIVATE, extendsSymbol.attrs().test(Attr::PRIVATE));
comp.implicitAttrs().set(
Attr::PRIVATE, extendsSymbol.implicitAttrs().test(Attr::PRIVATE));
comp.set(Symbol::Flag::ParentComp);
DeclTypeSpec &type{currScope().MakeDerivedType(
DeclTypeSpec::TypeDerived, std::move(*extendsType))};
type.derivedTypeSpec().set_scope(DEREF(extendsSymbol.scope()));
comp.SetType(type);
DerivedTypeDetails &details{symbol.get<DerivedTypeDetails>()};
details.add_component(comp);
}
}
// Create symbols now for type parameters so that they shadow names
// from the enclosing specification part.
if (auto *details{symbol.detailsIf<DerivedTypeDetails>()}) {
for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
if (Symbol * symbol{MakeTypeSymbol(name, TypeParamDetails{})}) {
details->add_paramNameOrder(*symbol);
}
}
}
EndAttrs();
}
void DeclarationVisitor::Post(const parser::TypeParamDefStmt &x) {
auto *type{GetDeclTypeSpec()};
DerivedTypeDetails *derivedDetails{nullptr};
if (Symbol * dtSym{currScope().symbol()}) {
derivedDetails = dtSym->detailsIf<DerivedTypeDetails>();
}
auto attr{std::get<common::TypeParamAttr>(x.t)};
for (auto &decl : std::get<std::list<parser::TypeParamDecl>>(x.t)) {
auto &name{std::get<parser::Name>(decl.t)};
if (Symbol * symbol{FindInScope(currScope(), name)}) {
if (auto *paramDetails{symbol->detailsIf<TypeParamDetails>()}) {
if (!paramDetails->attr()) {
paramDetails->set_attr(attr);
SetType(name, *type);
if (auto &init{std::get<std::optional<parser::ScalarIntConstantExpr>>(
decl.t)}) {
if (auto maybeExpr{AnalyzeExpr(context(), *init)}) {
if (auto *intExpr{std::get_if<SomeIntExpr>(&maybeExpr->u)}) {
paramDetails->set_init(std::move(*intExpr));
}
}
}
if (derivedDetails) {
derivedDetails->add_paramDeclOrder(*symbol);
}
} else {
Say(name,
"Type parameter '%s' was already declared in this derived type"_err_en_US);
}
}
} else {
Say(name, "'%s' is not a parameter of this derived type"_err_en_US);
}
}
EndDecl();
}
bool DeclarationVisitor::Pre(const parser::TypeAttrSpec::Extends &x) {
if (derivedTypeInfo_.extends) {
Say(currStmtSource().value(),
"Attribute 'EXTENDS' cannot be used more than once"_err_en_US);
} else {
derivedTypeInfo_.extends = &x.v;
}
return false;
}
bool DeclarationVisitor::Pre(const parser::PrivateStmt &) {
if (!currScope().parent().IsModule()) {
Say("PRIVATE is only allowed in a derived type that is"
" in a module"_err_en_US); // C766
} else if (derivedTypeInfo_.sawContains) {
derivedTypeInfo_.privateBindings = true;
} else if (!derivedTypeInfo_.privateComps) {
derivedTypeInfo_.privateComps = true;
} else { // C738
context().Warn(common::LanguageFeature::RedundantAttribute,
"PRIVATE should not appear more than once in derived type components"_warn_en_US);
}
return false;
}
bool DeclarationVisitor::Pre(const parser::SequenceStmt &) {
if (derivedTypeInfo_.sequence) { // C738
context().Warn(common::LanguageFeature::RedundantAttribute,
"SEQUENCE should not appear more than once in derived type components"_warn_en_US);
}
derivedTypeInfo_.sequence = true;
return false;
}
void DeclarationVisitor::Post(const parser::ComponentDecl &x) {
const auto &name{std::get<parser::Name>(x.t)};
auto attrs{GetAttrs()};
if (derivedTypeInfo_.privateComps &&
!attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
attrs.set(Attr::PRIVATE);
}
if (const auto *declType{GetDeclTypeSpec()}) {
if (const auto *derived{declType->AsDerived()}) {
if (!attrs.HasAny({Attr::POINTER, Attr::ALLOCATABLE})) {
if (derivedTypeInfo_.type == &derived->typeSymbol()) { // C744
Say("Recursive use of the derived type requires "
"POINTER or ALLOCATABLE"_err_en_US);
}
}
// TODO: This would be more appropriate in CheckDerivedType()
if (auto it{FindCoarrayUltimateComponent(*derived)}) { // C748
std::string ultimateName{it.BuildResultDesignatorName()};
// Strip off the leading "%"
if (ultimateName.length() > 1) {
ultimateName.erase(0, 1);
if (attrs.HasAny({Attr::POINTER, Attr::ALLOCATABLE})) {
evaluate::AttachDeclaration(
Say(name.source,
"A component with a POINTER or ALLOCATABLE attribute may "
"not "
"be of a type with a coarray ultimate component (named "
"'%s')"_err_en_US,
ultimateName),
derived->typeSymbol());
}
if (!arraySpec().empty() || !coarraySpec().empty()) {
evaluate::AttachDeclaration(
Say(name.source,
"An array or coarray component may not be of a type with a "
"coarray ultimate component (named '%s')"_err_en_US,
ultimateName),
derived->typeSymbol());
}
}
}
}
}
if (OkToAddComponent(name)) {
auto &symbol{DeclareObjectEntity(name, attrs)};
SetCUDADataAttr(name.source, symbol, cudaDataAttr());
if (symbol.has<ObjectEntityDetails>()) {
if (auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) {
Initialization(name, *init, true);
}
}
currScope().symbol()->get<DerivedTypeDetails>().add_component(symbol);
}
ClearArraySpec();
ClearCoarraySpec();
}
void DeclarationVisitor::Post(const parser::FillDecl &x) {
// Replace "%FILL" with a distinct generated name
const auto &name{std::get<parser::Name>(x.t)};
const_cast<SourceName &>(name.source) = context().GetTempName(currScope());
if (OkToAddComponent(name)) {
auto &symbol{DeclareObjectEntity(name, GetAttrs())};
currScope().symbol()->get<DerivedTypeDetails>().add_component(symbol);
}
ClearArraySpec();
}
bool DeclarationVisitor::Pre(const parser::ProcedureDeclarationStmt &x) {
CHECK(!interfaceName_);
const auto &procAttrSpec{std::get<std::list<parser::ProcAttrSpec>>(x.t)};
for (const parser::ProcAttrSpec &procAttr : procAttrSpec) {
if (auto *bindC{std::get_if<parser::LanguageBindingSpec>(&procAttr.u)}) {
if (std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
bindC->t)
.has_value()) {
if (std::get<std::list<parser::ProcDecl>>(x.t).size() > 1) {
Say(context().location().value(),
"A procedure declaration statement with a binding name may not declare multiple procedures"_err_en_US);
}
break;
}
}
}
return BeginDecl();
}
void DeclarationVisitor::Post(const parser::ProcedureDeclarationStmt &) {
interfaceName_ = nullptr;
EndDecl();
}
bool DeclarationVisitor::Pre(const parser::DataComponentDefStmt &x) {
// Overrides parse tree traversal so as to handle attributes first,
// so POINTER & ALLOCATABLE enable forward references to derived types.
Walk(std::get<std::list<parser::ComponentAttrSpec>>(x.t));
set_allowForwardReferenceToDerivedType(
GetAttrs().HasAny({Attr::POINTER, Attr::ALLOCATABLE}));
Walk(std::get<parser::DeclarationTypeSpec>(x.t));
set_allowForwardReferenceToDerivedType(false);
if (derivedTypeInfo_.sequence) { // C740
if (const auto *declType{GetDeclTypeSpec()}) {
if (!declType->AsIntrinsic() && !declType->IsSequenceType() &&
!InModuleFile()) {
if (GetAttrs().test(Attr::POINTER) &&
context().IsEnabled(common::LanguageFeature::PointerInSeqType)) {
context().Warn(common::LanguageFeature::PointerInSeqType,
"A sequence type data component that is a pointer to a non-sequence type is not standard"_port_en_US);
} else {
Say("A sequence type data component must either be of an intrinsic type or a derived sequence type"_err_en_US);
}
}
}
}
Walk(std::get<std::list<parser::ComponentOrFill>>(x.t));
return false;
}
bool DeclarationVisitor::Pre(const parser::ProcComponentDefStmt &) {
CHECK(!interfaceName_);
return true;
}
void DeclarationVisitor::Post(const parser::ProcComponentDefStmt &) {
interfaceName_ = nullptr;
}
bool DeclarationVisitor::Pre(const parser::ProcPointerInit &x) {
if (auto *name{std::get_if<parser::Name>(&x.u)}) {
return !NameIsKnownOrIntrinsic(*name) && !CheckUseError(*name);
} else {
const auto &null{DEREF(std::get_if<parser::NullInit>(&x.u))};
Walk(null);
if (auto nullInit{EvaluateExpr(null)}) {
if (!evaluate::IsNullPointer(*nullInit)) {
Say(null.v.value().source,
"Procedure pointer initializer must be a name or intrinsic NULL()"_err_en_US);
}
}
return false;
}
}
void DeclarationVisitor::Post(const parser::ProcInterface &x) {
if (auto *name{std::get_if<parser::Name>(&x.u)}) {
interfaceName_ = name;
NoteInterfaceName(*name);
}
}
void DeclarationVisitor::Post(const parser::ProcDecl &x) {
const auto &name{std::get<parser::Name>(x.t)};
// Don't use BypassGeneric or GetUltimate on this symbol, they can
// lead to unusable names in module files.
const Symbol *procInterface{
interfaceName_ ? interfaceName_->symbol : nullptr};
auto attrs{HandleSaveName(name.source, GetAttrs())};
DerivedTypeDetails *dtDetails{nullptr};
if (Symbol * symbol{currScope().symbol()}) {
dtDetails = symbol->detailsIf<DerivedTypeDetails>();
}
if (!dtDetails) {
attrs.set(Attr::EXTERNAL);
}
Symbol &symbol{DeclareProcEntity(name, attrs, procInterface)};
SetCUDADataAttr(name.source, symbol, cudaDataAttr()); // for error
symbol.ReplaceName(name.source);
if (dtDetails) {
dtDetails->add_component(symbol);
}
DeclaredPossibleSpecificProc(symbol);
}
bool DeclarationVisitor::Pre(const parser::TypeBoundProcedurePart &) {
derivedTypeInfo_.sawContains = true;
return true;
}
// Resolve binding names from type-bound generics, saved in genericBindings_.
void DeclarationVisitor::Post(const parser::TypeBoundProcedurePart &) {
// track specifics seen for the current generic to detect duplicates:
const Symbol *currGeneric{nullptr};
std::set<SourceName> specifics;
for (const auto &[generic, bindingName] : genericBindings_) {
if (generic != currGeneric) {
currGeneric = generic;
specifics.clear();
}
auto [it, inserted]{specifics.insert(bindingName->source)};
if (!inserted) {
Say(*bindingName, // C773
"Binding name '%s' was already specified for generic '%s'"_err_en_US,
bindingName->source, generic->name())
.Attach(*it, "Previous specification of '%s'"_en_US, *it);
continue;
}
auto *symbol{FindInTypeOrParents(*bindingName)};
if (!symbol) {
Say(*bindingName, // C772
"Binding name '%s' not found in this derived type"_err_en_US);
} else if (!symbol->has<ProcBindingDetails>()) {
SayWithDecl(*bindingName, *symbol, // C772
"'%s' is not the name of a specific binding of this type"_err_en_US);
} else {
generic->get<GenericDetails>().AddSpecificProc(
*symbol, bindingName->source);
}
}
genericBindings_.clear();
}
void DeclarationVisitor::Post(const parser::ContainsStmt &) {
if (derivedTypeInfo_.sequence) {
Say("A sequence type may not have a CONTAINS statement"_err_en_US); // C740
}
}
void DeclarationVisitor::Post(
const parser::TypeBoundProcedureStmt::WithoutInterface &x) {
if (GetAttrs().test(Attr::DEFERRED)) { // C783
Say("DEFERRED is only allowed when an interface-name is provided"_err_en_US);
}
for (auto &declaration : x.declarations) {
auto &bindingName{std::get<parser::Name>(declaration.t)};
auto &optName{std::get<std::optional<parser::Name>>(declaration.t)};
const parser::Name &procedureName{optName ? *optName : bindingName};
Symbol *procedure{FindSymbol(procedureName)};
if (!procedure) {
procedure = NoteInterfaceName(procedureName);
}
if (procedure) {
const Symbol &bindTo{BypassGeneric(*procedure)};
if (auto *s{MakeTypeSymbol(bindingName, ProcBindingDetails{bindTo})}) {
SetPassNameOn(*s);
if (GetAttrs().test(Attr::DEFERRED)) {
context().SetError(*s);
}
}
}
}
}
void DeclarationVisitor::CheckBindings(
const parser::TypeBoundProcedureStmt::WithoutInterface &tbps) {
CHECK(currScope().IsDerivedType());
for (auto &declaration : tbps.declarations) {
auto &bindingName{std::get<parser::Name>(declaration.t)};
if (Symbol * binding{FindInScope(bindingName)}) {
if (auto *details{binding->detailsIf<ProcBindingDetails>()}) {
const Symbol &ultimate{details->symbol().GetUltimate()};
const Symbol &procedure{BypassGeneric(ultimate)};
if (&procedure != &ultimate) {
details->ReplaceSymbol(procedure);
}
if (!CanBeTypeBoundProc(procedure)) {
if (details->symbol().name() != binding->name()) {
Say(binding->name(),
"The binding of '%s' ('%s') must be either an accessible "
"module procedure or an external procedure with "
"an explicit interface"_err_en_US,
binding->name(), details->symbol().name());
} else {
Say(binding->name(),
"'%s' must be either an accessible module procedure "
"or an external procedure with an explicit interface"_err_en_US,
binding->name());
}
context().SetError(*binding);
}
}
}
}
}
void DeclarationVisitor::Post(
const parser::TypeBoundProcedureStmt::WithInterface &x) {
if (!GetAttrs().test(Attr::DEFERRED)) { // C783
Say("DEFERRED is required when an interface-name is provided"_err_en_US);
}
if (Symbol * interface{NoteInterfaceName(x.interfaceName)}) {
for (auto &bindingName : x.bindingNames) {
if (auto *s{
MakeTypeSymbol(bindingName, ProcBindingDetails{*interface})}) {
SetPassNameOn(*s);
if (!GetAttrs().test(Attr::DEFERRED)) {
context().SetError(*s);
}
}
}
}
}
bool DeclarationVisitor::Pre(const parser::FinalProcedureStmt &x) {
if (currScope().IsDerivedType() && currScope().symbol()) {
if (auto *details{currScope().symbol()->detailsIf<DerivedTypeDetails>()}) {
for (const auto &subrName : x.v) {
Symbol *symbol{FindSymbol(subrName)};
if (!symbol) {
// FINAL procedures must be module subroutines
symbol = &MakeSymbol(
currScope().parent(), subrName.source, Attrs{Attr::MODULE});
Resolve(subrName, symbol);
symbol->set_details(ProcEntityDetails{});
symbol->set(Symbol::Flag::Subroutine);
}
if (auto pair{details->finals().emplace(subrName.source, *symbol)};
!pair.second) { // C787
Say(subrName.source,
"FINAL subroutine '%s' already appeared in this derived type"_err_en_US,
subrName.source)
.Attach(pair.first->first,
"earlier appearance of this FINAL subroutine"_en_US);
}
}
}
}
return false;
}
bool DeclarationVisitor::Pre(const parser::TypeBoundGenericStmt &x) {
const auto &accessSpec{std::get<std::optional<parser::AccessSpec>>(x.t)};
const auto &genericSpec{std::get<Indirection<parser::GenericSpec>>(x.t)};
const auto &bindingNames{std::get<std::list<parser::Name>>(x.t)};
GenericSpecInfo info{genericSpec.value()};
SourceName symbolName{info.symbolName()};
bool isPrivate{accessSpec ? accessSpec->v == parser::AccessSpec::Kind::Private
: derivedTypeInfo_.privateBindings};
auto *genericSymbol{FindInScope(symbolName)};
if (genericSymbol) {
if (!genericSymbol->has<GenericDetails>()) {
genericSymbol = nullptr; // MakeTypeSymbol will report the error below
}
} else {
// look in ancestor types for a generic of the same name
for (const auto &name : GetAllNames(context(), symbolName)) {
if (Symbol * inherited{currScope().FindComponent(SourceName{name})}) {
if (inherited->has<GenericDetails>()) {
CheckAccessibility(symbolName, isPrivate, *inherited); // C771
} else {
Say(symbolName,
"Type bound generic procedure '%s' may not have the same name as a non-generic symbol inherited from an ancestor type"_err_en_US)
.Attach(inherited->name(), "Inherited symbol"_en_US);
}
break;
}
}
}
if (genericSymbol) {
CheckAccessibility(symbolName, isPrivate, *genericSymbol); // C771
} else {
genericSymbol = MakeTypeSymbol(symbolName, GenericDetails{});
if (!genericSymbol) {
return false;
}
if (isPrivate) {
SetExplicitAttr(*genericSymbol, Attr::PRIVATE);
}
}
for (const parser::Name &bindingName : bindingNames) {
genericBindings_.emplace(genericSymbol, &bindingName);
}
info.Resolve(genericSymbol);
return false;
}
// DEC STRUCTUREs are handled thus to allow for nested definitions.
bool DeclarationVisitor::Pre(const parser::StructureDef &def) {
const auto &structureStatement{
std::get<parser::Statement<parser::StructureStmt>>(def.t)};
auto saveDerivedTypeInfo{derivedTypeInfo_};
derivedTypeInfo_ = {};
derivedTypeInfo_.isStructure = true;
derivedTypeInfo_.sequence = true;
Scope *previousStructure{nullptr};
if (saveDerivedTypeInfo.isStructure) {
previousStructure = &currScope();
PopScope();
}
const parser::StructureStmt &structStmt{structureStatement.statement};
const auto &name{std::get<std::optional<parser::Name>>(structStmt.t)};
if (!name) {
// Construct a distinct generated name for an anonymous structure
auto &mutableName{const_cast<std::optional<parser::Name> &>(name)};
mutableName.emplace(
parser::Name{context().GetTempName(currScope()), nullptr});
}
auto &symbol{MakeSymbol(*name, DerivedTypeDetails{})};
symbol.ReplaceName(name->source);
symbol.get<DerivedTypeDetails>().set_sequence(true);
symbol.get<DerivedTypeDetails>().set_isDECStructure(true);
derivedTypeInfo_.type = &symbol;
PushScope(Scope::Kind::DerivedType, &symbol);
const auto &fields{std::get<std::list<parser::StructureField>>(def.t)};
Walk(fields);
PopScope();
// Complete the definition
DerivedTypeSpec derivedTypeSpec{symbol.name(), symbol};
derivedTypeSpec.set_scope(DEREF(symbol.scope()));
derivedTypeSpec.CookParameters(GetFoldingContext());
derivedTypeSpec.EvaluateParameters(context());
DeclTypeSpec &type{currScope().MakeDerivedType(
DeclTypeSpec::TypeDerived, std::move(derivedTypeSpec))};
type.derivedTypeSpec().Instantiate(currScope());
// Restore previous structure definition context, if any
derivedTypeInfo_ = saveDerivedTypeInfo;
if (previousStructure) {
PushScope(*previousStructure);
}
// Handle any entity declarations on the STRUCTURE statement
const auto &decls{std::get<std::list<parser::EntityDecl>>(structStmt.t)};
if (!decls.empty()) {
BeginDecl();
SetDeclTypeSpec(type);
Walk(decls);
EndDecl();
}
return false;
}
bool DeclarationVisitor::Pre(const parser::Union::UnionStmt &) {
Say("support for UNION"_todo_en_US); // TODO
return true;
}
bool DeclarationVisitor::Pre(const parser::StructureField &x) {
if (std::holds_alternative<parser::Statement<parser::DataComponentDefStmt>>(
x.u)) {
BeginDecl();
}
return true;
}
void DeclarationVisitor::Post(const parser::StructureField &x) {
if (std::holds_alternative<parser::Statement<parser::DataComponentDefStmt>>(
x.u)) {
EndDecl();
}
}
bool DeclarationVisitor::Pre(const parser::AllocateStmt &) {
BeginDeclTypeSpec();
return true;
}
void DeclarationVisitor::Post(const parser::AllocateStmt &) {
EndDeclTypeSpec();
}
bool DeclarationVisitor::Pre(const parser::StructureConstructor &x) {
auto &parsedType{std::get<parser::DerivedTypeSpec>(x.t)};
const DeclTypeSpec *type{ProcessTypeSpec(parsedType)};
if (!type) {
return false;
}
const DerivedTypeSpec *spec{type->AsDerived()};
const Scope *typeScope{spec ? spec->scope() : nullptr};
if (!typeScope) {
return false;
}
// N.B C7102 is implicitly enforced by having inaccessible types not
// being found in resolution.
// More constraints are enforced in expression.cpp so that they
// can apply to structure constructors that have been converted
// from misparsed function references.
for (const auto &component :
std::get<std::list<parser::ComponentSpec>>(x.t)) {
// Visit the component spec expression, but not the keyword, since
// we need to resolve its symbol in the scope of the derived type.
Walk(std::get<parser::ComponentDataSource>(component.t));
if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
FindInTypeOrParents(*typeScope, kw->v);
}
}
return false;
}
bool DeclarationVisitor::Pre(const parser::BasedPointer &) {
BeginArraySpec();
return true;
}
void DeclarationVisitor::Post(const parser::BasedPointer &bp) {
const parser::ObjectName &pointerName{std::get<0>(bp.t)};
auto *pointer{FindSymbol(pointerName)};
if (!pointer) {
pointer = &MakeSymbol(pointerName, ObjectEntityDetails{});
} else if (!ConvertToObjectEntity(*pointer)) {
SayWithDecl(pointerName, *pointer, "'%s' is not a variable"_err_en_US);
} else if (IsNamedConstant(*pointer)) {
SayWithDecl(pointerName, *pointer,
"'%s' is a named constant and may not be a Cray pointer"_err_en_US);
} else if (pointer->Rank() > 0) {
SayWithDecl(
pointerName, *pointer, "Cray pointer '%s' must be a scalar"_err_en_US);
} else if (pointer->test(Symbol::Flag::CrayPointee)) {
Say(pointerName,
"'%s' cannot be a Cray pointer as it is already a Cray pointee"_err_en_US);
}
pointer->set(Symbol::Flag::CrayPointer);
const DeclTypeSpec &pointerType{MakeNumericType(
TypeCategory::Integer, context().defaultKinds().subscriptIntegerKind())};
const auto *type{pointer->GetType()};
if (!type) {
pointer->SetType(pointerType);
} else if (*type != pointerType) {
Say(pointerName.source, "Cray pointer '%s' must have type %s"_err_en_US,
pointerName.source, pointerType.AsFortran());
}
const parser::ObjectName &pointeeName{std::get<1>(bp.t)};
DeclareObjectEntity(pointeeName);
if (Symbol * pointee{pointeeName.symbol}) {
if (!ConvertToObjectEntity(*pointee)) {
return;
}
if (IsNamedConstant(*pointee)) {
Say(pointeeName,
"'%s' is a named constant and may not be a Cray pointee"_err_en_US);
return;
}
if (pointee->test(Symbol::Flag::CrayPointer)) {
Say(pointeeName,
"'%s' cannot be a Cray pointee as it is already a Cray pointer"_err_en_US);
} else if (pointee->test(Symbol::Flag::CrayPointee)) {
Say(pointeeName, "'%s' was already declared as a Cray pointee"_err_en_US);
} else {
pointee->set(Symbol::Flag::CrayPointee);
}
if (const auto *pointeeType{pointee->GetType()}) {
if (const auto *derived{pointeeType->AsDerived()}) {
if (!IsSequenceOrBindCType(derived)) {
context().Warn(common::LanguageFeature::NonSequenceCrayPointee,
pointeeName.source,
"Type of Cray pointee '%s' is a derived type that is neither SEQUENCE nor BIND(C)"_warn_en_US,
pointeeName.source);
}
}
}
currScope().add_crayPointer(pointeeName.source, *pointer);
}
}
bool DeclarationVisitor::Pre(const parser::NamelistStmt::Group &x) {
if (!CheckNotInBlock("NAMELIST")) { // C1107
return false;
}
const auto &groupName{std::get<parser::Name>(x.t)};
auto *groupSymbol{FindInScope(groupName)};
if (!groupSymbol || !groupSymbol->has<NamelistDetails>()) {
groupSymbol = &MakeSymbol(groupName, NamelistDetails{});
groupSymbol->ReplaceName(groupName.source);
}
// Name resolution of group items is deferred to FinishNamelists()
// so that host association is handled correctly.
GetDeferredDeclarationState(true)->namelistGroups.emplace_back(&x);
return false;
}
void DeclarationVisitor::FinishNamelists() {
if (auto *deferred{GetDeferredDeclarationState()}) {
for (const parser::NamelistStmt::Group *group : deferred->namelistGroups) {
if (auto *groupSymbol{FindInScope(std::get<parser::Name>(group->t))}) {
if (auto *details{groupSymbol->detailsIf<NamelistDetails>()}) {
for (const auto &name : std::get<std::list<parser::Name>>(group->t)) {
auto *symbol{FindSymbol(name)};
if (!symbol) {
symbol = &MakeSymbol(name, ObjectEntityDetails{});
ApplyImplicitRules(*symbol);
} else if (!ConvertToObjectEntity(symbol->GetUltimate())) {
SayWithDecl(name, *symbol, "'%s' is not a variable"_err_en_US);
context().SetError(*groupSymbol);
}
symbol->GetUltimate().set(Symbol::Flag::InNamelist);
details->add_object(*symbol);
}
}
}
}
deferred->namelistGroups.clear();
}
}
bool DeclarationVisitor::Pre(const parser::IoControlSpec &x) {
if (const auto *name{std::get_if<parser::Name>(&x.u)}) {
auto *symbol{FindSymbol(*name)};
if (!symbol) {
Say(*name, "Namelist group '%s' not found"_err_en_US);
} else if (!symbol->GetUltimate().has<NamelistDetails>()) {
SayWithDecl(
*name, *symbol, "'%s' is not the name of a namelist group"_err_en_US);
}
}
return true;
}
bool DeclarationVisitor::Pre(const parser::CommonStmt::Block &x) {
CheckNotInBlock("COMMON"); // C1107
return true;
}
bool DeclarationVisitor::Pre(const parser::CommonBlockObject &) {
BeginArraySpec();
return true;
}
void DeclarationVisitor::Post(const parser::CommonBlockObject &x) {
const auto &name{std::get<parser::Name>(x.t)};
DeclareObjectEntity(name);
auto pair{specPartState_.commonBlockObjects.insert(name.source)};
if (!pair.second) {
const SourceName &prev{*pair.first};
Say2(name.source, "'%s' is already in a COMMON block"_err_en_US, prev,
"Previous occurrence of '%s' in a COMMON block"_en_US);
}
}
bool DeclarationVisitor::Pre(const parser::EquivalenceStmt &x) {
// save equivalence sets to be processed after specification part
if (CheckNotInBlock("EQUIVALENCE")) { // C1107
for (const std::list<parser::EquivalenceObject> &set : x.v) {
specPartState_.equivalenceSets.push_back(&set);
}
}
return false; // don't implicitly declare names yet
}
void DeclarationVisitor::CheckEquivalenceSets() {
EquivalenceSets equivSets{context()};
inEquivalenceStmt_ = true;
for (const auto *set : specPartState_.equivalenceSets) {
const auto &source{set->front().v.value().source};
if (set->size() <= 1) { // R871
Say(source, "Equivalence set must have more than one object"_err_en_US);
}
for (const parser::EquivalenceObject &object : *set) {
const auto &designator{object.v.value()};
// The designator was not resolved when it was encountered, so do it now.
// AnalyzeExpr causes array sections to be changed to substrings as needed
Walk(designator);
if (AnalyzeExpr(context(), designator)) {
equivSets.AddToSet(designator);
}
}
equivSets.FinishSet(source);
}
inEquivalenceStmt_ = false;
for (auto &set : equivSets.sets()) {
if (!set.empty()) {
currScope().add_equivalenceSet(std::move(set));
}
}
specPartState_.equivalenceSets.clear();
}
bool DeclarationVisitor::Pre(const parser::SaveStmt &x) {
if (x.v.empty()) {
specPartState_.saveInfo.saveAll = currStmtSource();
currScope().set_hasSAVE();
} else {
for (const parser::SavedEntity &y : x.v) {
auto kind{std::get<parser::SavedEntity::Kind>(y.t)};
const auto &name{std::get<parser::Name>(y.t)};
if (kind == parser::SavedEntity::Kind::Common) {
MakeCommonBlockSymbol(name);
AddSaveName(specPartState_.saveInfo.commons, name.source);
} else {
HandleAttributeStmt(Attr::SAVE, name);
}
}
}
return false;
}
void DeclarationVisitor::CheckSaveStmts() {
for (const SourceName &name : specPartState_.saveInfo.entities) {
auto *symbol{FindInScope(name)};
if (!symbol) {
// error was reported
} else if (specPartState_.saveInfo.saveAll) {
// C889 - note that pgi, ifort, xlf do not enforce this constraint
if (context().ShouldWarn(common::LanguageFeature::RedundantAttribute)) {
Say2(name,
"Explicit SAVE of '%s' is redundant due to global SAVE statement"_warn_en_US,
*specPartState_.saveInfo.saveAll, "Global SAVE statement"_en_US)
.set_languageFeature(common::LanguageFeature::RedundantAttribute);
}
} else if (!IsSaved(*symbol)) {
SetExplicitAttr(*symbol, Attr::SAVE);
}
}
for (const SourceName &name : specPartState_.saveInfo.commons) {
if (auto *symbol{currScope().FindCommonBlock(name)}) {
auto &objects{symbol->get<CommonBlockDetails>().objects()};
if (objects.empty()) {
if (currScope().kind() != Scope::Kind::BlockConstruct) {
Say(name,
"'%s' appears as a COMMON block in a SAVE statement but not in"
" a COMMON statement"_err_en_US);
} else { // C1108
Say(name,
"SAVE statement in BLOCK construct may not contain a"
" common block name '%s'"_err_en_US);
}
} else {
for (auto &object : symbol->get<CommonBlockDetails>().objects()) {
if (!IsSaved(*object)) {
SetImplicitAttr(*object, Attr::SAVE);
}
}
}
}
}
specPartState_.saveInfo = {};
}
// Record SAVEd names in specPartState_.saveInfo.entities.
Attrs DeclarationVisitor::HandleSaveName(const SourceName &name, Attrs attrs) {
if (attrs.test(Attr::SAVE)) {
AddSaveName(specPartState_.saveInfo.entities, name);
}
return attrs;
}
// Record a name in a set of those to be saved.
void DeclarationVisitor::AddSaveName(
std::set<SourceName> &set, const SourceName &name) {
auto pair{set.insert(name)};
if (!pair.second &&
context().ShouldWarn(common::LanguageFeature::RedundantAttribute)) {
Say2(name, "SAVE attribute was already specified on '%s'"_warn_en_US,
*pair.first, "Previous specification of SAVE attribute"_en_US)
.set_languageFeature(common::LanguageFeature::RedundantAttribute);
}
}
// Check types of common block objects, now that they are known.
void DeclarationVisitor::CheckCommonBlocks() {
// check for empty common blocks
for (const auto &pair : currScope().commonBlocks()) {
const auto &symbol{*pair.second};
if (symbol.get<CommonBlockDetails>().objects().empty() &&
symbol.attrs().test(Attr::BIND_C)) {
Say(symbol.name(),
"'%s' appears as a COMMON block in a BIND statement but not in"
" a COMMON statement"_err_en_US);
}
}
// check objects in common blocks
for (const auto &name : specPartState_.commonBlockObjects) {
const auto *symbol{currScope().FindSymbol(name)};
if (!symbol) {
continue;
}
const auto &attrs{symbol->attrs()};
if (attrs.test(Attr::ALLOCATABLE)) {
Say(name,
"ALLOCATABLE object '%s' may not appear in a COMMON block"_err_en_US);
} else if (attrs.test(Attr::BIND_C)) {
Say(name,
"Variable '%s' with BIND attribute may not appear in a COMMON block"_err_en_US);
} else if (IsNamedConstant(*symbol)) {
Say(name,
"A named constant '%s' may not appear in a COMMON block"_err_en_US);
} else if (IsDummy(*symbol)) {
Say(name,
"Dummy argument '%s' may not appear in a COMMON block"_err_en_US);
} else if (symbol->IsFuncResult()) {
Say(name,
"Function result '%s' may not appear in a COMMON block"_err_en_US);
} else if (const DeclTypeSpec * type{symbol->GetType()}) {
if (type->category() == DeclTypeSpec::ClassStar) {
Say(name,
"Unlimited polymorphic pointer '%s' may not appear in a COMMON block"_err_en_US);
} else if (const auto *derived{type->AsDerived()}) {
if (!IsSequenceOrBindCType(derived)) {
Say(name,
"Derived type '%s' in COMMON block must have the BIND or"
" SEQUENCE attribute"_err_en_US);
}
UnorderedSymbolSet typeSet;
CheckCommonBlockDerivedType(name, derived->typeSymbol(), typeSet);
}
}
}
specPartState_.commonBlockObjects = {};
}
Symbol &DeclarationVisitor::MakeCommonBlockSymbol(const parser::Name &name) {
return Resolve(name, currScope().MakeCommonBlock(name.source));
}
Symbol &DeclarationVisitor::MakeCommonBlockSymbol(
const std::optional<parser::Name> &name) {
if (name) {
return MakeCommonBlockSymbol(*name);
} else {
return MakeCommonBlockSymbol(parser::Name{});
}
}
bool DeclarationVisitor::NameIsKnownOrIntrinsic(const parser::Name &name) {
return FindSymbol(name) || HandleUnrestrictedSpecificIntrinsicFunction(name);
}
// Check if this derived type can be in a COMMON block.
void DeclarationVisitor::CheckCommonBlockDerivedType(const SourceName &name,
const Symbol &typeSymbol, UnorderedSymbolSet &typeSet) {
if (auto iter{typeSet.find(SymbolRef{typeSymbol})}; iter != typeSet.end()) {
return;
}
typeSet.emplace(typeSymbol);
if (const auto *scope{typeSymbol.scope()}) {
for (const auto &pair : *scope) {
const Symbol &component{*pair.second};
if (component.attrs().test(Attr::ALLOCATABLE)) {
Say2(name,
"Derived type variable '%s' may not appear in a COMMON block"
" due to ALLOCATABLE component"_err_en_US,
component.name(), "Component with ALLOCATABLE attribute"_en_US);
return;
}
const auto *details{component.detailsIf<ObjectEntityDetails>()};
if (component.test(Symbol::Flag::InDataStmt) ||
(details && details->init())) {
Say2(name,
"Derived type variable '%s' may not appear in a COMMON block due to component with default initialization"_err_en_US,
component.name(), "Component with default initialization"_en_US);
return;
}
if (details) {
if (const auto *type{details->type()}) {
if (const auto *derived{type->AsDerived()}) {
const Symbol &derivedTypeSymbol{derived->typeSymbol()};
CheckCommonBlockDerivedType(name, derivedTypeSymbol, typeSet);
}
}
}
}
}
}
bool DeclarationVisitor::HandleUnrestrictedSpecificIntrinsicFunction(
const parser::Name &name) {
if (auto interface{context().intrinsics().IsSpecificIntrinsicFunction(
name.source.ToString())}) {
// Unrestricted specific intrinsic function names (e.g., "cos")
// are acceptable as procedure interfaces. The presence of the
// INTRINSIC flag will cause this symbol to have a complete interface
// recreated for it later on demand, but capturing its result type here
// will make GetType() return a correct result without having to
// probe the intrinsics table again.
Symbol &symbol{MakeSymbol(InclusiveScope(), name.source, Attrs{})};
SetImplicitAttr(symbol, Attr::INTRINSIC);
CHECK(interface->functionResult.has_value());
evaluate::DynamicType dyType{
DEREF(interface->functionResult->GetTypeAndShape()).type()};
CHECK(common::IsNumericTypeCategory(dyType.category()));
const DeclTypeSpec &typeSpec{
MakeNumericType(dyType.category(), dyType.kind())};
ProcEntityDetails details;
details.set_type(typeSpec);
symbol.set_details(std::move(details));
symbol.set(Symbol::Flag::Function);
if (interface->IsElemental()) {
SetExplicitAttr(symbol, Attr::ELEMENTAL);
}
if (interface->IsPure()) {
SetExplicitAttr(symbol, Attr::PURE);
}
Resolve(name, symbol);
return true;
} else {
return false;
}
}
// Checks for all locality-specs: LOCAL, LOCAL_INIT, and SHARED
bool DeclarationVisitor::PassesSharedLocalityChecks(
const parser::Name &name, Symbol &symbol) {
if (!IsVariableName(symbol)) {
SayLocalMustBeVariable(name, symbol); // C1124
return false;
}
if (symbol.owner() == currScope()) { // C1125 and C1126
SayAlreadyDeclared(name, symbol);
return false;
}
return true;
}
// Checks for locality-specs LOCAL, LOCAL_INIT, and REDUCE
bool DeclarationVisitor::PassesLocalityChecks(
const parser::Name &name, Symbol &symbol, Symbol::Flag flag) {
bool isReduce{flag == Symbol::Flag::LocalityReduce};
const char *specName{
flag == Symbol::Flag::LocalityLocalInit ? "LOCAL_INIT" : "LOCAL"};
if (IsAllocatable(symbol) && !isReduce) { // F'2023 C1130
SayWithDecl(name, symbol,
"ALLOCATABLE variable '%s' not allowed in a %s locality-spec"_err_en_US,
specName);
return false;
}
if (IsOptional(symbol)) { // F'2023 C1130-C1131
SayWithDecl(name, symbol,
"OPTIONAL argument '%s' not allowed in a locality-spec"_err_en_US);
return false;
}
if (IsIntentIn(symbol)) { // F'2023 C1130-C1131
SayWithDecl(name, symbol,
"INTENT IN argument '%s' not allowed in a locality-spec"_err_en_US);
return false;
}
if (IsFinalizable(symbol) && !isReduce) { // F'2023 C1130
SayWithDecl(name, symbol,
"Finalizable variable '%s' not allowed in a %s locality-spec"_err_en_US,
specName);
return false;
}
if (evaluate::IsCoarray(symbol) && !isReduce) { // F'2023 C1130
SayWithDecl(name, symbol,
"Coarray '%s' not allowed in a %s locality-spec"_err_en_US, specName);
return false;
}
if (const DeclTypeSpec * type{symbol.GetType()}) {
if (type->IsPolymorphic() && IsDummy(symbol) && !IsPointer(symbol) &&
!isReduce) { // F'2023 C1130
SayWithDecl(name, symbol,
"Nonpointer polymorphic argument '%s' not allowed in a %s locality-spec"_err_en_US,
specName);
return false;
}
}
if (symbol.attrs().test(Attr::ASYNCHRONOUS) && isReduce) { // F'2023 C1131
SayWithDecl(name, symbol,
"ASYNCHRONOUS variable '%s' not allowed in a REDUCE locality-spec"_err_en_US);
return false;
}
if (symbol.attrs().test(Attr::VOLATILE) && isReduce) { // F'2023 C1131
SayWithDecl(name, symbol,
"VOLATILE variable '%s' not allowed in a REDUCE locality-spec"_err_en_US);
return false;
}
if (IsAssumedSizeArray(symbol)) { // F'2023 C1130-C1131
SayWithDecl(name, symbol,
"Assumed size array '%s' not allowed in a locality-spec"_err_en_US);
return false;
}
if (std::optional<Message> whyNot{WhyNotDefinable(
name.source, currScope(), DefinabilityFlags{}, symbol)}) {
SayWithReason(name, symbol,
"'%s' may not appear in a locality-spec because it is not definable"_err_en_US,
std::move(whyNot->set_severity(parser::Severity::Because)));
return false;
}
return PassesSharedLocalityChecks(name, symbol);
}
Symbol &DeclarationVisitor::FindOrDeclareEnclosingEntity(
const parser::Name &name) {
Symbol *prev{FindSymbol(name)};
if (!prev) {
// Declare the name as an object in the enclosing scope so that
// the name can't be repurposed there later as something else.
prev = &MakeSymbol(InclusiveScope(), name.source, Attrs{});
ConvertToObjectEntity(*prev);
ApplyImplicitRules(*prev);
}
return *prev;
}
void DeclarationVisitor::DeclareLocalEntity(
const parser::Name &name, Symbol::Flag flag) {
Symbol &prev{FindOrDeclareEnclosingEntity(name)};
if (PassesLocalityChecks(name, prev, flag)) {
if (auto *symbol{&MakeHostAssocSymbol(name, prev)}) {
symbol->set(flag);
}
}
}
Symbol *DeclarationVisitor::DeclareStatementEntity(
const parser::DoVariable &doVar,
const std::optional<parser::IntegerTypeSpec> &type) {
const parser::Name &name{doVar.thing.thing};
const DeclTypeSpec *declTypeSpec{nullptr};
if (auto *prev{FindSymbol(name)}) {
if (prev->owner() == currScope()) {
SayAlreadyDeclared(name, *prev);
return nullptr;
}
name.symbol = nullptr;
// F'2023 19.4 p5 ambiguous rule about outer declarations
declTypeSpec = prev->GetType();
}
Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, {})};
if (!symbol.has<ObjectEntityDetails>()) {
return nullptr; // error was reported in DeclareEntity
}
if (type) {
declTypeSpec = ProcessTypeSpec(*type);
}
if (declTypeSpec) {
// Subtlety: Don't let a "*length" specifier (if any is pending) affect the
// declaration of this implied DO loop control variable.
auto restorer{
common::ScopedSet(charInfo_.length, std::optional<ParamValue>{})};
SetType(name, *declTypeSpec);
} else {
ApplyImplicitRules(symbol);
}
return Resolve(name, &symbol);
}
// Set the type of an entity or report an error.
void DeclarationVisitor::SetType(
const parser::Name &name, const DeclTypeSpec &type) {
CHECK(name.symbol);
auto &symbol{*name.symbol};
if (charInfo_.length) { // Declaration has "*length" (R723)
auto length{std::move(*charInfo_.length)};
charInfo_.length.reset();
if (type.category() == DeclTypeSpec::Character) {
auto kind{type.characterTypeSpec().kind()};
// Recurse with correct type.
SetType(name,
currScope().MakeCharacterType(std::move(length), std::move(kind)));
return;
} else { // C753
Say(name,
"A length specifier cannot be used to declare the non-character entity '%s'"_err_en_US);
}
}
if (auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
if (proc->procInterface()) {
Say(name,
"'%s' has an explicit interface and may not also have a type"_err_en_US);
context().SetError(symbol);
return;
}
}
auto *prevType{symbol.GetType()};
if (!prevType) {
if (symbol.test(Symbol::Flag::InDataStmt) && isImplicitNoneType()) {
context().Warn(common::LanguageFeature::ForwardRefImplicitNoneData,
name.source,
"'%s' appeared in a DATA statement before its type was declared under IMPLICIT NONE(TYPE)"_port_en_US,
name.source);
}
symbol.SetType(type);
} else if (symbol.has<UseDetails>()) {
// error recovery case, redeclaration of use-associated name
} else if (HadForwardRef(symbol)) {
// error recovery after use of host-associated name
} else if (!symbol.test(Symbol::Flag::Implicit)) {
SayWithDecl(
name, symbol, "The type of '%s' has already been declared"_err_en_US);
context().SetError(symbol);
} else if (type != *prevType) {
SayWithDecl(name, symbol,
"The type of '%s' has already been implicitly declared"_err_en_US);
context().SetError(symbol);
} else {
symbol.set(Symbol::Flag::Implicit, false);
}
}
std::optional<DerivedTypeSpec> DeclarationVisitor::ResolveDerivedType(
const parser::Name &name) {
Scope &outer{NonDerivedTypeScope()};
Symbol *symbol{FindSymbol(outer, name)};
Symbol *ultimate{symbol ? &symbol->GetUltimate() : nullptr};
auto *generic{ultimate ? ultimate->detailsIf<GenericDetails>() : nullptr};
if (generic) {
if (Symbol * genDT{generic->derivedType()}) {
symbol = genDT;
generic = nullptr;
}
}
if (!symbol || symbol->has<UnknownDetails>() ||
(generic && &ultimate->owner() == &outer)) {
if (allowForwardReferenceToDerivedType()) {
if (!symbol) {
symbol = &MakeSymbol(outer, name.source, Attrs{});
Resolve(name, *symbol);
} else if (generic) {
// forward ref to type with later homonymous generic
symbol = &outer.MakeSymbol(name.source, Attrs{}, UnknownDetails{});
generic->set_derivedType(*symbol);
name.symbol = symbol;
}
DerivedTypeDetails details;
details.set_isForwardReferenced(true);
symbol->set_details(std::move(details));
} else { // C732
Say(name, "Derived type '%s' not found"_err_en_US);
return std::nullopt;
}
} else if (&DEREF(symbol).owner() != &outer &&
!ultimate->has<GenericDetails>()) {
// Prevent a later declaration in this scope of a host-associated
// type name.
outer.add_importName(name.source);
}
if (CheckUseError(name)) {
return std::nullopt;
} else if (symbol->GetUltimate().has<DerivedTypeDetails>()) {
return DerivedTypeSpec{name.source, *symbol};
} else {
Say(name, "'%s' is not a derived type"_err_en_US);
return std::nullopt;
}
}
std::optional<DerivedTypeSpec> DeclarationVisitor::ResolveExtendsType(
const parser::Name &typeName, const parser::Name *extendsName) {
if (extendsName) {
if (typeName.source == extendsName->source) {
Say(extendsName->source,
"Derived type '%s' cannot extend itself"_err_en_US);
} else if (auto dtSpec{ResolveDerivedType(*extendsName)}) {
if (!dtSpec->IsForwardReferenced()) {
return dtSpec;
}
Say(typeName.source,
"Derived type '%s' cannot extend type '%s' that has not yet been defined"_err_en_US,
typeName.source, extendsName->source);
}
}
return std::nullopt;
}
Symbol *DeclarationVisitor::NoteInterfaceName(const parser::Name &name) {
// The symbol is checked later by CheckExplicitInterface() and
// CheckBindings(). It can be a forward reference.
if (!NameIsKnownOrIntrinsic(name)) {
Symbol &symbol{MakeSymbol(InclusiveScope(), name.source, Attrs{})};
Resolve(name, symbol);
}
return name.symbol;
}
void DeclarationVisitor::CheckExplicitInterface(const parser::Name &name) {
if (const Symbol * symbol{name.symbol}) {
const Symbol &ultimate{symbol->GetUltimate()};
if (!context().HasError(*symbol) && !context().HasError(ultimate) &&
!BypassGeneric(ultimate).HasExplicitInterface()) {
Say(name,
"'%s' must be an abstract interface or a procedure with an explicit interface"_err_en_US,
symbol->name());
}
}
}
// Create a symbol for a type parameter, component, or procedure binding in
// the current derived type scope. Return false on error.
Symbol *DeclarationVisitor::MakeTypeSymbol(
const parser::Name &name, Details &&details) {
return Resolve(name, MakeTypeSymbol(name.source, std::move(details)));
}
Symbol *DeclarationVisitor::MakeTypeSymbol(
const SourceName &name, Details &&details) {
Scope &derivedType{currScope()};
CHECK(derivedType.IsDerivedType());
if (auto *symbol{FindInScope(derivedType, name)}) { // C742
Say2(name,
"Type parameter, component, or procedure binding '%s'"
" already defined in this type"_err_en_US,
*symbol, "Previous definition of '%s'"_en_US);
return nullptr;
} else {
auto attrs{GetAttrs()};
// Apply binding-private-stmt if present and this is a procedure binding
if (derivedTypeInfo_.privateBindings &&
!attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE}) &&
std::holds_alternative<ProcBindingDetails>(details)) {
attrs.set(Attr::PRIVATE);
}
Symbol &result{MakeSymbol(name, attrs, std::move(details))};
SetCUDADataAttr(name, result, cudaDataAttr());
return &result;
}
}
// Return true if it is ok to declare this component in the current scope.
// Otherwise, emit an error and return false.
bool DeclarationVisitor::OkToAddComponent(
const parser::Name &name, const Symbol *extends) {
for (const Scope *scope{&currScope()}; scope;) {
CHECK(scope->IsDerivedType());
if (auto *prev{FindInScope(*scope, name.source)}) {
std::optional<parser::MessageFixedText> msg;
std::optional<common::UsageWarning> warning;
if (context().HasError(*prev)) { // don't pile on
} else if (extends) {
msg = "Type cannot be extended as it has a component named"
" '%s'"_err_en_US;
} else if (CheckAccessibleSymbol(currScope(), *prev)) {
// inaccessible component -- redeclaration is ok
if (context().ShouldWarn(
common::UsageWarning::RedeclaredInaccessibleComponent)) {
msg =
"Component '%s' is inaccessibly declared in or as a parent of this derived type"_warn_en_US;
warning = common::UsageWarning::RedeclaredInaccessibleComponent;
}
} else if (prev->test(Symbol::Flag::ParentComp)) {
msg =
"'%s' is a parent type of this type and so cannot be a component"_err_en_US;
} else if (scope == &currScope()) {
msg =
"Component '%s' is already declared in this derived type"_err_en_US;
} else {
msg =
"Component '%s' is already declared in a parent of this derived type"_err_en_US;
}
if (msg) {
auto &said{Say2(name, std::move(*msg), *prev,
"Previous declaration of '%s'"_en_US)};
if (msg->severity() == parser::Severity::Error) {
Resolve(name, *prev);
return false;
}
if (warning) {
said.set_usageWarning(*warning);
}
}
}
if (scope == &currScope() && extends) {
// The parent component has not yet been added to the scope.
scope = extends->scope();
} else {
scope = scope->GetDerivedTypeParent();
}
}
return true;
}
ParamValue DeclarationVisitor::GetParamValue(
const parser::TypeParamValue &x, common::TypeParamAttr attr) {
return common::visit(
common::visitors{
[=](const parser::ScalarIntExpr &x) { // C704
return ParamValue{EvaluateIntExpr(x), attr};
},
[=](const parser::Star &) { return ParamValue::Assumed(attr); },
[=](const parser::TypeParamValue::Deferred &) {
return ParamValue::Deferred(attr);
},
},
x.u);
}
// ConstructVisitor implementation
void ConstructVisitor::ResolveIndexName(
const parser::ConcurrentControl &control) {
const parser::Name &name{std::get<parser::Name>(control.t)};
auto *prev{FindSymbol(name)};
if (prev) {
if (prev->owner() == currScope()) {
SayAlreadyDeclared(name, *prev);
return;
} else if (prev->owner().kind() == Scope::Kind::Forall &&
context().ShouldWarn(
common::LanguageFeature::OddIndexVariableRestrictions)) {
SayWithDecl(name, *prev,
"Index variable '%s' should not also be an index in an enclosing FORALL or DO CONCURRENT"_port_en_US)
.set_languageFeature(
common::LanguageFeature::OddIndexVariableRestrictions);
}
name.symbol = nullptr;
}
auto &symbol{DeclareObjectEntity(name)};
if (symbol.GetType()) {
// type came from explicit type-spec
} else if (!prev) {
ApplyImplicitRules(symbol);
} else {
// Odd rules in F'2023 19.4 paras 6 & 8.
Symbol &prevRoot{prev->GetUltimate()};
if (const auto *type{prevRoot.GetType()}) {
symbol.SetType(*type);
} else {
ApplyImplicitRules(symbol);
}
if (prevRoot.has<ObjectEntityDetails>() ||
ConvertToObjectEntity(prevRoot)) {
if (prevRoot.IsObjectArray() &&
context().ShouldWarn(
common::LanguageFeature::OddIndexVariableRestrictions)) {
SayWithDecl(name, *prev,
"Index variable '%s' should be scalar in the enclosing scope"_port_en_US)
.set_languageFeature(
common::LanguageFeature::OddIndexVariableRestrictions);
}
} else if (!prevRoot.has<CommonBlockDetails>() &&
context().ShouldWarn(
common::LanguageFeature::OddIndexVariableRestrictions)) {
SayWithDecl(name, *prev,
"Index variable '%s' should be a scalar object or common block if it is present in the enclosing scope"_port_en_US)
.set_languageFeature(
common::LanguageFeature::OddIndexVariableRestrictions);
}
}
EvaluateExpr(parser::Scalar{parser::Integer{common::Clone(name)}});
}
// We need to make sure that all of the index-names get declared before the
// expressions in the loop control are evaluated so that references to the
// index-names in the expressions are correctly detected.
bool ConstructVisitor::Pre(const parser::ConcurrentHeader &header) {
BeginDeclTypeSpec();
Walk(std::get<std::optional<parser::IntegerTypeSpec>>(header.t));
const auto &controls{
std::get<std::list<parser::ConcurrentControl>>(header.t)};
for (const auto &control : controls) {
ResolveIndexName(control);
}
Walk(controls);
Walk(std::get<std::optional<parser::ScalarLogicalExpr>>(header.t));
EndDeclTypeSpec();
return false;
}
bool ConstructVisitor::Pre(const parser::LocalitySpec::Local &x) {
for (auto &name : x.v) {
DeclareLocalEntity(name, Symbol::Flag::LocalityLocal);
}
return false;
}
bool ConstructVisitor::Pre(const parser::LocalitySpec::LocalInit &x) {
for (auto &name : x.v) {
DeclareLocalEntity(name, Symbol::Flag::LocalityLocalInit);
}
return false;
}
bool ConstructVisitor::Pre(const parser::LocalitySpec::Reduce &x) {
for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
DeclareLocalEntity(name, Symbol::Flag::LocalityReduce);
}
return false;
}
bool ConstructVisitor::Pre(const parser::LocalitySpec::Shared &x) {
for (const auto &name : x.v) {
if (!FindSymbol(name)) {
context().Warn(common::UsageWarning::ImplicitShared, name.source,
"Variable '%s' with SHARED locality implicitly declared"_warn_en_US,
name.source);
}
Symbol &prev{FindOrDeclareEnclosingEntity(name)};
if (PassesSharedLocalityChecks(name, prev)) {
MakeHostAssocSymbol(name, prev).set(Symbol::Flag::LocalityShared);
}
}
return false;
}
bool ConstructVisitor::Pre(const parser::AcSpec &x) {
ProcessTypeSpec(x.type);
Walk(x.values);
return false;
}
// Section 19.4, paragraph 5 says that each ac-do-variable has the scope of the
// enclosing ac-implied-do
bool ConstructVisitor::Pre(const parser::AcImpliedDo &x) {
auto &values{std::get<std::list<parser::AcValue>>(x.t)};
auto &control{std::get<parser::AcImpliedDoControl>(x.t)};
auto &type{std::get<std::optional<parser::IntegerTypeSpec>>(control.t)};
auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
// F'2018 has the scope of the implied DO variable covering the entire
// implied DO production (19.4(5)), which seems wrong in cases where the name
// of the implied DO variable appears in one of the bound expressions. Thus
// this extension, which shrinks the scope of the variable to exclude the
// expressions in the bounds.
auto restore{BeginCheckOnIndexUseInOwnBounds(bounds.name)};
Walk(bounds.lower);
Walk(bounds.upper);
Walk(bounds.step);
EndCheckOnIndexUseInOwnBounds(restore);
PushScope(Scope::Kind::ImpliedDos, nullptr);
DeclareStatementEntity(bounds.name, type);
Walk(values);
PopScope();
return false;
}
bool ConstructVisitor::Pre(const parser::DataImpliedDo &x) {
auto &objects{std::get<std::list<parser::DataIDoObject>>(x.t)};
auto &type{std::get<std::optional<parser::IntegerTypeSpec>>(x.t)};
auto &bounds{std::get<parser::DataImpliedDo::Bounds>(x.t)};
// See comment in Pre(AcImpliedDo) above.
auto restore{BeginCheckOnIndexUseInOwnBounds(bounds.name)};
Walk(bounds.lower);
Walk(bounds.upper);
Walk(bounds.step);
EndCheckOnIndexUseInOwnBounds(restore);
bool pushScope{currScope().kind() != Scope::Kind::ImpliedDos};
if (pushScope) {
PushScope(Scope::Kind::ImpliedDos, nullptr);
}
DeclareStatementEntity(bounds.name, type);
Walk(objects);
if (pushScope) {
PopScope();
}
return false;
}
// Sets InDataStmt flag on a variable (or misidentified function) in a DATA
// statement so that the predicate IsInitialized() will be true
// during semantic analysis before the symbol's initializer is constructed.
bool ConstructVisitor::Pre(const parser::DataIDoObject &x) {
common::visit(
common::visitors{
[&](const parser::Scalar<Indirection<parser::Designator>> &y) {
Walk(y.thing.value());
const parser::Name &first{parser::GetFirstName(y.thing.value())};
if (first.symbol) {
first.symbol->set(Symbol::Flag::InDataStmt);
}
},
[&](const Indirection<parser::DataImpliedDo> &y) { Walk(y.value()); },
},
x.u);
return false;
}
bool ConstructVisitor::Pre(const parser::DataStmtObject &x) {
// Subtle: DATA statements may appear in both the specification and
// execution parts, but should be treated as if in the execution part
// for purposes of implicit variable declaration vs. host association.
// When a name first appears as an object in a DATA statement, it should
// be implicitly declared locally as if it had been assigned.
auto flagRestorer{common::ScopedSet(inSpecificationPart_, false)};
common::visit(
common::visitors{
[&](const Indirection<parser::Variable> &y) {
auto restorer{common::ScopedSet(deferImplicitTyping_, true)};
Walk(y.value());
const parser::Name &first{parser::GetFirstName(y.value())};
if (first.symbol) {
first.symbol->set(Symbol::Flag::InDataStmt);
}
},
[&](const parser::DataImpliedDo &y) {
PushScope(Scope::Kind::ImpliedDos, nullptr);
Walk(y);
PopScope();
},
},
x.u);
return false;
}
bool ConstructVisitor::Pre(const parser::DataStmtValue &x) {
const auto &data{std::get<parser::DataStmtConstant>(x.t)};
auto &mutableData{const_cast<parser::DataStmtConstant &>(data)};
if (auto *elem{parser::Unwrap<parser::ArrayElement>(mutableData)}) {
if (const auto *name{std::get_if<parser::Name>(&elem->base.u)}) {
if (const Symbol * symbol{FindSymbol(*name)};
symbol && symbol->GetUltimate().has<DerivedTypeDetails>()) {
mutableData.u = elem->ConvertToStructureConstructor(
DerivedTypeSpec{name->source, *symbol});
}
}
}
return true;
}
bool ConstructVisitor::Pre(const parser::DoConstruct &x) {
if (x.IsDoConcurrent()) {
// The new scope has Kind::Forall for index variable name conflict
// detection with nested FORALL/DO CONCURRENT constructs in
// ResolveIndexName().
PushScope(Scope::Kind::Forall, nullptr);
}
return true;
}
void ConstructVisitor::Post(const parser::DoConstruct &x) {
if (x.IsDoConcurrent()) {
PopScope();
}
}
bool ConstructVisitor::Pre(const parser::ForallConstruct &) {
PushScope(Scope::Kind::Forall, nullptr);
return true;
}
void ConstructVisitor::Post(const parser::ForallConstruct &) { PopScope(); }
bool ConstructVisitor::Pre(const parser::ForallStmt &) {
PushScope(Scope::Kind::Forall, nullptr);
return true;
}
void ConstructVisitor::Post(const parser::ForallStmt &) { PopScope(); }
bool ConstructVisitor::Pre(const parser::BlockConstruct &x) {
const auto &[blockStmt, specPart, execPart, endBlockStmt] = x.t;
Walk(blockStmt);
CheckDef(blockStmt.statement.v);
PushScope(Scope::Kind::BlockConstruct, nullptr);
Walk(specPart);
HandleImpliedAsynchronousInScope(execPart);
Walk(execPart);
Walk(endBlockStmt);
PopScope();
CheckRef(endBlockStmt.statement.v);
return false;
}
void ConstructVisitor::Post(const parser::Selector &x) {
GetCurrentAssociation().selector = ResolveSelector(x);
}
void ConstructVisitor::Post(const parser::AssociateStmt &x) {
CheckDef(x.t);
PushScope(Scope::Kind::OtherConstruct, nullptr);
const auto assocCount{std::get<std::list<parser::Association>>(x.t).size()};
for (auto nthLastAssoc{assocCount}; nthLastAssoc > 0; --nthLastAssoc) {
SetCurrentAssociation(nthLastAssoc);
if (auto *symbol{MakeAssocEntity()}) {
const MaybeExpr &expr{GetCurrentAssociation().selector.expr};
if (ExtractCoarrayRef(expr)) { // C1103
Say("Selector must not be a coindexed object"_err_en_US);
}
if (evaluate::IsAssumedRank(expr)) {
Say("Selector must not be assumed-rank"_err_en_US);
}
SetTypeFromAssociation(*symbol);
SetAttrsFromAssociation(*symbol);
}
}
PopAssociation(assocCount);
}
void ConstructVisitor::Post(const parser::EndAssociateStmt &x) {
PopScope();
CheckRef(x.v);
}
bool ConstructVisitor::Pre(const parser::Association &x) {
PushAssociation();
const auto &name{std::get<parser::Name>(x.t)};
GetCurrentAssociation().name = &name;
return true;
}
bool ConstructVisitor::Pre(const parser::ChangeTeamStmt &x) {
CheckDef(x.t);
PushScope(Scope::Kind::OtherConstruct, nullptr);
PushAssociation();
return true;
}
void ConstructVisitor::Post(const parser::CoarrayAssociation &x) {
const auto &decl{std::get<parser::CodimensionDecl>(x.t)};
const auto &name{std::get<parser::Name>(decl.t)};
if (auto *symbol{FindInScope(name)}) {
const auto &selector{std::get<parser::Selector>(x.t)};
if (auto sel{ResolveSelector(selector)}) {
const Symbol *whole{UnwrapWholeSymbolDataRef(sel.expr)};
if (!whole || whole->Corank() == 0) {
Say(sel.source, // C1116
"Selector in coarray association must name a coarray"_err_en_US);
} else if (auto dynType{sel.expr->GetType()}) {
if (!symbol->GetType()) {
symbol->SetType(ToDeclTypeSpec(std::move(*dynType)));
}
}
}
}
}
void ConstructVisitor::Post(const parser::EndChangeTeamStmt &x) {
PopAssociation();
PopScope();
CheckRef(x.t);
}
bool ConstructVisitor::Pre(const parser::SelectTypeConstruct &) {
PushAssociation();
return true;
}
void ConstructVisitor::Post(const parser::SelectTypeConstruct &) {
PopAssociation();
}
void ConstructVisitor::Post(const parser::SelectTypeStmt &x) {
auto &association{GetCurrentAssociation()};
if (const std::optional<parser::Name> &name{std::get<1>(x.t)}) {
// This isn't a name in the current scope, it is in each TypeGuardStmt
MakePlaceholder(*name, MiscDetails::Kind::SelectTypeAssociateName);
association.name = &*name;
if (ExtractCoarrayRef(association.selector.expr)) { // C1103
Say("Selector must not be a coindexed object"_err_en_US);
}
if (association.selector.expr) {
auto exprType{association.selector.expr->GetType()};
if (exprType && !exprType->IsPolymorphic()) { // C1159
Say(association.selector.source,
"Selector '%s' in SELECT TYPE statement must be "
"polymorphic"_err_en_US);
}
}
} else {
if (const Symbol *
whole{UnwrapWholeSymbolDataRef(association.selector.expr)}) {
ConvertToObjectEntity(const_cast<Symbol &>(*whole));
if (!IsVariableName(*whole)) {
Say(association.selector.source, // C901
"Selector is not a variable"_err_en_US);
association = {};
}
if (const DeclTypeSpec * type{whole->GetType()}) {
if (!type->IsPolymorphic()) { // C1159
Say(association.selector.source,
"Selector '%s' in SELECT TYPE statement must be "
"polymorphic"_err_en_US);
}
}
} else {
Say(association.selector.source, // C1157
"Selector is not a named variable: 'associate-name =>' is required"_err_en_US);
association = {};
}
}
}
void ConstructVisitor::Post(const parser::SelectRankStmt &x) {
auto &association{GetCurrentAssociation()};
if (const std::optional<parser::Name> &name{std::get<1>(x.t)}) {
// This isn't a name in the current scope, it is in each SelectRankCaseStmt
MakePlaceholder(*name, MiscDetails::Kind::SelectRankAssociateName);
association.name = &*name;
}
}
bool ConstructVisitor::Pre(const parser::SelectTypeConstruct::TypeCase &) {
PushScope(Scope::Kind::OtherConstruct, nullptr);
return true;
}
void ConstructVisitor::Post(const parser::SelectTypeConstruct::TypeCase &) {
PopScope();
}
bool ConstructVisitor::Pre(const parser::SelectRankConstruct::RankCase &) {
PushScope(Scope::Kind::OtherConstruct, nullptr);
return true;
}
void ConstructVisitor::Post(const parser::SelectRankConstruct::RankCase &) {
PopScope();
}
bool ConstructVisitor::Pre(const parser::TypeGuardStmt::Guard &x) {
if (std::holds_alternative<parser::DerivedTypeSpec>(x.u)) {
// CLASS IS (t)
SetDeclTypeSpecCategory(DeclTypeSpec::Category::ClassDerived);
}
return true;
}
void ConstructVisitor::Post(const parser::TypeGuardStmt::Guard &x) {
if (auto *symbol{MakeAssocEntity()}) {
if (std::holds_alternative<parser::Default>(x.u)) {
SetTypeFromAssociation(*symbol);
} else if (const auto *type{GetDeclTypeSpec()}) {
symbol->SetType(*type);
}
SetAttrsFromAssociation(*symbol);
}
}
void ConstructVisitor::Post(const parser::SelectRankCaseStmt::Rank &x) {
if (auto *symbol{MakeAssocEntity()}) {
SetTypeFromAssociation(*symbol);
auto &details{symbol->get<AssocEntityDetails>()};
// Don't call SetAttrsFromAssociation() for SELECT RANK.
Attrs selectorAttrs{
evaluate::GetAttrs(GetCurrentAssociation().selector.expr)};
Attrs attrsToKeep{Attr::ASYNCHRONOUS, Attr::TARGET, Attr::VOLATILE};
if (const auto *rankValue{
std::get_if<parser::ScalarIntConstantExpr>(&x.u)}) {
// RANK(n)
if (auto expr{EvaluateIntExpr(*rankValue)}) {
if (auto val{evaluate::ToInt64(*expr)}) {
details.set_rank(*val);
attrsToKeep |= Attrs{Attr::ALLOCATABLE, Attr::POINTER};
} else {
Say("RANK() expression must be constant"_err_en_US);
}
}
} else if (std::holds_alternative<parser::Star>(x.u)) {
// RANK(*): assumed-size
details.set_IsAssumedSize();
} else {
CHECK(std::holds_alternative<parser::Default>(x.u));
// RANK DEFAULT: assumed-rank
details.set_IsAssumedRank();
attrsToKeep |= Attrs{Attr::ALLOCATABLE, Attr::POINTER};
}
symbol->attrs() |= selectorAttrs & attrsToKeep;
}
}
bool ConstructVisitor::Pre(const parser::SelectRankConstruct &) {
PushAssociation();
return true;
}
void ConstructVisitor::Post(const parser::SelectRankConstruct &) {
PopAssociation();
}
bool ConstructVisitor::CheckDef(const std::optional<parser::Name> &x) {
if (x && !x->symbol) {
// Construct names are not scoped by BLOCK in the standard, but many,
// but not all, compilers do treat them as if they were so scoped.
if (Symbol * inner{FindInScope(currScope(), *x)}) {
SayAlreadyDeclared(*x, *inner);
} else {
if (context().ShouldWarn(common::LanguageFeature::BenignNameClash)) {
if (Symbol *
other{FindInScopeOrBlockConstructs(InclusiveScope(), x->source)}) {
SayWithDecl(*x, *other,
"The construct name '%s' should be distinct at the subprogram level"_port_en_US)
.set_languageFeature(common::LanguageFeature::BenignNameClash);
}
}
MakeSymbol(*x, MiscDetails{MiscDetails::Kind::ConstructName});
}
}
return true;
}
void ConstructVisitor::CheckRef(const std::optional<parser::Name> &x) {
if (x) {
// Just add an occurrence of this name; checking is done in ValidateLabels
FindSymbol(*x);
}
}
// Make a symbol for the associating entity of the current association.
Symbol *ConstructVisitor::MakeAssocEntity() {
Symbol *symbol{nullptr};
auto &association{GetCurrentAssociation()};
if (association.name) {
symbol = &MakeSymbol(*association.name, UnknownDetails{});
if (symbol->has<AssocEntityDetails>() && symbol->owner() == currScope()) {
Say(*association.name, // C1102
"The associate name '%s' is already used in this associate statement"_err_en_US);
return nullptr;
}
} else if (const Symbol *
whole{UnwrapWholeSymbolDataRef(association.selector.expr)}) {
symbol = &MakeSymbol(whole->name());
} else {
return nullptr;
}
if (auto &expr{association.selector.expr}) {
symbol->set_details(AssocEntityDetails{common::Clone(*expr)});
} else {
symbol->set_details(AssocEntityDetails{});
}
return symbol;
}
// Set the type of symbol based on the current association selector.
void ConstructVisitor::SetTypeFromAssociation(Symbol &symbol) {
auto &details{symbol.get<AssocEntityDetails>()};
const MaybeExpr *pexpr{&details.expr()};
if (!*pexpr) {
pexpr = &GetCurrentAssociation().selector.expr;
}
if (*pexpr) {
const SomeExpr &expr{**pexpr};
if (std::optional<evaluate::DynamicType> type{expr.GetType()}) {
if (const auto *charExpr{
evaluate::UnwrapExpr<evaluate::Expr<evaluate::SomeCharacter>>(
expr)}) {
symbol.SetType(ToDeclTypeSpec(std::move(*type),
FoldExpr(common::visit(
[](const auto &kindChar) { return kindChar.LEN(); },
charExpr->u))));
} else {
symbol.SetType(ToDeclTypeSpec(std::move(*type)));
}
} else {
// BOZ literals, procedure designators, &c. are not acceptable
Say(symbol.name(), "Associate name '%s' must have a type"_err_en_US);
}
}
}
// If current selector is a variable, set some of its attributes on symbol.
// For ASSOCIATE, CHANGE TEAM, and SELECT TYPE only; not SELECT RANK.
void ConstructVisitor::SetAttrsFromAssociation(Symbol &symbol) {
Attrs attrs{evaluate::GetAttrs(GetCurrentAssociation().selector.expr)};
symbol.attrs() |=
attrs & Attrs{Attr::TARGET, Attr::ASYNCHRONOUS, Attr::VOLATILE};
if (attrs.test(Attr::POINTER)) {
SetImplicitAttr(symbol, Attr::TARGET);
}
}
ConstructVisitor::Selector ConstructVisitor::ResolveSelector(
const parser::Selector &x) {
return common::visit(common::visitors{
[&](const parser::Expr &expr) {
return Selector{expr.source, EvaluateExpr(x)};
},
[&](const parser::Variable &var) {
return Selector{var.GetSource(), EvaluateExpr(x)};
},
},
x.u);
}
// Set the current association to the nth to the last association on the
// association stack. The top of the stack is at n = 1. This allows access
// to the interior of a list of associations at the top of the stack.
void ConstructVisitor::SetCurrentAssociation(std::size_t n) {
CHECK(n > 0 && n <= associationStack_.size());
currentAssociation_ = &associationStack_[associationStack_.size() - n];
}
ConstructVisitor::Association &ConstructVisitor::GetCurrentAssociation() {
CHECK(currentAssociation_);
return *currentAssociation_;
}
void ConstructVisitor::PushAssociation() {
associationStack_.emplace_back(Association{});
currentAssociation_ = &associationStack_.back();
}
void ConstructVisitor::PopAssociation(std::size_t count) {
CHECK(count > 0 && count <= associationStack_.size());
associationStack_.resize(associationStack_.size() - count);
currentAssociation_ =
associationStack_.empty() ? nullptr : &associationStack_.back();
}
const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec(
evaluate::DynamicType &&type) {
switch (type.category()) {
SWITCH_COVERS_ALL_CASES
case common::TypeCategory::Integer:
case common::TypeCategory::Real:
case common::TypeCategory::Complex:
return context().MakeNumericType(type.category(), type.kind());
case common::TypeCategory::Logical:
return context().MakeLogicalType(type.kind());
case common::TypeCategory::Derived:
if (type.IsAssumedType()) {
return currScope().MakeTypeStarType();
} else if (type.IsUnlimitedPolymorphic()) {
return currScope().MakeClassStarType();
} else {
return currScope().MakeDerivedType(
type.IsPolymorphic() ? DeclTypeSpec::ClassDerived
: DeclTypeSpec::TypeDerived,
common::Clone(type.GetDerivedTypeSpec())
);
}
case common::TypeCategory::Character:
CRASH_NO_CASE;
}
}
const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec(
evaluate::DynamicType &&type, MaybeSubscriptIntExpr &&length) {
CHECK(type.category() == common::TypeCategory::Character);
if (length) {
return currScope().MakeCharacterType(
ParamValue{SomeIntExpr{*std::move(length)}, common::TypeParamAttr::Len},
KindExpr{type.kind()});
} else {
return currScope().MakeCharacterType(
ParamValue::Deferred(common::TypeParamAttr::Len),
KindExpr{type.kind()});
}
}
class ExecutionPartSkimmerBase {
public:
template <typename A> bool Pre(const A &) { return true; }
template <typename A> void Post(const A &) {}
bool InNestedBlockConstruct() const { return blockDepth_ > 0; }
bool Pre(const parser::AssociateConstruct &) {
PushScope();
return true;
}
void Post(const parser::AssociateConstruct &) { PopScope(); }
bool Pre(const parser::Association &x) {
Hide(std::get<parser::Name>(x.t));
return true;
}
bool Pre(const parser::BlockConstruct &) {
PushScope();
++blockDepth_;
return true;
}
void Post(const parser::BlockConstruct &) {
--blockDepth_;
PopScope();
}
bool Pre(const parser::EntityDecl &x) {
Hide(std::get<parser::ObjectName>(x.t));
return true;
}
void Post(const parser::ImportStmt &x) {
if (x.kind == common::ImportKind::None ||
x.kind == common::ImportKind::Only) {
if (!nestedScopes_.front().importOnly.has_value()) {
nestedScopes_.front().importOnly.emplace();
}
for (const auto &name : x.names) {
nestedScopes_.front().importOnly->emplace(name.source);
}
} else {
// no special handling needed for explicit names or IMPORT, ALL
}
}
void Post(const parser::UseStmt &x) {
if (const auto *onlyList{std::get_if<std::list<parser::Only>>(&x.u)}) {
for (const auto &only : *onlyList) {
if (const auto *name{std::get_if<parser::Name>(&only.u)}) {
Hide(*name);
} else if (const auto *rename{std::get_if<parser::Rename>(&only.u)}) {
if (const auto *names{
std::get_if<parser::Rename::Names>(&rename->u)}) {
Hide(std::get<0>(names->t));
}
}
}
} else {
// USE may or may not shadow symbols in host scopes
nestedScopes_.front().hasUseWithoutOnly = true;
}
}
bool Pre(const parser::DerivedTypeStmt &x) {
Hide(std::get<parser::Name>(x.t));
PushScope();
return true;
}
void Post(const parser::DerivedTypeDef &) { PopScope(); }
bool Pre(const parser::SelectTypeConstruct &) {
PushScope();
return true;
}
void Post(const parser::SelectTypeConstruct &) { PopScope(); }
bool Pre(const parser::SelectTypeStmt &x) {
if (const auto &maybeName{std::get<1>(x.t)}) {
Hide(*maybeName);
}
return true;
}
bool Pre(const parser::SelectRankConstruct &) {
PushScope();
return true;
}
void Post(const parser::SelectRankConstruct &) { PopScope(); }
bool Pre(const parser::SelectRankStmt &x) {
if (const auto &maybeName{std::get<1>(x.t)}) {
Hide(*maybeName);
}
return true;
}
protected:
bool IsHidden(SourceName name) {
for (const auto &scope : nestedScopes_) {
if (scope.locals.find(name) != scope.locals.end()) {
return true; // shadowed by nested declaration
}
if (scope.hasUseWithoutOnly) {
break;
}
if (scope.importOnly &&
scope.importOnly->find(name) == scope.importOnly->end()) {
return true; // not imported
}
}
return false;
}
void EndWalk() { CHECK(nestedScopes_.empty()); }
private:
void PushScope() { nestedScopes_.emplace_front(); }
void PopScope() { nestedScopes_.pop_front(); }
void Hide(const parser::Name &name) {
nestedScopes_.front().locals.emplace(name.source);
}
int blockDepth_{0};
struct NestedScopeInfo {
bool hasUseWithoutOnly{false};
std::set<SourceName> locals;
std::optional<std::set<SourceName>> importOnly;
};
std::list<NestedScopeInfo> nestedScopes_;
};
class ExecutionPartAsyncIOSkimmer : public ExecutionPartSkimmerBase {
public:
explicit ExecutionPartAsyncIOSkimmer(SemanticsContext &context)
: context_{context} {}
void Walk(const parser::Block &block) {
parser::Walk(block, *this);
EndWalk();
}
const std::set<SourceName> asyncIONames() const { return asyncIONames_; }
using ExecutionPartSkimmerBase::Post;
using ExecutionPartSkimmerBase::Pre;
bool Pre(const parser::IoControlSpec::Asynchronous &async) {
if (auto folded{evaluate::Fold(
context_.foldingContext(), AnalyzeExpr(context_, async.v))}) {
if (auto str{
evaluate::GetScalarConstantValue<evaluate::Ascii>(*folded)}) {
for (char ch : *str) {
if (ch != ' ') {
inAsyncIO_ = ch == 'y' || ch == 'Y';
break;
}
}
}
}
return true;
}
void Post(const parser::ReadStmt &) { inAsyncIO_ = false; }
void Post(const parser::WriteStmt &) { inAsyncIO_ = false; }
void Post(const parser::IoControlSpec::Size &size) {
if (const auto *designator{
std::get_if<common::Indirection<parser::Designator>>(
&size.v.thing.thing.u)}) {
NoteAsyncIODesignator(designator->value());
}
}
void Post(const parser::InputItem &x) {
if (const auto *var{std::get_if<parser::Variable>(&x.u)}) {
if (const auto *designator{
std::get_if<common::Indirection<parser::Designator>>(&var->u)}) {
NoteAsyncIODesignator(designator->value());
}
}
}
void Post(const parser::OutputItem &x) {
if (const auto *expr{std::get_if<parser::Expr>(&x.u)}) {
if (const auto *designator{
std::get_if<common::Indirection<parser::Designator>>(&expr->u)}) {
NoteAsyncIODesignator(designator->value());
}
}
}
private:
void NoteAsyncIODesignator(const parser::Designator &designator) {
if (inAsyncIO_ && !InNestedBlockConstruct()) {
const parser::Name &name{parser::GetFirstName(designator)};
if (!IsHidden(name.source)) {
asyncIONames_.insert(name.source);
}
}
}
SemanticsContext &context_;
bool inAsyncIO_{false};
std::set<SourceName> asyncIONames_;
};
// Any data list item or SIZE= specifier of an I/O data transfer statement
// with ASYNCHRONOUS="YES" implicitly has the ASYNCHRONOUS attribute in the
// local scope.
void ConstructVisitor::HandleImpliedAsynchronousInScope(
const parser::Block &block) {
ExecutionPartAsyncIOSkimmer skimmer{context()};
skimmer.Walk(block);
for (auto name : skimmer.asyncIONames()) {
if (Symbol * symbol{currScope().FindSymbol(name)}) {
if (!symbol->attrs().test(Attr::ASYNCHRONOUS)) {
if (&symbol->owner() != &currScope()) {
symbol = &*currScope()
.try_emplace(name, HostAssocDetails{*symbol})
.first->second;
}
if (symbol->has<AssocEntityDetails>()) {
symbol = const_cast<Symbol *>(&GetAssociationRoot(*symbol));
}
SetImplicitAttr(*symbol, Attr::ASYNCHRONOUS);
}
}
}
}
// ResolveNamesVisitor implementation
bool ResolveNamesVisitor::Pre(const parser::FunctionReference &x) {
HandleCall(Symbol::Flag::Function, x.v);
return false;
}
bool ResolveNamesVisitor::Pre(const parser::CallStmt &x) {
HandleCall(Symbol::Flag::Subroutine, x.call);
Walk(x.chevrons);
return false;
}
bool ResolveNamesVisitor::Pre(const parser::ImportStmt &x) {
auto &scope{currScope()};
// Check C896 and C899: where IMPORT statements are allowed
switch (scope.kind()) {
case Scope::Kind::Module:
if (scope.IsModule()) {
Say("IMPORT is not allowed in a module scoping unit"_err_en_US);
return false;
} else if (x.kind == common::ImportKind::None) {
Say("IMPORT,NONE is not allowed in a submodule scoping unit"_err_en_US);
return false;
}
break;
case Scope::Kind::MainProgram:
Say("IMPORT is not allowed in a main program scoping unit"_err_en_US);
return false;
case Scope::Kind::Subprogram:
if (scope.parent().IsGlobal()) {
Say("IMPORT is not allowed in an external subprogram scoping unit"_err_en_US);
return false;
}
break;
case Scope::Kind::BlockData: // C1415 (in part)
Say("IMPORT is not allowed in a BLOCK DATA subprogram"_err_en_US);
return false;
default:;
}
if (auto error{scope.SetImportKind(x.kind)}) {
Say(std::move(*error));
}
for (auto &name : x.names) {
if (Symbol * outer{FindSymbol(scope.parent(), name)}) {
scope.add_importName(name.source);
if (Symbol * symbol{FindInScope(name)}) {
if (outer->GetUltimate() == symbol->GetUltimate()) {
context().Warn(common::LanguageFeature::BenignNameClash, name.source,
"The same '%s' is already present in this scope"_port_en_US,
name.source);
} else {
Say(name,
"A distinct '%s' is already present in this scope"_err_en_US)
.Attach(symbol->name(), "Previous declaration of '%s'"_en_US)
.Attach(outer->name(), "Declaration of '%s' in host scope"_en_US);
}
}
} else {
Say(name, "'%s' not found in host scope"_err_en_US);
}
}
prevImportStmt_ = currStmtSource();
return false;
}
const parser::Name *DeclarationVisitor::ResolveStructureComponent(
const parser::StructureComponent &x) {
return FindComponent(ResolveDataRef(x.base), x.component);
}
const parser::Name *DeclarationVisitor::ResolveDesignator(
const parser::Designator &x) {
return common::visit(
common::visitors{
[&](const parser::DataRef &x) { return ResolveDataRef(x); },
[&](const parser::Substring &x) {
Walk(std::get<parser::SubstringRange>(x.t).t);
return ResolveDataRef(std::get<parser::DataRef>(x.t));
},
},
x.u);
}
const parser::Name *DeclarationVisitor::ResolveDataRef(
const parser::DataRef &x) {
return common::visit(
common::visitors{
[=](const parser::Name &y) { return ResolveName(y); },
[=](const Indirection<parser::StructureComponent> &y) {
return ResolveStructureComponent(y.value());
},
[&](const Indirection<parser::ArrayElement> &y) {
Walk(y.value().subscripts);
const parser::Name *name{ResolveDataRef(y.value().base)};
if (name && name->symbol) {
if (!IsProcedure(*name->symbol)) {
ConvertToObjectEntity(*name->symbol);
} else if (!context().HasError(*name->symbol)) {
SayWithDecl(*name, *name->symbol,
"Cannot reference function '%s' as data"_err_en_US);
context().SetError(*name->symbol);
}
}
return name;
},
[&](const Indirection<parser::CoindexedNamedObject> &y) {
Walk(y.value().imageSelector);
return ResolveDataRef(y.value().base);
},
},
x.u);
}
// If implicit types are allowed, ensure name is in the symbol table.
// Otherwise, report an error if it hasn't been declared.
const parser::Name *DeclarationVisitor::ResolveName(const parser::Name &name) {
FindSymbol(name);
if (CheckForHostAssociatedImplicit(name)) {
NotePossibleBadForwardRef(name);
return &name;
}
if (Symbol * symbol{name.symbol}) {
if (CheckUseError(name)) {
return nullptr; // reported an error
}
NotePossibleBadForwardRef(name);
symbol->set(Symbol::Flag::ImplicitOrError, false);
if (IsUplevelReference(*symbol)) {
MakeHostAssocSymbol(name, *symbol);
} else if (IsDummy(*symbol) ||
(!symbol->GetType() && FindCommonBlockContaining(*symbol))) {
CheckEntryDummyUse(name.source, symbol);
ConvertToObjectEntity(*symbol);
ApplyImplicitRules(*symbol);
} else if (const auto *tpd{symbol->detailsIf<TypeParamDetails>()};
tpd && !tpd->attr()) {
Say(name,
"Type parameter '%s' was referenced before being declared"_err_en_US,
name.source);
context().SetError(*symbol);
}
if (checkIndexUseInOwnBounds_ &&
*checkIndexUseInOwnBounds_ == name.source && !InModuleFile()) {
context().Warn(common::LanguageFeature::ImpliedDoIndexScope, name.source,
"Implied DO index '%s' uses an object of the same name in its bounds expressions"_port_en_US,
name.source);
}
return &name;
}
if (isImplicitNoneType() && !deferImplicitTyping_) {
Say(name, "No explicit type declared for '%s'"_err_en_US);
return nullptr;
}
// Create the symbol, then ensure that it is accessible
if (checkIndexUseInOwnBounds_ && *checkIndexUseInOwnBounds_ == name.source) {
Say(name,
"Implied DO index '%s' uses itself in its own bounds expressions"_err_en_US,
name.source);
}
MakeSymbol(InclusiveScope(), name.source, Attrs{});
auto *symbol{FindSymbol(name)};
if (!symbol) {
Say(name,
"'%s' from host scoping unit is not accessible due to IMPORT"_err_en_US);
return nullptr;
}
ConvertToObjectEntity(*symbol);
ApplyImplicitRules(*symbol);
NotePossibleBadForwardRef(name);
return &name;
}
// A specification expression may refer to a symbol in the host procedure that
// is implicitly typed. Because specification parts are processed before
// execution parts, this may be the first time we see the symbol. It can't be a
// local in the current scope (because it's in a specification expression) so
// either it is implicitly declared in the host procedure or it is an error.
// We create a symbol in the host assuming it is the former; if that proves to
// be wrong we report an error later in CheckDeclarations().
bool DeclarationVisitor::CheckForHostAssociatedImplicit(
const parser::Name &name) {
if (!inSpecificationPart_ || inEquivalenceStmt_) {
return false;
}
if (name.symbol) {
ApplyImplicitRules(*name.symbol, true);
}
if (Scope * host{GetHostProcedure()}; host && !isImplicitNoneType(*host)) {
Symbol *hostSymbol{nullptr};
if (!name.symbol) {
if (currScope().CanImport(name.source)) {
hostSymbol = &MakeSymbol(*host, name.source, Attrs{});
ConvertToObjectEntity(*hostSymbol);
ApplyImplicitRules(*hostSymbol);
hostSymbol->set(Symbol::Flag::ImplicitOrError);
}
} else if (name.symbol->test(Symbol::Flag::ImplicitOrError)) {
hostSymbol = name.symbol;
}
if (hostSymbol) {
Symbol &symbol{MakeHostAssocSymbol(name, *hostSymbol)};
if (auto *assoc{symbol.detailsIf<HostAssocDetails>()}) {
if (isImplicitNoneType()) {
assoc->implicitOrExplicitTypeError = true;
} else {
assoc->implicitOrSpecExprError = true;
}
return true;
}
}
}
return false;
}
bool DeclarationVisitor::IsUplevelReference(const Symbol &symbol) {
const Scope &symbolUnit{GetProgramUnitContaining(symbol)};
if (symbolUnit == GetProgramUnitContaining(currScope())) {
return false;
} else {
Scope::Kind kind{symbolUnit.kind()};
return kind == Scope::Kind::Subprogram || kind == Scope::Kind::MainProgram;
}
}
// base is a part-ref of a derived type; find the named component in its type.
// Also handles intrinsic type parameter inquiries (%kind, %len) and
// COMPLEX component references (%re, %im).
const parser::Name *DeclarationVisitor::FindComponent(
const parser::Name *base, const parser::Name &component) {
if (!base || !base->symbol) {
return nullptr;
}
if (auto *misc{base->symbol->detailsIf<MiscDetails>()}) {
if (component.source == "kind") {
if (misc->kind() == MiscDetails::Kind::ComplexPartRe ||
misc->kind() == MiscDetails::Kind::ComplexPartIm ||
misc->kind() == MiscDetails::Kind::KindParamInquiry ||
misc->kind() == MiscDetails::Kind::LenParamInquiry) {
// x%{re,im,kind,len}%kind
MakePlaceholder(component, MiscDetails::Kind::KindParamInquiry);
return &component;
}
}
}
CheckEntryDummyUse(base->source, base->symbol);
auto &symbol{base->symbol->GetUltimate()};
if (!symbol.has<AssocEntityDetails>() && !ConvertToObjectEntity(symbol)) {
SayWithDecl(*base, symbol,
"'%s' is not an object and may not be used as the base of a component reference or type parameter inquiry"_err_en_US);
return nullptr;
}
auto *type{symbol.GetType()};
if (!type) {
return nullptr; // should have already reported error
}
if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) {
auto category{intrinsic->category()};
MiscDetails::Kind miscKind{MiscDetails::Kind::None};
if (component.source == "kind") {
miscKind = MiscDetails::Kind::KindParamInquiry;
} else if (category == TypeCategory::Character) {
if (component.source == "len") {
miscKind = MiscDetails::Kind::LenParamInquiry;
}
} else if (category == TypeCategory::Complex) {
if (component.source == "re") {
miscKind = MiscDetails::Kind::ComplexPartRe;
} else if (component.source == "im") {
miscKind = MiscDetails::Kind::ComplexPartIm;
}
}
if (miscKind != MiscDetails::Kind::None) {
MakePlaceholder(component, miscKind);
return &component;
}
} else if (DerivedTypeSpec * derived{type->AsDerived()}) {
derived->Instantiate(currScope()); // in case of forward referenced type
if (const Scope * scope{derived->scope()}) {
if (Resolve(component, scope->FindComponent(component.source))) {
if (auto msg{CheckAccessibleSymbol(currScope(), *component.symbol)}) {
context().Say(component.source, *msg);
}
return &component;
} else {
SayDerivedType(component.source,
"Component '%s' not found in derived type '%s'"_err_en_US, *scope);
}
}
return nullptr;
}
if (symbol.test(Symbol::Flag::Implicit)) {
Say(*base,
"'%s' is not an object of derived type; it is implicitly typed"_err_en_US);
} else {
SayWithDecl(
*base, symbol, "'%s' is not an object of derived type"_err_en_US);
}
return nullptr;
}
void DeclarationVisitor::Initialization(const parser::Name &name,
const parser::Initialization &init, bool inComponentDecl) {
// Traversal of the initializer was deferred to here so that the
// symbol being declared can be available for use in the expression, e.g.:
// real, parameter :: x = tiny(x)
if (!name.symbol) {
return;
}
Symbol &ultimate{name.symbol->GetUltimate()};
// TODO: check C762 - all bounds and type parameters of component
// are colons or constant expressions if component is initialized
common::visit(
common::visitors{
[&](const parser::ConstantExpr &expr) {
Walk(expr);
if (IsNamedConstant(ultimate) || inComponentDecl) {
NonPointerInitialization(name, expr);
} else {
// Defer analysis so forward references to nested subprograms
// can be properly resolved when they appear in structure
// constructors.
ultimate.set(Symbol::Flag::InDataStmt);
}
},
[&](const parser::NullInit &null) { // => NULL()
Walk(null);
if (auto nullInit{EvaluateExpr(null)}) {
if (!evaluate::IsNullPointer(*nullInit)) { // C813
Say(null.v.value().source,
"Pointer initializer must be intrinsic NULL()"_err_en_US);
} else if (IsPointer(ultimate)) {
if (auto *object{ultimate.detailsIf<ObjectEntityDetails>()}) {
CHECK(!object->init());
object->set_init(std::move(*nullInit));
} else if (auto *procPtr{
ultimate.detailsIf<ProcEntityDetails>()}) {
CHECK(!procPtr->init());
procPtr->set_init(nullptr);
}
} else {
Say(name,
"Non-pointer component '%s' initialized with null pointer"_err_en_US);
}
}
},
[&](const parser::InitialDataTarget &target) {
// Defer analysis to the end of the specification part
// so that forward references and attribute checks like SAVE
// work better.
auto restorer{common::ScopedSet(deferImplicitTyping_, true)};
Walk(target);
ultimate.set(Symbol::Flag::InDataStmt);
},
[&](const std::list<Indirection<parser::DataStmtValue>> &values) {
// Handled later in data-to-inits conversion
ultimate.set(Symbol::Flag::InDataStmt);
Walk(values);
},
},
init.u);
}
void DeclarationVisitor::PointerInitialization(
const parser::Name &name, const parser::InitialDataTarget &target) {
if (name.symbol) {
Symbol &ultimate{name.symbol->GetUltimate()};
if (!context().HasError(ultimate)) {
if (IsPointer(ultimate)) {
Walk(target);
if (MaybeExpr expr{EvaluateExpr(target)}) {
// Validation is done in declaration checking.
if (auto *details{ultimate.detailsIf<ObjectEntityDetails>()}) {
CHECK(!details->init());
details->set_init(std::move(*expr));
ultimate.set(Symbol::Flag::InDataStmt, false);
} else if (auto *details{ultimate.detailsIf<ProcEntityDetails>()}) {
// something like "REAL, EXTERNAL, POINTER :: p => t"
if (evaluate::IsNullProcedurePointer(*expr)) {
CHECK(!details->init());
details->set_init(nullptr);
} else if (const Symbol *
targetSymbol{evaluate::UnwrapWholeSymbolDataRef(*expr)}) {
CHECK(!details->init());
details->set_init(*targetSymbol);
} else {
Say(name,
"Procedure pointer '%s' must be initialized with a procedure name or NULL()"_err_en_US);
context().SetError(ultimate);
}
}
}
} else {
Say(name,
"'%s' is not a pointer but is initialized like one"_err_en_US);
context().SetError(ultimate);
}
}
}
}
void DeclarationVisitor::PointerInitialization(
const parser::Name &name, const parser::ProcPointerInit &target) {
if (name.symbol) {
Symbol &ultimate{name.symbol->GetUltimate()};
if (!context().HasError(ultimate)) {
if (IsProcedurePointer(ultimate)) {
auto &details{ultimate.get<ProcEntityDetails>()};
CHECK(!details.init());
if (const auto *targetName{std::get_if<parser::Name>(&target.u)}) {
Walk(target);
if (!CheckUseError(*targetName) && targetName->symbol) {
// Validation is done in declaration checking.
details.set_init(*targetName->symbol);
}
} else { // explicit NULL
details.set_init(nullptr);
}
} else {
Say(name,
"'%s' is not a procedure pointer but is initialized "
"like one"_err_en_US);
context().SetError(ultimate);
}
}
}
}
void DeclarationVisitor::NonPointerInitialization(
const parser::Name &name, const parser::ConstantExpr &expr) {
if (!context().HasError(name.symbol)) {
Symbol &ultimate{name.symbol->GetUltimate()};
if (!context().HasError(ultimate)) {
if (IsPointer(ultimate)) {
Say(name,
"'%s' is a pointer but is not initialized like one"_err_en_US);
} else if (auto *details{ultimate.detailsIf<ObjectEntityDetails>()}) {
if (details->init()) {
SayWithDecl(name, *name.symbol,
"'%s' has already been initialized"_err_en_US);
} else if (IsAllocatable(ultimate)) {
Say(name, "Allocatable object '%s' cannot be initialized"_err_en_US);
} else if (ultimate.owner().IsParameterizedDerivedType()) {
// Save the expression for per-instantiation analysis.
details->set_unanalyzedPDTComponentInit(&expr.thing.value());
} else if (MaybeExpr folded{EvaluateNonPointerInitializer(
ultimate, expr, expr.thing.value().source)}) {
details->set_init(std::move(*folded));
ultimate.set(Symbol::Flag::InDataStmt, false);
}
} else {
Say(name, "'%s' is not an object that can be initialized"_err_en_US);
}
}
}
}
void ResolveNamesVisitor::HandleCall(
Symbol::Flag procFlag, const parser::Call &call) {
common::visit(
common::visitors{
[&](const parser::Name &x) { HandleProcedureName(procFlag, x); },
[&](const parser::ProcComponentRef &x) {
Walk(x);
const parser::Name &name{x.v.thing.component};
if (Symbol * symbol{name.symbol}) {
if (IsProcedure(*symbol)) {
SetProcFlag(name, *symbol, procFlag);
}
}
},
},
std::get<parser::ProcedureDesignator>(call.t).u);
const auto &arguments{std::get<std::list<parser::ActualArgSpec>>(call.t)};
Walk(arguments);
// Once an object has appeared in a specification function reference as
// a whole scalar actual argument, it cannot be (re)dimensioned later.
// The fact that it appeared to be a scalar may determine the resolution
// or the result of an inquiry intrinsic function or generic procedure.
if (inSpecificationPart_) {
for (const auto &argSpec : arguments) {
const auto &actual{std::get<parser::ActualArg>(argSpec.t)};
if (const auto *expr{
std::get_if<common::Indirection<parser::Expr>>(&actual.u)}) {
if (const auto *designator{
std::get_if<common::Indirection<parser::Designator>>(
&expr->value().u)}) {
if (const auto *dataRef{
std::get_if<parser::DataRef>(&designator->value().u)}) {
if (const auto *name{std::get_if<parser::Name>(&dataRef->u)};
name && name->symbol) {
const Symbol &symbol{*name->symbol};
const auto *object{symbol.detailsIf<ObjectEntityDetails>()};
if (symbol.has<EntityDetails>() ||
(object && !object->IsArray())) {
NoteScalarSpecificationArgument(symbol);
}
}
}
}
}
}
}
}
void ResolveNamesVisitor::HandleProcedureName(
Symbol::Flag flag, const parser::Name &name) {
CHECK(flag == Symbol::Flag::Function || flag == Symbol::Flag::Subroutine);
auto *symbol{FindSymbol(NonDerivedTypeScope(), name)};
if (!symbol) {
if (IsIntrinsic(name.source, flag)) {
symbol = &MakeSymbol(InclusiveScope(), name.source, Attrs{});
SetImplicitAttr(*symbol, Attr::INTRINSIC);
} else if (const auto ppcBuiltinScope =
currScope().context().GetPPCBuiltinsScope()) {
// Check if it is a builtin from the predefined module
symbol = FindSymbol(*ppcBuiltinScope, name);
if (!symbol) {
symbol = &MakeSymbol(context().globalScope(), name.source, Attrs{});
}
} else {
symbol = &MakeSymbol(context().globalScope(), name.source, Attrs{});
}
Resolve(name, *symbol);
ConvertToProcEntity(*symbol, name.source);
if (!symbol->attrs().test(Attr::INTRINSIC)) {
if (CheckImplicitNoneExternal(name.source, *symbol)) {
MakeExternal(*symbol);
// Create a place-holder HostAssocDetails symbol to preclude later
// use of this name as a local symbol; but don't actually use this new
// HostAssocDetails symbol in expressions.
MakeHostAssocSymbol(name, *symbol);
name.symbol = symbol;
}
}
CheckEntryDummyUse(name.source, symbol);
SetProcFlag(name, *symbol, flag);
} else if (CheckUseError(name)) {
// error was reported
} else {
symbol = &symbol->GetUltimate();
if (!name.symbol ||
(name.symbol->has<HostAssocDetails>() && symbol->owner().IsGlobal() &&
(symbol->has<ProcEntityDetails>() ||
(symbol->has<SubprogramDetails>() &&
symbol->scope() /*not ENTRY*/)))) {
name.symbol = symbol;
}
CheckEntryDummyUse(name.source, symbol);
bool convertedToProcEntity{ConvertToProcEntity(*symbol, name.source)};
if (convertedToProcEntity && !symbol->attrs().test(Attr::EXTERNAL) &&
IsIntrinsic(symbol->name(), flag) && !IsDummy(*symbol)) {
AcquireIntrinsicProcedureFlags(*symbol);
}
if (!SetProcFlag(name, *symbol, flag)) {
return; // reported error
}
CheckImplicitNoneExternal(name.source, *symbol);
if (IsProcedure(*symbol) || symbol->has<DerivedTypeDetails>() ||
symbol->has<AssocEntityDetails>()) {
// Symbols with DerivedTypeDetails and AssocEntityDetails are accepted
// here as procedure-designators because this means the related
// FunctionReference are mis-parsed structure constructors or array
// references that will be fixed later when analyzing expressions.
} else if (symbol->has<ObjectEntityDetails>()) {
// Symbols with ObjectEntityDetails are also accepted because this can be
// a mis-parsed array reference that will be fixed later. Ensure that if
// this is a symbol from a host procedure, a symbol with HostAssocDetails
// is created for the current scope.
// Operate on non ultimate symbol so that HostAssocDetails are also
// created for symbols used associated in the host procedure.
ResolveName(name);
} else if (symbol->test(Symbol::Flag::Implicit)) {
Say(name,
"Use of '%s' as a procedure conflicts with its implicit definition"_err_en_US);
} else {
SayWithDecl(name, *symbol,
"Use of '%s' as a procedure conflicts with its declaration"_err_en_US);
}
}
}
bool ResolveNamesVisitor::CheckImplicitNoneExternal(
const SourceName &name, const Symbol &symbol) {
if (symbol.has<ProcEntityDetails>() && isImplicitNoneExternal() &&
!symbol.attrs().test(Attr::EXTERNAL) &&
!symbol.attrs().test(Attr::INTRINSIC) && !symbol.HasExplicitInterface()) {
Say(name,
"'%s' is an external procedure without the EXTERNAL attribute in a scope with IMPLICIT NONE(EXTERNAL)"_err_en_US);
return false;
}
return true;
}
// Variant of HandleProcedureName() for use while skimming the executable
// part of a subprogram to catch calls to dummy procedures that are part
// of the subprogram's interface, and to mark as procedures any symbols
// that might otherwise have been miscategorized as objects.
void ResolveNamesVisitor::NoteExecutablePartCall(
Symbol::Flag flag, SourceName name, bool hasCUDAChevrons) {
// Subtlety: The symbol pointers in the parse tree are not set, because
// they might end up resolving elsewhere (e.g., construct entities in
// SELECT TYPE).
if (Symbol * symbol{currScope().FindSymbol(name)}) {
Symbol::Flag other{flag == Symbol::Flag::Subroutine
? Symbol::Flag::Function
: Symbol::Flag::Subroutine};
if (!symbol->test(other)) {
ConvertToProcEntity(*symbol, name);
if (auto *details{symbol->detailsIf<ProcEntityDetails>()}) {
symbol->set(flag);
if (IsDummy(*symbol)) {
SetImplicitAttr(*symbol, Attr::EXTERNAL);
}
ApplyImplicitRules(*symbol);
if (hasCUDAChevrons) {
details->set_isCUDAKernel();
}
}
}
}
}
static bool IsLocallyImplicitGlobalSymbol(
const Symbol &symbol, const parser::Name &localName) {
if (symbol.owner().IsGlobal()) {
const auto *subp{symbol.detailsIf<SubprogramDetails>()};
const Scope *scope{
subp && subp->entryScope() ? subp->entryScope() : symbol.scope()};
return !(scope && scope->sourceRange().Contains(localName.source));
}
return false;
}
static bool TypesMismatchIfNonNull(
const DeclTypeSpec *type1, const DeclTypeSpec *type2) {
return type1 && type2 && *type1 != *type2;
}
// Check and set the Function or Subroutine flag on symbol; false on error.
bool ResolveNamesVisitor::SetProcFlag(
const parser::Name &name, Symbol &symbol, Symbol::Flag flag) {
if (symbol.test(Symbol::Flag::Function) && flag == Symbol::Flag::Subroutine) {
SayWithDecl(
name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US);
context().SetError(symbol);
return false;
} else if (symbol.test(Symbol::Flag::Subroutine) &&
flag == Symbol::Flag::Function) {
SayWithDecl(
name, symbol, "Cannot call subroutine '%s' like a function"_err_en_US);
context().SetError(symbol);
return false;
} else if (flag == Symbol::Flag::Function &&
IsLocallyImplicitGlobalSymbol(symbol, name) &&
TypesMismatchIfNonNull(symbol.GetType(), GetImplicitType(symbol))) {
SayWithDecl(name, symbol,
"Implicit declaration of function '%s' has a different result type than in previous declaration"_err_en_US);
return false;
} else if (symbol.has<ProcEntityDetails>()) {
symbol.set(flag); // in case it hasn't been set yet
if (flag == Symbol::Flag::Function) {
ApplyImplicitRules(symbol);
}
if (symbol.attrs().test(Attr::INTRINSIC)) {
AcquireIntrinsicProcedureFlags(symbol);
}
} else if (symbol.GetType() && flag == Symbol::Flag::Subroutine) {
SayWithDecl(
name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US);
context().SetError(symbol);
} else if (symbol.attrs().test(Attr::INTRINSIC)) {
AcquireIntrinsicProcedureFlags(symbol);
}
return true;
}
bool ModuleVisitor::Pre(const parser::AccessStmt &x) {
Attr accessAttr{AccessSpecToAttr(std::get<parser::AccessSpec>(x.t))};
if (!currScope().IsModule()) { // C869
Say(currStmtSource().value(),
"%s statement may only appear in the specification part of a module"_err_en_US,
EnumToString(accessAttr));
return false;
}
const auto &accessIds{std::get<std::list<parser::AccessId>>(x.t)};
if (accessIds.empty()) {
if (prevAccessStmt_) { // C869
Say("The default accessibility of this module has already been declared"_err_en_US)
.Attach(*prevAccessStmt_, "Previous declaration"_en_US);
}
prevAccessStmt_ = currStmtSource();
auto *moduleDetails{DEREF(currScope().symbol()).detailsIf<ModuleDetails>()};
DEREF(moduleDetails).set_isDefaultPrivate(accessAttr == Attr::PRIVATE);
} else {
for (const auto &accessId : accessIds) {
GenericSpecInfo info{accessId.v.value()};
auto *symbol{FindInScope(info.symbolName())};
if (!symbol && !info.kind().IsName()) {
symbol = &MakeSymbol(info.symbolName(), Attrs{}, GenericDetails{});
}
info.Resolve(&SetAccess(info.symbolName(), accessAttr, symbol));
}
}
return false;
}
// Set the access specification for this symbol.
Symbol &ModuleVisitor::SetAccess(
const SourceName &name, Attr attr, Symbol *symbol) {
if (!symbol) {
symbol = &MakeSymbol(name);
}
Attrs &attrs{symbol->attrs()};
if (attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
// PUBLIC/PRIVATE already set: make it a fatal error if it changed
Attr prev{attrs.test(Attr::PUBLIC) ? Attr::PUBLIC : Attr::PRIVATE};
if (attr != prev) {
Say(name,
"The accessibility of '%s' has already been specified as %s"_err_en_US,
MakeOpName(name), EnumToString(prev));
} else {
context().Warn(common::LanguageFeature::RedundantAttribute, name,
"The accessibility of '%s' has already been specified as %s"_warn_en_US,
MakeOpName(name), EnumToString(prev));
}
} else {
attrs.set(attr);
}
return *symbol;
}
static bool NeedsExplicitType(const Symbol &symbol) {
if (symbol.has<UnknownDetails>()) {
return true;
} else if (const auto *details{symbol.detailsIf<EntityDetails>()}) {
return !details->type();
} else if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
return !details->type();
} else if (const auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
return !details->procInterface() && !details->type();
} else {
return false;
}
}
void ResolveNamesVisitor::HandleDerivedTypesInImplicitStmts(
const parser::ImplicitPart &implicitPart,
const std::list<parser::DeclarationConstruct> &decls) {
// Detect derived type definitions and create symbols for them now if
// they appear in IMPLICIT statements so that these forward-looking
// references will not be ambiguous with host associations.
std::set<SourceName> implicitDerivedTypes;
for (const auto &ipStmt : implicitPart.v) {
if (const auto *impl{std::get_if<
parser::Statement<common::Indirection<parser::ImplicitStmt>>>(
&ipStmt.u)}) {
if (const auto *specs{std::get_if<std::list<parser::ImplicitSpec>>(
&impl->statement.value().u)}) {
for (const auto &spec : *specs) {
const auto &declTypeSpec{
std::get<parser::DeclarationTypeSpec>(spec.t)};
if (const auto *dtSpec{common::visit(
common::visitors{
[](const parser::DeclarationTypeSpec::Type &x) {
return &x.derived;
},
[](const parser::DeclarationTypeSpec::Class &x) {
return &x.derived;
},
[](const auto &) -> const parser::DerivedTypeSpec * {
return nullptr;
}},
declTypeSpec.u)}) {
implicitDerivedTypes.emplace(
std::get<parser::Name>(dtSpec->t).source);
}
}
}
}
}
if (!implicitDerivedTypes.empty()) {
for (const auto &decl : decls) {
if (const auto *spec{
std::get_if<parser::SpecificationConstruct>(&decl.u)}) {
if (const auto *dtDef{
std::get_if<common::Indirection<parser::DerivedTypeDef>>(
&spec->u)}) {
const parser::DerivedTypeStmt &dtStmt{
std::get<parser::Statement<parser::DerivedTypeStmt>>(
dtDef->value().t)
.statement};
const parser::Name &name{std::get<parser::Name>(dtStmt.t)};
if (implicitDerivedTypes.find(name.source) !=
implicitDerivedTypes.end() &&
!FindInScope(name)) {
DerivedTypeDetails details;
details.set_isForwardReferenced(true);
Resolve(name, MakeSymbol(name, std::move(details)));
implicitDerivedTypes.erase(name.source);
}
}
}
}
}
}
bool ResolveNamesVisitor::Pre(const parser::SpecificationPart &x) {
const auto &[accDecls, ompDecls, compilerDirectives, useStmts, importStmts,
implicitPart, decls] = x.t;
auto flagRestorer{common::ScopedSet(inSpecificationPart_, true)};
auto stateRestorer{
common::ScopedSet(specPartState_, SpecificationPartState{})};
Walk(accDecls);
Walk(ompDecls);
Walk(compilerDirectives);
for (const auto &useStmt : useStmts) {
CollectUseRenames(useStmt.statement.value());
}
Walk(useStmts);
UseCUDABuiltinNames();
ClearUseRenames();
ClearUseOnly();
ClearModuleUses();
Walk(importStmts);
HandleDerivedTypesInImplicitStmts(implicitPart, decls);
Walk(implicitPart);
for (const auto &decl : decls) {
if (const auto *spec{
std::get_if<parser::SpecificationConstruct>(&decl.u)}) {
PreSpecificationConstruct(*spec);
}
}
Walk(decls);
FinishSpecificationPart(decls);
return false;
}
void ResolveNamesVisitor::UseCUDABuiltinNames() {
if (FindCUDADeviceContext(&currScope())) {
for (const auto &[name, symbol] : context().GetCUDABuiltinsScope()) {
if (!FindInScope(name)) {
auto &localSymbol{MakeSymbol(name)};
localSymbol.set_details(UseDetails{name, *symbol});
localSymbol.flags() = symbol->flags();
}
}
}
}
// Initial processing on specification constructs, before visiting them.
void ResolveNamesVisitor::PreSpecificationConstruct(
const parser::SpecificationConstruct &spec) {
common::visit(
common::visitors{
[&](const parser::Statement<Indirection<parser::GenericStmt>> &y) {
CreateGeneric(std::get<parser::GenericSpec>(y.statement.value().t));
},
[&](const Indirection<parser::InterfaceBlock> &y) {
const auto &stmt{std::get<parser::Statement<parser::InterfaceStmt>>(
y.value().t)};
if (const auto *spec{parser::Unwrap<parser::GenericSpec>(stmt)}) {
CreateGeneric(*spec);
}
},
[&](const parser::Statement<parser::OtherSpecificationStmt> &y) {
common::visit(
common::visitors{
[&](const common::Indirection<parser::CommonStmt> &z) {
CreateCommonBlockSymbols(z.value());
},
[&](const common::Indirection<parser::TargetStmt> &z) {
CreateObjectSymbols(z.value().v, Attr::TARGET);
},
[](const auto &) {},
},
y.statement.u);
},
[](const auto &) {},
},
spec.u);
}
void ResolveNamesVisitor::CreateCommonBlockSymbols(
const parser::CommonStmt &commonStmt) {
for (const parser::CommonStmt::Block &block : commonStmt.blocks) {
const auto &[name, objects] = block.t;
Symbol &commonBlock{MakeCommonBlockSymbol(name)};
for (const auto &object : objects) {
Symbol &obj{DeclareObjectEntity(std::get<parser::Name>(object.t))};
if (auto *details{obj.detailsIf<ObjectEntityDetails>()}) {
details->set_commonBlock(commonBlock);
commonBlock.get<CommonBlockDetails>().add_object(obj);
}
}
}
}
void ResolveNamesVisitor::CreateObjectSymbols(
const std::list<parser::ObjectDecl> &decls, Attr attr) {
for (const parser::ObjectDecl &decl : decls) {
SetImplicitAttr(DeclareEntity<ObjectEntityDetails>(
std::get<parser::ObjectName>(decl.t), Attrs{}),
attr);
}
}
void ResolveNamesVisitor::CreateGeneric(const parser::GenericSpec &x) {
auto info{GenericSpecInfo{x}};
SourceName symbolName{info.symbolName()};
if (IsLogicalConstant(context(), symbolName)) {
Say(symbolName,
"Logical constant '%s' may not be used as a defined operator"_err_en_US);
return;
}
GenericDetails genericDetails;
Symbol *existing{nullptr};
// Check all variants of names, e.g. "operator(.ne.)" for "operator(/=)"
for (const std::string &n : GetAllNames(context(), symbolName)) {
existing = currScope().FindSymbol(SourceName{n});
if (existing) {
break;
}
}
if (existing) {
Symbol &ultimate{existing->GetUltimate()};
if (auto *existingGeneric{ultimate.detailsIf<GenericDetails>()}) {
if (&existing->owner() == &currScope()) {
if (const auto *existingUse{existing->detailsIf<UseDetails>()}) {
// Create a local copy of a use associated generic so that
// it can be locally extended without corrupting the original.
genericDetails.CopyFrom(*existingGeneric);
if (existingGeneric->specific()) {
genericDetails.set_specific(*existingGeneric->specific());
}
AddGenericUse(
genericDetails, existing->name(), existingUse->symbol());
} else if (existing == &ultimate) {
// Extending an extant generic in the same scope
info.Resolve(existing);
return;
} else {
// Host association of a generic is handled elsewhere
CHECK(existing->has<HostAssocDetails>());
}
} else {
// Create a new generic for this scope.
}
} else if (ultimate.has<SubprogramDetails>() ||
ultimate.has<SubprogramNameDetails>()) {
genericDetails.set_specific(*existing);
} else if (ultimate.has<ProcEntityDetails>()) {
if (existing->name() != symbolName ||
!ultimate.attrs().test(Attr::INTRINSIC)) {
genericDetails.set_specific(*existing);
}
} else if (ultimate.has<DerivedTypeDetails>()) {
genericDetails.set_derivedType(*existing);
} else if (&existing->owner() == &currScope()) {
SayAlreadyDeclared(symbolName, *existing);
return;
}
if (&existing->owner() == &currScope()) {
EraseSymbol(*existing);
}
}
info.Resolve(&MakeSymbol(symbolName, Attrs{}, std::move(genericDetails)));
}
void ResolveNamesVisitor::FinishSpecificationPart(
const std::list<parser::DeclarationConstruct> &decls) {
misparsedStmtFuncFound_ = false;
funcResultStack().CompleteFunctionResultType();
CheckImports();
for (auto &pair : currScope()) {
auto &symbol{*pair.second};
if (inInterfaceBlock()) {
ConvertToObjectEntity(symbol);
}
if (NeedsExplicitType(symbol)) {
ApplyImplicitRules(symbol);
}
if (IsDummy(symbol) && isImplicitNoneType() &&
symbol.test(Symbol::Flag::Implicit) && !context().HasError(symbol)) {
Say(symbol.name(),
"No explicit type declared for dummy argument '%s'"_err_en_US);
context().SetError(symbol);
}
if (symbol.has<GenericDetails>()) {
CheckGenericProcedures(symbol);
}
if (!symbol.has<HostAssocDetails>()) {
CheckPossibleBadForwardRef(symbol);
}
// Propagate BIND(C) attribute to procedure entities from their interfaces,
// but not the NAME=, even if it is empty (which would be a reasonable
// and useful behavior, actually). This interpretation is not at all
// clearly described in the standard, but matches the behavior of several
// other compilers.
if (auto *proc{symbol.detailsIf<ProcEntityDetails>()}; proc &&
!proc->isDummy() && !IsPointer(symbol) &&
!symbol.attrs().test(Attr::BIND_C)) {
if (const Symbol * iface{proc->procInterface()};
iface && IsBindCProcedure(*iface)) {
SetImplicitAttr(symbol, Attr::BIND_C);
SetBindNameOn(symbol);
}
}
}
currScope().InstantiateDerivedTypes();
for (const auto &decl : decls) {
if (const auto *statement{std::get_if<
parser::Statement<common::Indirection<parser::StmtFunctionStmt>>>(
&decl.u)}) {
messageHandler().set_currStmtSource(statement->source);
AnalyzeStmtFunctionStmt(statement->statement.value());
}
}
// TODO: what about instantiations in BLOCK?
CheckSaveStmts();
CheckCommonBlocks();
if (!inInterfaceBlock()) {
// TODO: warn for the case where the EQUIVALENCE statement is in a
// procedure declaration in an interface block
CheckEquivalenceSets();
}
}
// Analyze the bodies of statement functions now that the symbols in this
// specification part have been fully declared and implicitly typed.
// (Statement function references are not allowed in specification
// expressions, so it's safe to defer processing their definitions.)
void ResolveNamesVisitor::AnalyzeStmtFunctionStmt(
const parser::StmtFunctionStmt &stmtFunc) {
const auto &name{std::get<parser::Name>(stmtFunc.t)};
Symbol *symbol{name.symbol};
auto *details{symbol ? symbol->detailsIf<SubprogramDetails>() : nullptr};
if (!details || !symbol->scope() ||
&symbol->scope()->parent() != &currScope() || details->isInterface() ||
details->isDummy() || details->entryScope() ||
details->moduleInterface() || symbol->test(Symbol::Flag::Subroutine)) {
return; // error recovery
}
// Resolve the symbols on the RHS of the statement function.
PushScope(*symbol->scope());
const auto &parsedExpr{std::get<parser::Scalar<parser::Expr>>(stmtFunc.t)};
Walk(parsedExpr);
PopScope();
if (auto expr{AnalyzeExpr(context(), stmtFunc)}) {
if (auto type{evaluate::DynamicType::From(*symbol)}) {
if (auto converted{evaluate::ConvertToType(*type, std::move(*expr))}) {
details->set_stmtFunction(std::move(*converted));
} else {
Say(name.source,
"Defining expression of statement function '%s' cannot be converted to its result type %s"_err_en_US,
name.source, type->AsFortran());
}
} else {
details->set_stmtFunction(std::move(*expr));
}
}
if (!details->stmtFunction()) {
context().SetError(*symbol);
}
}
void ResolveNamesVisitor::CheckImports() {
auto &scope{currScope()};
switch (scope.GetImportKind()) {
case common::ImportKind::None:
break;
case common::ImportKind::All:
// C8102: all entities in host must not be hidden
for (const auto &pair : scope.parent()) {
auto &name{pair.first};
std::optional<SourceName> scopeName{scope.GetName()};
if (!scopeName || name != *scopeName) {
CheckImport(prevImportStmt_.value(), name);
}
}
break;
case common::ImportKind::Default:
case common::ImportKind::Only:
// C8102: entities named in IMPORT must not be hidden
for (auto &name : scope.importNames()) {
CheckImport(name, name);
}
break;
}
}
void ResolveNamesVisitor::CheckImport(
const SourceName &location, const SourceName &name) {
if (auto *symbol{FindInScope(name)}) {
const Symbol &ultimate{symbol->GetUltimate()};
if (&ultimate.owner() == &currScope()) {
Say(location, "'%s' from host is not accessible"_err_en_US, name)
.Attach(symbol->name(), "'%s' is hidden by this entity"_because_en_US,
symbol->name());
}
}
}
bool ResolveNamesVisitor::Pre(const parser::ImplicitStmt &x) {
return CheckNotInBlock("IMPLICIT") && // C1107
ImplicitRulesVisitor::Pre(x);
}
void ResolveNamesVisitor::Post(const parser::PointerObject &x) {
common::visit(common::visitors{
[&](const parser::Name &x) { ResolveName(x); },
[&](const parser::StructureComponent &x) {
ResolveStructureComponent(x);
},
},
x.u);
}
void ResolveNamesVisitor::Post(const parser::AllocateObject &x) {
common::visit(common::visitors{
[&](const parser::Name &x) { ResolveName(x); },
[&](const parser::StructureComponent &x) {
ResolveStructureComponent(x);
},
},
x.u);
}
bool ResolveNamesVisitor::Pre(const parser::PointerAssignmentStmt &x) {
const auto &dataRef{std::get<parser::DataRef>(x.t)};
const auto &bounds{std::get<parser::PointerAssignmentStmt::Bounds>(x.t)};
const auto &expr{std::get<parser::Expr>(x.t)};
ResolveDataRef(dataRef);
Symbol *ptrSymbol{parser::GetLastName(dataRef).symbol};
Walk(bounds);
// Resolve unrestricted specific intrinsic procedures as in "p => cos".
if (const parser::Name * name{parser::Unwrap<parser::Name>(expr)}) {
if (NameIsKnownOrIntrinsic(*name)) {
if (Symbol * symbol{name->symbol}) {
if (IsProcedurePointer(ptrSymbol) &&
!ptrSymbol->test(Symbol::Flag::Function) &&
!ptrSymbol->test(Symbol::Flag::Subroutine)) {
if (symbol->test(Symbol::Flag::Function)) {
ApplyImplicitRules(*ptrSymbol);
}
}
// If the name is known because it is an object entity from a host
// procedure, create a host associated symbol.
if (symbol->GetUltimate().has<ObjectEntityDetails>() &&
IsUplevelReference(*symbol)) {
MakeHostAssocSymbol(*name, *symbol);
}
}
return false;
}
// Can also reference a global external procedure here
if (auto it{context().globalScope().find(name->source)};
it != context().globalScope().end()) {
Symbol &global{*it->second};
if (IsProcedure(global)) {
Resolve(*name, global);
return false;
}
}
if (IsProcedurePointer(parser::GetLastName(dataRef).symbol) &&
!FindSymbol(*name)) {
// Unknown target of procedure pointer must be an external procedure
Symbol &symbol{MakeSymbol(
context().globalScope(), name->source, Attrs{Attr::EXTERNAL})};
symbol.implicitAttrs().set(Attr::EXTERNAL);
Resolve(*name, symbol);
ConvertToProcEntity(symbol, name->source);
return false;
}
}
Walk(expr);
return false;
}
void ResolveNamesVisitor::Post(const parser::Designator &x) {
ResolveDesignator(x);
}
void ResolveNamesVisitor::Post(const parser::SubstringInquiry &x) {
Walk(std::get<parser::SubstringRange>(x.v.t).t);
ResolveDataRef(std::get<parser::DataRef>(x.v.t));
}
void ResolveNamesVisitor::Post(const parser::ProcComponentRef &x) {
ResolveStructureComponent(x.v.thing);
}
void ResolveNamesVisitor::Post(const parser::TypeGuardStmt &x) {
DeclTypeSpecVisitor::Post(x);
ConstructVisitor::Post(x);
}
bool ResolveNamesVisitor::Pre(const parser::StmtFunctionStmt &x) {
if (HandleStmtFunction(x)) {
return false;
} else {
// This is an array element or pointer-valued function assignment:
// resolve the names of indices/arguments
const auto &names{std::get<std::list<parser::Name>>(x.t)};
for (auto &name : names) {
ResolveName(name);
}
return true;
}
}
bool ResolveNamesVisitor::Pre(const parser::DefinedOpName &x) {
const parser::Name &name{x.v};
if (FindSymbol(name)) {
// OK
} else if (IsLogicalConstant(context(), name.source)) {
Say(name,
"Logical constant '%s' may not be used as a defined operator"_err_en_US);
} else {
// Resolved later in expression semantics
MakePlaceholder(name, MiscDetails::Kind::TypeBoundDefinedOp);
}
return false;
}
void ResolveNamesVisitor::Post(const parser::AssignStmt &x) {
if (auto *name{ResolveName(std::get<parser::Name>(x.t))}) {
CheckEntryDummyUse(name->source, name->symbol);
ConvertToObjectEntity(DEREF(name->symbol));
}
}
void ResolveNamesVisitor::Post(const parser::AssignedGotoStmt &x) {
if (auto *name{ResolveName(std::get<parser::Name>(x.t))}) {
CheckEntryDummyUse(name->source, name->symbol);
ConvertToObjectEntity(DEREF(name->symbol));
}
}
void ResolveNamesVisitor::Post(const parser::CompilerDirective &x) {
if (std::holds_alternative<parser::CompilerDirective::VectorAlways>(x.u)) {
return;
}
if (const auto *tkr{
std::get_if<std::list<parser::CompilerDirective::IgnoreTKR>>(&x.u)}) {
if (currScope().IsTopLevel() ||
GetProgramUnitContaining(currScope()).kind() !=
Scope::Kind::Subprogram) {
Say(x.source,
"!DIR$ IGNORE_TKR directive must appear in a subroutine or function"_err_en_US);
return;
}
if (!inSpecificationPart_) {
Say(x.source,
"!DIR$ IGNORE_TKR directive must appear in the specification part"_err_en_US);
return;
}
if (tkr->empty()) {
Symbol *symbol{currScope().symbol()};
if (SubprogramDetails *
subp{symbol ? symbol->detailsIf<SubprogramDetails>() : nullptr}) {
subp->set_defaultIgnoreTKR(true);
}
} else {
for (const parser::CompilerDirective::IgnoreTKR &item : *tkr) {
common::IgnoreTKRSet set;
if (const auto &maybeList{
std::get<std::optional<std::list<const char *>>>(item.t)}) {
for (const char *p : *maybeList) {
if (p) {
switch (*p) {
case 't':
set.set(common::IgnoreTKR::Type);
break;
case 'k':
set.set(common::IgnoreTKR::Kind);
break;
case 'r':
set.set(common::IgnoreTKR::Rank);
break;
case 'd':
set.set(common::IgnoreTKR::Device);
break;
case 'm':
set.set(common::IgnoreTKR::Managed);
break;
case 'c':
set.set(common::IgnoreTKR::Contiguous);
break;
case 'a':
set = common::ignoreTKRAll;
break;
default:
Say(x.source,
"'%c' is not a valid letter for !DIR$ IGNORE_TKR directive"_err_en_US,
*p);
set = common::ignoreTKRAll;
break;
}
}
}
if (set.empty()) {
Say(x.source,
"!DIR$ IGNORE_TKR directive may not have an empty parenthesized list of letters"_err_en_US);
}
} else { // no (list)
set = common::ignoreTKRAll;
;
}
const auto &name{std::get<parser::Name>(item.t)};
Symbol *symbol{FindSymbol(name)};
if (!symbol) {
symbol = &MakeSymbol(name, Attrs{}, ObjectEntityDetails{});
}
if (symbol->owner() != currScope()) {
SayWithDecl(
name, *symbol, "'%s' must be local to this subprogram"_err_en_US);
} else {
ConvertToObjectEntity(*symbol);
if (auto *object{symbol->detailsIf<ObjectEntityDetails>()}) {
object->set_ignoreTKR(set);
} else {
SayWithDecl(name, *symbol, "'%s' must be an object"_err_en_US);
}
}
}
}
} else if (context().ShouldWarn(common::UsageWarning::IgnoredDirective)) {
Say(x.source, "Unrecognized compiler directive was ignored"_warn_en_US)
.set_usageWarning(common::UsageWarning::IgnoredDirective);
}
}
bool ResolveNamesVisitor::Pre(const parser::ProgramUnit &x) {
if (std::holds_alternative<common::Indirection<parser::CompilerDirective>>(
x.u)) {
// TODO: global directives
return true;
}
if (std::holds_alternative<
common::Indirection<parser::OpenACCRoutineConstruct>>(x.u)) {
ResolveAccParts(context(), x, &topScope_);
return false;
}
auto root{ProgramTree::Build(x, context())};
SetScope(topScope_);
ResolveSpecificationParts(root);
FinishSpecificationParts(root);
ResolveExecutionParts(root);
FinishExecutionParts(root);
ResolveAccParts(context(), x, /*topScope=*/nullptr);
ResolveOmpParts(context(), x);
return false;
}
template <typename A> std::set<SourceName> GetUses(const A &x) {
std::set<SourceName> uses;
if constexpr (!std::is_same_v<A, parser::CompilerDirective> &&
!std::is_same_v<A, parser::OpenACCRoutineConstruct>) {
const auto &spec{std::get<parser::SpecificationPart>(x.t)};
const auto &unitUses{std::get<
std::list<parser::Statement<common::Indirection<parser::UseStmt>>>>(
spec.t)};
for (const auto &u : unitUses) {
uses.insert(u.statement.value().moduleName.source);
}
}
return uses;
}
bool ResolveNamesVisitor::Pre(const parser::Program &x) {
std::map<SourceName, const parser::ProgramUnit *> modules;
std::set<SourceName> uses;
bool disordered{false};
for (const auto &progUnit : x.v) {
if (const auto *indMod{
std::get_if<common::Indirection<parser::Module>>(&progUnit.u)}) {
const parser::Module &mod{indMod->value()};
const auto &moduleStmt{
std::get<parser::Statement<parser::ModuleStmt>>(mod.t)};
const SourceName &name{moduleStmt.statement.v.source};
if (auto iter{modules.find(name)}; iter != modules.end()) {
Say(name,
"Module '%s' appears multiple times in a compilation unit"_err_en_US)
.Attach(iter->first, "First definition of module"_en_US);
return true;
}
modules.emplace(name, &progUnit);
if (auto iter{uses.find(name)}; iter != uses.end()) {
if (context().ShouldWarn(common::LanguageFeature::MiscUseExtensions)) {
Say(name,
"A USE statement referencing module '%s' appears earlier in this compilation unit"_port_en_US,
name)
.Attach(*iter, "First USE of module"_en_US);
}
disordered = true;
}
}
for (SourceName used : common::visit(
[](const auto &indUnit) { return GetUses(indUnit.value()); },
progUnit.u)) {
uses.insert(used);
}
}
if (!disordered) {
return true;
}
// Process modules in topological order
std::vector<const parser::ProgramUnit *> moduleOrder;
while (!modules.empty()) {
bool ok;
for (const auto &pair : modules) {
const SourceName &name{pair.first};
const parser::ProgramUnit &progUnit{*pair.second};
const parser::Module &m{
std::get<common::Indirection<parser::Module>>(progUnit.u).value()};
ok = true;
for (const SourceName &use : GetUses(m)) {
if (modules.find(use) != modules.end()) {
ok = false;
break;
}
}
if (ok) {
moduleOrder.push_back(&progUnit);
modules.erase(name);
break;
}
}
if (!ok) {
Message *msg{nullptr};
for (const auto &pair : modules) {
if (msg) {
msg->Attach(pair.first, "Module in a cycle"_en_US);
} else {
msg = &Say(pair.first,
"Some modules in this compilation unit form one or more cycles of dependence"_err_en_US);
}
}
return false;
}
}
// Modules can be ordered. Process them first, and then all of the other
// program units.
for (const parser::ProgramUnit *progUnit : moduleOrder) {
Walk(*progUnit);
}
for (const auto &progUnit : x.v) {
if (!std::get_if<common::Indirection<parser::Module>>(&progUnit.u)) {
Walk(progUnit);
}
}
return false;
}
// References to procedures need to record that their symbols are known
// to be procedures, so that they don't get converted to objects by default.
class ExecutionPartCallSkimmer : public ExecutionPartSkimmerBase {
public:
explicit ExecutionPartCallSkimmer(ResolveNamesVisitor &resolver)
: resolver_{resolver} {}
void Walk(const parser::ExecutionPart &exec) {
parser::Walk(exec, *this);
EndWalk();
}
using ExecutionPartSkimmerBase::Post;
using ExecutionPartSkimmerBase::Pre;
void Post(const parser::FunctionReference &fr) {
NoteCall(Symbol::Flag::Function, fr.v, false);
}
void Post(const parser::CallStmt &cs) {
NoteCall(Symbol::Flag::Subroutine, cs.call, cs.chevrons.has_value());
}
private:
void NoteCall(
Symbol::Flag flag, const parser::Call &call, bool hasCUDAChevrons) {
auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
if (!IsHidden(name->source)) {
resolver_.NoteExecutablePartCall(flag, name->source, hasCUDAChevrons);
}
}
}
ResolveNamesVisitor &resolver_;
};
// Build the scope tree and resolve names in the specification parts of this
// node and its children
void ResolveNamesVisitor::ResolveSpecificationParts(ProgramTree &node) {
if (node.isSpecificationPartResolved()) {
return; // been here already
}
node.set_isSpecificationPartResolved();
if (!BeginScopeForNode(node)) {
return; // an error prevented scope from being created
}
Scope &scope{currScope()};
node.set_scope(scope);
AddSubpNames(node);
common::visit(
[&](const auto *x) {
if (x) {
Walk(*x);
}
},
node.stmt());
Walk(node.spec());
// If this is a function, convert result to an object. This is to prevent the
// result from being converted later to a function symbol if it is called
// inside the function.
// If the result is function pointer, then ConvertToObjectEntity will not
// convert the result to an object, and calling the symbol inside the function
// will result in calls to the result pointer.
// A function cannot be called recursively if RESULT was not used to define a
// distinct result name (15.6.2.2 point 4.).
if (Symbol * symbol{scope.symbol()}) {
if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
if (details->isFunction()) {
ConvertToObjectEntity(const_cast<Symbol &>(details->result()));
}
}
}
if (node.IsModule()) {
ApplyDefaultAccess();
}
for (auto &child : node.children()) {
ResolveSpecificationParts(child);
}
if (node.exec()) {
ExecutionPartCallSkimmer{*this}.Walk(*node.exec());
HandleImpliedAsynchronousInScope(node.exec()->v);
}
EndScopeForNode(node);
// Ensure that every object entity has a type.
bool inModule{node.GetKind() == ProgramTree::Kind::Module ||
node.GetKind() == ProgramTree::Kind::Submodule};
for (auto &pair : *node.scope()) {
Symbol &symbol{*pair.second};
if (inModule && symbol.attrs().test(Attr::EXTERNAL) && !IsPointer(symbol) &&
!symbol.test(Symbol::Flag::Function) &&
!symbol.test(Symbol::Flag::Subroutine)) {
// in a module, external proc without return type is subroutine
symbol.set(
symbol.GetType() ? Symbol::Flag::Function : Symbol::Flag::Subroutine);
}
ApplyImplicitRules(symbol);
}
}
// Add SubprogramNameDetails symbols for module and internal subprograms and
// their ENTRY statements.
void ResolveNamesVisitor::AddSubpNames(ProgramTree &node) {
auto kind{
node.IsModule() ? SubprogramKind::Module : SubprogramKind::Internal};
for (auto &child : node.children()) {
auto &symbol{MakeSymbol(child.name(), SubprogramNameDetails{kind, child})};
if (child.HasModulePrefix()) {
SetExplicitAttr(symbol, Attr::MODULE);
}
if (child.bindingSpec()) {
SetExplicitAttr(symbol, Attr::BIND_C);
}
auto childKind{child.GetKind()};
if (childKind == ProgramTree::Kind::Function) {
symbol.set(Symbol::Flag::Function);
} else if (childKind == ProgramTree::Kind::Subroutine) {
symbol.set(Symbol::Flag::Subroutine);
} else {
continue; // make ENTRY symbols only where valid
}
for (const auto &entryStmt : child.entryStmts()) {
SubprogramNameDetails details{kind, child};
auto &symbol{
MakeSymbol(std::get<parser::Name>(entryStmt->t), std::move(details))};
symbol.set(child.GetSubpFlag());
if (child.HasModulePrefix()) {
SetExplicitAttr(symbol, Attr::MODULE);
}
if (child.bindingSpec()) {
SetExplicitAttr(symbol, Attr::BIND_C);
}
}
}
for (const auto &generic : node.genericSpecs()) {
if (const auto *name{std::get_if<parser::Name>(&generic->u)}) {
if (currScope().find(name->source) != currScope().end()) {
// If this scope has both a generic interface and a contained
// subprogram with the same name, create the generic's symbol
// now so that any other generics of the same name that are pulled
// into scope later via USE association will properly merge instead
// of raising a bogus error due a conflict with the subprogram.
CreateGeneric(*generic);
}
}
}
}
// Push a new scope for this node or return false on error.
bool ResolveNamesVisitor::BeginScopeForNode(const ProgramTree &node) {
switch (node.GetKind()) {
SWITCH_COVERS_ALL_CASES
case ProgramTree::Kind::Program:
PushScope(Scope::Kind::MainProgram,
&MakeSymbol(node.name(), MainProgramDetails{}));
return true;
case ProgramTree::Kind::Function:
case ProgramTree::Kind::Subroutine:
return BeginSubprogram(node.name(), node.GetSubpFlag(),
node.HasModulePrefix(), node.bindingSpec(), &node.entryStmts());
case ProgramTree::Kind::MpSubprogram:
return BeginMpSubprogram(node.name());
case ProgramTree::Kind::Module:
BeginModule(node.name(), false);
return true;
case ProgramTree::Kind::Submodule:
return BeginSubmodule(node.name(), node.GetParentId());
case ProgramTree::Kind::BlockData:
PushBlockDataScope(node.name());
return true;
}
}
void ResolveNamesVisitor::EndScopeForNode(const ProgramTree &node) {
std::optional<parser::CharBlock> stmtSource;
const std::optional<parser::LanguageBindingSpec> *binding{nullptr};
common::visit(
common::visitors{
[&](const parser::Statement<parser::FunctionStmt> *stmt) {
if (stmt) {
stmtSource = stmt->source;
if (const auto &maybeSuffix{
std::get<std::optional<parser::Suffix>>(
stmt->statement.t)}) {
binding = &maybeSuffix->binding;
}
}
},
[&](const parser::Statement<parser::SubroutineStmt> *stmt) {
if (stmt) {
stmtSource = stmt->source;
binding = &std::get<std::optional<parser::LanguageBindingSpec>>(
stmt->statement.t);
}
},
[](const auto *) {},
},
node.stmt());
EndSubprogram(stmtSource, binding, &node.entryStmts());
}
// Some analyses and checks, such as the processing of initializers of
// pointers, are deferred until all of the pertinent specification parts
// have been visited. This deferred processing enables the use of forward
// references in these circumstances.
// Data statement objects with implicit derived types are finally
// resolved here.
class DeferredCheckVisitor {
public:
explicit DeferredCheckVisitor(ResolveNamesVisitor &resolver)
: resolver_{resolver} {}
template <typename A> void Walk(const A &x) { parser::Walk(x, *this); }
template <typename A> bool Pre(const A &) { return true; }
template <typename A> void Post(const A &) {}
void Post(const parser::DerivedTypeStmt &x) {
const auto &name{std::get<parser::Name>(x.t)};
if (Symbol * symbol{name.symbol}) {
if (Scope * scope{symbol->scope()}) {
if (scope->IsDerivedType()) {
CHECK(outerScope_ == nullptr);
outerScope_ = &resolver_.currScope();
resolver_.SetScope(*scope);
}
}
}
}
void Post(const parser::EndTypeStmt &) {
if (outerScope_) {
resolver_.SetScope(*outerScope_);
outerScope_ = nullptr;
}
}
void Post(const parser::ProcInterface &pi) {
if (const auto *name{std::get_if<parser::Name>(&pi.u)}) {
resolver_.CheckExplicitInterface(*name);
}
}
bool Pre(const parser::EntityDecl &decl) {
Init(std::get<parser::Name>(decl.t),
std::get<std::optional<parser::Initialization>>(decl.t));
return false;
}
bool Pre(const parser::ComponentDecl &decl) {
Init(std::get<parser::Name>(decl.t),
std::get<std::optional<parser::Initialization>>(decl.t));
return false;
}
bool Pre(const parser::ProcDecl &decl) {
if (const auto &init{
std::get<std::optional<parser::ProcPointerInit>>(decl.t)}) {
resolver_.PointerInitialization(std::get<parser::Name>(decl.t), *init);
}
return false;
}
void Post(const parser::TypeBoundProcedureStmt::WithInterface &tbps) {
resolver_.CheckExplicitInterface(tbps.interfaceName);
}
void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &tbps) {
if (outerScope_) {
resolver_.CheckBindings(tbps);
}
}
bool Pre(const parser::DataStmtObject &) {
++dataStmtObjectNesting_;
return true;
}
void Post(const parser::DataStmtObject &) { --dataStmtObjectNesting_; }
void Post(const parser::Designator &x) {
if (dataStmtObjectNesting_ > 0) {
resolver_.ResolveDesignator(x);
}
}
private:
void Init(const parser::Name &name,
const std::optional<parser::Initialization> &init) {
if (init) {
if (const auto *target{
std::get_if<parser::InitialDataTarget>(&init->u)}) {
resolver_.PointerInitialization(name, *target);
} else if (const auto *expr{
std::get_if<parser::ConstantExpr>(&init->u)}) {
if (name.symbol) {
if (const auto *object{name.symbol->detailsIf<ObjectEntityDetails>()};
!object || !object->init()) {
resolver_.NonPointerInitialization(name, *expr);
}
}
}
}
}
ResolveNamesVisitor &resolver_;
Scope *outerScope_{nullptr};
int dataStmtObjectNesting_{0};
};
// Perform checks and completions that need to happen after all of
// the specification parts but before any of the execution parts.
void ResolveNamesVisitor::FinishSpecificationParts(const ProgramTree &node) {
if (!node.scope()) {
return; // error occurred creating scope
}
auto flagRestorer{common::ScopedSet(inSpecificationPart_, true)};
SetScope(*node.scope());
// The initializers of pointers and non-PARAMETER objects, the default
// initializers of components, and non-deferred type-bound procedure
// bindings have not yet been traversed.
// We do that now, when any forward references that appeared
// in those initializers will resolve to the right symbols without
// incurring spurious errors with IMPLICIT NONE or forward references
// to nested subprograms.
DeferredCheckVisitor{*this}.Walk(node.spec());
for (Scope &childScope : currScope().children()) {
if (childScope.IsParameterizedDerivedTypeInstantiation()) {
FinishDerivedTypeInstantiation(childScope);
}
}
for (const auto &child : node.children()) {
FinishSpecificationParts(child);
}
}
void ResolveNamesVisitor::FinishExecutionParts(const ProgramTree &node) {
if (node.scope()) {
SetScope(*node.scope());
if (node.exec()) {
DeferredCheckVisitor{*this}.Walk(*node.exec());
}
for (const auto &child : node.children()) {
FinishExecutionParts(child);
}
}
}
// Duplicate and fold component object pointer default initializer designators
// using the actual type parameter values of each particular instantiation.
// Validation is done later in declaration checking.
void ResolveNamesVisitor::FinishDerivedTypeInstantiation(Scope &scope) {
CHECK(scope.IsDerivedType() && !scope.symbol());
if (DerivedTypeSpec * spec{scope.derivedTypeSpec()}) {
spec->Instantiate(currScope());
const Symbol &origTypeSymbol{spec->typeSymbol()};
if (const Scope * origTypeScope{origTypeSymbol.scope()}) {
CHECK(origTypeScope->IsDerivedType() &&
origTypeScope->symbol() == &origTypeSymbol);
auto &foldingContext{GetFoldingContext()};
auto restorer{foldingContext.WithPDTInstance(*spec)};
for (auto &pair : scope) {
Symbol &comp{*pair.second};
const Symbol &origComp{DEREF(FindInScope(*origTypeScope, comp.name()))};
if (IsPointer(comp)) {
if (auto *details{comp.detailsIf<ObjectEntityDetails>()}) {
auto origDetails{origComp.get<ObjectEntityDetails>()};
if (const MaybeExpr & init{origDetails.init()}) {
SomeExpr newInit{*init};
MaybeExpr folded{FoldExpr(std::move(newInit))};
details->set_init(std::move(folded));
}
}
}
}
}
}
}
// Resolve names in the execution part of this node and its children
void ResolveNamesVisitor::ResolveExecutionParts(const ProgramTree &node) {
if (!node.scope()) {
return; // error occurred creating scope
}
SetScope(*node.scope());
if (const auto *exec{node.exec()}) {
Walk(*exec);
}
FinishNamelists();
if (node.IsModule()) {
// A second final pass to catch new symbols added from implicitly
// typed names in NAMELIST groups or the specification parts of
// module subprograms.
ApplyDefaultAccess();
}
PopScope(); // converts unclassified entities into objects
for (const auto &child : node.children()) {
ResolveExecutionParts(child);
}
}
void ResolveNamesVisitor::Post(const parser::Program &x) {
// ensure that all temps were deallocated
CHECK(!attrs_);
CHECK(!cudaDataAttr_);
CHECK(!GetDeclTypeSpec());
// Top-level resolution to propagate information across program units after
// each of them has been resolved separately.
ResolveOmpTopLevelParts(context(), x);
}
// A singleton instance of the scope -> IMPLICIT rules mapping is
// shared by all instances of ResolveNamesVisitor and accessed by this
// pointer when the visitors (other than the top-level original) are
// constructed.
static ImplicitRulesMap *sharedImplicitRulesMap{nullptr};
bool ResolveNames(
SemanticsContext &context, const parser::Program &program, Scope &top) {
ImplicitRulesMap implicitRulesMap;
auto restorer{common::ScopedSet(sharedImplicitRulesMap, &implicitRulesMap)};
ResolveNamesVisitor{context, implicitRulesMap, top}.Walk(program);
return !context.AnyFatalError();
}
// Processes a module (but not internal) function when it is referenced
// in a specification expression in a sibling procedure.
void ResolveSpecificationParts(
SemanticsContext &context, const Symbol &subprogram) {
auto originalLocation{context.location()};
ImplicitRulesMap implicitRulesMap;
bool localImplicitRulesMap{false};
if (!sharedImplicitRulesMap) {
sharedImplicitRulesMap = &implicitRulesMap;
localImplicitRulesMap = true;
}
ResolveNamesVisitor visitor{
context, *sharedImplicitRulesMap, context.globalScope()};
const auto &details{subprogram.get<SubprogramNameDetails>()};
ProgramTree &node{details.node()};
const Scope &moduleScope{subprogram.owner()};
if (localImplicitRulesMap) {
visitor.BeginScope(const_cast<Scope &>(moduleScope));
} else {
visitor.SetScope(const_cast<Scope &>(moduleScope));
}
visitor.ResolveSpecificationParts(node);
context.set_location(std::move(originalLocation));
if (localImplicitRulesMap) {
sharedImplicitRulesMap = nullptr;
}
}
} // namespace Fortran::semantics