//===- SimplifyIntrinsics.cpp -- replace intrinsics with simpler form -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// \file
/// This pass looks for suitable calls to runtime library for intrinsics that
/// can be simplified/specialized and replaces with a specialized function.
///
/// For example, SUM(arr) can be specialized as a simple function with one loop,
/// compared to the three arguments (plus file & line info) that the runtime
/// call has - when the argument is a 1D-array (multiple loops may be needed
// for higher dimension arrays, of course)
///
/// The general idea is that besides making the call simpler, it can also be
/// inlined by other passes that run after this pass, which further improves
/// performance, particularly when the work done in the function is trivial
/// and small in size.
//===----------------------------------------------------------------------===//
#include "flang/Common/Fortran.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Optimizer/Transforms/Utils.h"
#include "flang/Runtime/entry-names.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Operation.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <llvm/Support/ErrorHandling.h>
#include <mlir/Dialect/Arith/IR/Arith.h>
#include <mlir/IR/BuiltinTypes.h>
#include <mlir/IR/Location.h>
#include <mlir/IR/MLIRContext.h>
#include <mlir/IR/Value.h>
#include <mlir/Support/LLVM.h>
#include <optional>
namespace fir {
#define GEN_PASS_DEF_SIMPLIFYINTRINSICS
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-simplify-intrinsics"
namespace {
class SimplifyIntrinsicsPass
: public fir::impl::SimplifyIntrinsicsBase<SimplifyIntrinsicsPass> {
using FunctionTypeGeneratorTy =
llvm::function_ref<mlir::FunctionType(fir::FirOpBuilder &)>;
using FunctionBodyGeneratorTy =
llvm::function_ref<void(fir::FirOpBuilder &, mlir::func::FuncOp &)>;
using GenReductionBodyTy = llvm::function_ref<void(
fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType)>;
public:
using fir::impl::SimplifyIntrinsicsBase<
SimplifyIntrinsicsPass>::SimplifyIntrinsicsBase;
/// Generate a new function implementing a simplified version
/// of a Fortran runtime function defined by \p basename name.
/// \p typeGenerator is a callback that generates the new function's type.
/// \p bodyGenerator is a callback that generates the new function's body.
/// The new function is created in the \p builder's Module.
mlir::func::FuncOp getOrCreateFunction(fir::FirOpBuilder &builder,
const mlir::StringRef &basename,
FunctionTypeGeneratorTy typeGenerator,
FunctionBodyGeneratorTy bodyGenerator);
void runOnOperation() override;
void getDependentDialects(mlir::DialectRegistry ®istry) const override;
private:
/// Helper functions to replace a reduction type of call with its
/// simplified form. The actual function is generated using a callback
/// function.
/// \p call is the call to be replaced
/// \p kindMap is used to create FIROpBuilder
/// \p genBodyFunc is the callback that builds the replacement function
void simplifyIntOrFloatReduction(fir::CallOp call,
const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc);
void simplifyLogicalDim0Reduction(fir::CallOp call,
const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc);
void simplifyLogicalDim1Reduction(fir::CallOp call,
const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc);
void simplifyMinMaxlocReduction(fir::CallOp call,
const fir::KindMapping &kindMap, bool isMax);
void simplifyReductionBody(fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc,
fir::FirOpBuilder &builder,
const mlir::StringRef &basename,
mlir::Type elementType);
};
} // namespace
/// Create FirOpBuilder with the provided \p op insertion point
/// and \p kindMap additionally inheriting FastMathFlags from \p op.
static fir::FirOpBuilder
getSimplificationBuilder(mlir::Operation *op, const fir::KindMapping &kindMap) {
fir::FirOpBuilder builder{op, kindMap};
auto fmi = mlir::dyn_cast<mlir::arith::ArithFastMathInterface>(*op);
if (!fmi)
return builder;
// Regardless of what default FastMathFlags are used by FirOpBuilder,
// override them with FastMathFlags attached to the operation.
builder.setFastMathFlags(fmi.getFastMathFlagsAttr().getValue());
return builder;
}
/// Generate function type for the simplified version of RTNAME(Sum) and
/// similar functions with a fir.box<none> type returning \p elementType.
static mlir::FunctionType genNoneBoxType(fir::FirOpBuilder &builder,
const mlir::Type &elementType) {
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
return mlir::FunctionType::get(builder.getContext(), {boxType},
{elementType});
}
template <typename Op>
Op expectOp(mlir::Value val) {
if (Op op = mlir::dyn_cast_or_null<Op>(val.getDefiningOp()))
return op;
LLVM_DEBUG(llvm::dbgs() << "Didn't find expected " << Op::getOperationName()
<< '\n');
return nullptr;
}
template <typename Op>
static mlir::Value findDefSingle(fir::ConvertOp op) {
if (auto defOp = expectOp<Op>(op->getOperand(0))) {
return defOp.getResult();
}
return {};
}
template <typename... Ops>
static mlir::Value findDef(fir::ConvertOp op) {
mlir::Value defOp;
// Loop over the operation types given to see if any match, exiting once
// a match is found. Cast to void is needed to avoid compiler complaining
// that the result of expression is unused
(void)((defOp = findDefSingle<Ops>(op), (defOp)) || ...);
return defOp;
}
static bool isOperandAbsent(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
return mlir::isa_and_nonnull<fir::AbsentOp>(
op->getOperand(0).getDefiningOp());
}
return false;
}
static bool isTrueOrNotConstant(mlir::Value val) {
if (auto op = expectOp<mlir::arith::ConstantOp>(val)) {
return !mlir::matchPattern(val, mlir::m_Zero());
}
return true;
}
static bool isZero(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
if (mlir::Operation *defOp = op->getOperand(0).getDefiningOp())
return mlir::matchPattern(defOp, mlir::m_Zero());
}
return false;
}
static mlir::Value findBoxDef(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
return findDef<fir::EmboxOp, fir::ReboxOp>(op);
}
return {};
}
static mlir::Value findMaskDef(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
return findDef<fir::EmboxOp, fir::ReboxOp, fir::AbsentOp>(op);
}
return {};
}
static unsigned getDimCount(mlir::Value val) {
// In order to find the dimensions count, we look for EmboxOp/ReboxOp
// and take the count from its *result* type. Note that in case
// of sliced emboxing the operand and the result of EmboxOp/ReboxOp
// have different types.
// Actually, we can take the box type from the operand of
// the first ConvertOp that has non-opaque box type that we meet
// going through the ConvertOp chain.
if (mlir::Value emboxVal = findBoxDef(val))
if (auto boxTy = mlir::dyn_cast<fir::BoxType>(emboxVal.getType()))
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(boxTy.getEleTy()))
return seqTy.getDimension();
return 0;
}
/// Given the call operation's box argument \p val, discover
/// the element type of the underlying array object.
/// \returns the element type or std::nullopt if the type cannot
/// be reliably found.
/// We expect that the argument is a result of fir.convert
/// with the destination type of !fir.box<none>.
static std::optional<mlir::Type> getArgElementType(mlir::Value val) {
mlir::Operation *defOp;
do {
defOp = val.getDefiningOp();
// Analyze only sequences of convert operations.
if (!mlir::isa<fir::ConvertOp>(defOp))
return std::nullopt;
val = defOp->getOperand(0);
// The convert operation is expected to convert from one
// box type to another box type.
auto boxType = mlir::cast<fir::BoxType>(val.getType());
auto elementType = fir::unwrapSeqOrBoxedSeqType(boxType);
if (!mlir::isa<mlir::NoneType>(elementType))
return elementType;
} while (true);
}
using BodyOpGeneratorTy = llvm::function_ref<mlir::Value(
fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value,
mlir::Value)>;
using ContinueLoopGenTy = llvm::function_ref<llvm::SmallVector<mlir::Value>(
fir::FirOpBuilder &, mlir::Location, mlir::Value)>;
/// Generate the reduction loop into \p funcOp.
///
/// \p initVal is a function, called to get the initial value for
/// the reduction value
/// \p genBody is called to fill in the actual reduciton operation
/// for example add for SUM, MAX for MAXVAL, etc.
/// \p rank is the rank of the input argument.
/// \p elementType is the type of the elements in the input array,
/// which may be different to the return type.
/// \p loopCond is called to generate the condition to continue or
/// not for IterWhile loops
/// \p unorderedOrInitalLoopCond contains either a boolean or bool
/// mlir constant, and controls the inital value for while loops
/// or if DoLoop is ordered/unordered.
template <typename OP, typename T, int resultIndex>
static void
genReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
fir::InitValGeneratorTy initVal, ContinueLoopGenTy loopCond,
T unorderedOrInitialLoopCond, BodyOpGeneratorTy genBody,
unsigned rank, mlir::Type elementType, mlir::Location loc) {
mlir::IndexType idxTy = builder.getIndexType();
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
mlir::Value arg = args[0];
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape(rank,
fir::SequenceType::getUnknownExtent());
mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg);
mlir::Type resultType = funcOp.getResultTypes()[0];
mlir::Value init = initVal(builder, loc, resultType);
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds;
assert(rank > 0 && "rank cannot be zero");
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
// Compute all the upper bounds before the loop nest.
// It is not strictly necessary for performance, since the loop nest
// does not have any store operations and any LICM optimization
// should be able to optimize the redundancy.
for (unsigned i = 0; i < rank; ++i) {
mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx);
mlir::Value len = dims.getResult(1);
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
bounds.push_back(loopCount);
}
// Create a loop nest consisting of OP operations.
// Collect the loops' induction variables into indices array,
// which will be used in the innermost loop to load the input
// array's element.
// The loops are generated such that the innermost loop processes
// the 0 dimension.
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices;
for (unsigned i = rank; 0 < i; --i) {
mlir::Value step = one;
mlir::Value loopCount = bounds[i - 1];
auto loop = builder.create<OP>(loc, zeroIdx, loopCount, step,
unorderedOrInitialLoopCond,
/*finalCountValue=*/false, init);
init = loop.getRegionIterArgs()[resultIndex];
indices.push_back(loop.getInductionVar());
// Set insertion point to the loop body so that the next loop
// is inserted inside the current one.
builder.setInsertionPointToStart(loop.getBody());
}
// Reverse the indices such that they are ordered as:
// <dim-0-idx, dim-1-idx, ...>
std::reverse(indices.begin(), indices.end());
// We are in the innermost loop: generate the reduction body.
mlir::Type eleRefTy = builder.getRefType(elementType);
mlir::Value addr =
builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
mlir::Value reductionVal = genBody(builder, loc, elementType, elem, init);
// Generate vector with condition to continue while loop at [0] and result
// from current loop at [1] for IterWhileOp loops, just result at [0] for
// DoLoopOp loops.
llvm::SmallVector<mlir::Value> results = loopCond(builder, loc, reductionVal);
// Unwind the loop nest and insert ResultOp on each level
// to return the updated value of the reduction to the enclosing
// loops.
for (unsigned i = 0; i < rank; ++i) {
auto result = builder.create<fir::ResultOp>(loc, results);
// Proceed to the outer loop.
auto loop = mlir::cast<OP>(result->getParentOp());
results = loop.getResults();
// Set insertion point after the loop operation that we have
// just processed.
builder.setInsertionPointAfter(loop.getOperation());
}
// End of loop nest. The insertion point is after the outermost loop.
// Return the reduction value from the function.
builder.create<mlir::func::ReturnOp>(loc, results[resultIndex]);
}
static llvm::SmallVector<mlir::Value> nopLoopCond(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Value reductionVal) {
return {reductionVal};
}
/// Generate function body of the simplified version of RTNAME(Sum)
/// with signature provided by \p funcOp. The caller is responsible
/// for saving/restoring the original insertion point of \p builder.
/// \p funcOp is expected to be empty on entry to this function.
/// \p rank specifies the rank of the input argument.
static void genRuntimeSumBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
// function RTNAME(Sum)<T>x<rank>_simplified(arr)
// T, dimension(:) :: arr
// T sum = 0
// integer iter
// do iter = 0, extent(arr)
// sum = sum + arr[iter]
// end do
// RTNAME(Sum)<T>x<rank>_simplified = sum
// end function RTNAME(Sum)<T>x<rank>_simplified
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) {
const llvm::fltSemantics &sem = ty.getFloatSemantics();
return builder.createRealConstant(loc, elementType,
llvm::APFloat::getZero(sem));
}
return builder.createIntegerConstant(loc, elementType, 0);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
if (mlir::isa<mlir::FloatType>(elementType))
return builder.create<mlir::arith::AddFOp>(loc, elem1, elem2);
if (mlir::isa<mlir::IntegerType>(elementType))
return builder.create<mlir::arith::AddIOp>(loc, elem1, elem2);
llvm_unreachable("unsupported type");
return {};
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond,
false, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeMaxvalBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto init = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) {
const llvm::fltSemantics &sem = ty.getFloatSemantics();
return builder.createRealConstant(
loc, elementType, llvm::APFloat::getLargest(sem, /*Negative=*/true));
}
unsigned bits = elementType.getIntOrFloatBitWidth();
int64_t minInt = llvm::APInt::getSignedMinValue(bits).getSExtValue();
return builder.createIntegerConstant(loc, elementType, minInt);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
if (mlir::isa<mlir::FloatType>(elementType)) {
// arith.maxf later converted to llvm.intr.maxnum does not work
// correctly for NaNs and -0.0 (see maxnum/minnum pattern matching
// in LLVM's InstCombine pass). Moreover, llvm.intr.maxnum
// for F128 operands is lowered into fmaxl call by LLVM.
// This libm function may not work properly for F128 arguments
// on targets where long double is not F128. It is an LLVM issue,
// but we just use normal select here to resolve all the cases.
auto compare = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::OGT, elem1, elem2);
return builder.create<mlir::arith::SelectOp>(loc, compare, elem1, elem2);
}
if (mlir::isa<mlir::IntegerType>(elementType))
return builder.create<mlir::arith::MaxSIOp>(loc, elem1, elem2);
llvm_unreachable("unsupported type");
return {};
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, init, nopLoopCond,
false, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeCountBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
unsigned bits = elementType.getIntOrFloatBitWidth();
int64_t zeroInt = llvm::APInt::getZero(bits).getSExtValue();
return builder.createIntegerConstant(loc, elementType, zeroInt);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
auto zero32 = builder.createIntegerConstant(loc, elementType, 0);
auto zero64 = builder.createIntegerConstant(loc, builder.getI64Type(), 0);
auto one64 = builder.createIntegerConstant(loc, builder.getI64Type(), 1);
auto compare = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, elem1, zero32);
auto select =
builder.create<mlir::arith::SelectOp>(loc, compare, zero64, one64);
return builder.create<mlir::arith::AddIOp>(loc, select, elem2);
};
// Count always gets I32 for elementType as it converts logical input to
// logical<4> before passing to the function.
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond,
false, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeAnyBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
return builder.createIntegerConstant(loc, elementType, 0);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
auto zero = builder.createIntegerConstant(loc, elementType, 0);
return builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::ne, elem1, zero);
};
auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Value reductionVal) {
auto one1 = builder.createIntegerConstant(loc, builder.getI1Type(), 1);
auto eor = builder.create<mlir::arith::XOrIOp>(loc, reductionVal, one1);
llvm::SmallVector<mlir::Value> results = {eor, reductionVal};
return results;
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::Value ok = builder.createBool(loc, true);
genReductionLoop<fir::IterWhileOp, mlir::Value, 1>(
builder, funcOp, zero, continueCond, ok, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeAllBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto one = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
return builder.createIntegerConstant(loc, elementType, 1);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
auto zero = builder.createIntegerConstant(loc, elementType, 0);
return builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::ne, elem1, zero);
};
auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Value reductionVal) {
llvm::SmallVector<mlir::Value> results = {reductionVal, reductionVal};
return results;
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::Value ok = builder.createBool(loc, true);
genReductionLoop<fir::IterWhileOp, mlir::Value, 1>(
builder, funcOp, one, continueCond, ok, genBodyOp, rank, elementType,
loc);
}
static mlir::FunctionType genRuntimeMinlocType(fir::FirOpBuilder &builder,
unsigned int rank) {
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
mlir::Type boxRefType = builder.getRefType(boxType);
return mlir::FunctionType::get(builder.getContext(),
{boxRefType, boxType, boxType}, {});
}
// Produces a loop nest for a Minloc intrinsic.
void fir::genMinMaxlocReductionLoop(
fir::FirOpBuilder &builder, mlir::Value array,
fir::InitValGeneratorTy initVal, fir::MinlocBodyOpGeneratorTy genBody,
fir::AddrGeneratorTy getAddrFn, unsigned rank, mlir::Type elementType,
mlir::Location loc, mlir::Type maskElemType, mlir::Value resultArr,
bool maskMayBeLogicalScalar) {
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape(rank,
fir::SequenceType::getUnknownExtent());
mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
array = builder.create<fir::ConvertOp>(loc, boxArrTy, array);
mlir::Type resultElemType = hlfir::getFortranElementType(resultArr.getType());
mlir::Value flagSet = builder.createIntegerConstant(loc, resultElemType, 1);
mlir::Value zero = builder.createIntegerConstant(loc, resultElemType, 0);
mlir::Value flagRef = builder.createTemporary(loc, resultElemType);
builder.create<fir::StoreOp>(loc, zero, flagRef);
mlir::Value init = initVal(builder, loc, elementType);
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds;
assert(rank > 0 && "rank cannot be zero");
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
// Compute all the upper bounds before the loop nest.
// It is not strictly necessary for performance, since the loop nest
// does not have any store operations and any LICM optimization
// should be able to optimize the redundancy.
for (unsigned i = 0; i < rank; ++i) {
mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx);
mlir::Value len = dims.getResult(1);
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
bounds.push_back(loopCount);
}
// Create a loop nest consisting of OP operations.
// Collect the loops' induction variables into indices array,
// which will be used in the innermost loop to load the input
// array's element.
// The loops are generated such that the innermost loop processes
// the 0 dimension.
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices;
for (unsigned i = rank; 0 < i; --i) {
mlir::Value step = one;
mlir::Value loopCount = bounds[i - 1];
auto loop =
builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step, false,
/*finalCountValue=*/false, init);
init = loop.getRegionIterArgs()[0];
indices.push_back(loop.getInductionVar());
// Set insertion point to the loop body so that the next loop
// is inserted inside the current one.
builder.setInsertionPointToStart(loop.getBody());
}
// Reverse the indices such that they are ordered as:
// <dim-0-idx, dim-1-idx, ...>
std::reverse(indices.begin(), indices.end());
mlir::Value reductionVal =
genBody(builder, loc, elementType, array, flagRef, init, indices);
// Unwind the loop nest and insert ResultOp on each level
// to return the updated value of the reduction to the enclosing
// loops.
for (unsigned i = 0; i < rank; ++i) {
auto result = builder.create<fir::ResultOp>(loc, reductionVal);
// Proceed to the outer loop.
auto loop = mlir::cast<fir::DoLoopOp>(result->getParentOp());
reductionVal = loop.getResult(0);
// Set insertion point after the loop operation that we have
// just processed.
builder.setInsertionPointAfter(loop.getOperation());
}
// End of loop nest. The insertion point is after the outermost loop.
if (maskMayBeLogicalScalar) {
if (fir::IfOp ifOp =
mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp())) {
builder.create<fir::ResultOp>(loc, reductionVal);
builder.setInsertionPointAfter(ifOp);
// Redefine flagSet to escape scope of ifOp
flagSet = builder.createIntegerConstant(loc, resultElemType, 1);
reductionVal = ifOp.getResult(0);
}
}
}
static void genRuntimeMinMaxlocBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, bool isMax,
unsigned rank, int maskRank,
mlir::Type elementType,
mlir::Type maskElemType,
mlir::Type resultElemTy, bool isDim) {
auto init = [isMax](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) {
const llvm::fltSemantics &sem = ty.getFloatSemantics();
llvm::APFloat limit = llvm::APFloat::getInf(sem, /*Negative=*/isMax);
return builder.createRealConstant(loc, elementType, limit);
}
unsigned bits = elementType.getIntOrFloatBitWidth();
int64_t initValue = (isMax ? llvm::APInt::getSignedMinValue(bits)
: llvm::APInt::getSignedMaxValue(bits))
.getSExtValue();
return builder.createIntegerConstant(loc, elementType, initValue);
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::Value mask = funcOp.front().getArgument(2);
// Set up result array in case of early exit / 0 length array
mlir::IndexType idxTy = builder.getIndexType();
mlir::Type resultTy = fir::SequenceType::get(rank, resultElemTy);
mlir::Type resultHeapTy = fir::HeapType::get(resultTy);
mlir::Type resultBoxTy = fir::BoxType::get(resultHeapTy);
mlir::Value returnValue = builder.createIntegerConstant(loc, resultElemTy, 0);
mlir::Value resultArrSize = builder.createIntegerConstant(loc, idxTy, rank);
mlir::Value resultArrInit = builder.create<fir::AllocMemOp>(loc, resultTy);
mlir::Value resultArrShape = builder.create<fir::ShapeOp>(loc, resultArrSize);
mlir::Value resultArr = builder.create<fir::EmboxOp>(
loc, resultBoxTy, resultArrInit, resultArrShape);
mlir::Type resultRefTy = builder.getRefType(resultElemTy);
if (maskRank > 0) {
fir::SequenceType::Shape flatShape(rank,
fir::SequenceType::getUnknownExtent());
mlir::Type maskTy = fir::SequenceType::get(flatShape, maskElemType);
mlir::Type boxMaskTy = fir::BoxType::get(maskTy);
mask = builder.create<fir::ConvertOp>(loc, boxMaskTy, mask);
}
for (unsigned int i = 0; i < rank; ++i) {
mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
mlir::Value resultElemAddr =
builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, index);
builder.create<fir::StoreOp>(loc, returnValue, resultElemAddr);
}
auto genBodyOp =
[&rank, &resultArr, isMax, &mask, &maskElemType, &maskRank](
fir::FirOpBuilder builder, mlir::Location loc, mlir::Type elementType,
mlir::Value array, mlir::Value flagRef, mlir::Value reduction,
const llvm::SmallVectorImpl<mlir::Value> &indices) -> mlir::Value {
// We are in the innermost loop: generate the reduction body.
if (maskRank > 0) {
mlir::Type logicalRef = builder.getRefType(maskElemType);
mlir::Value maskAddr =
builder.create<fir::CoordinateOp>(loc, logicalRef, mask, indices);
mlir::Value maskElem = builder.create<fir::LoadOp>(loc, maskAddr);
// fir::IfOp requires argument to be I1 - won't accept logical or any
// other Integer.
mlir::Type ifCompatType = builder.getI1Type();
mlir::Value ifCompatElem =
builder.create<fir::ConvertOp>(loc, ifCompatType, maskElem);
llvm::SmallVector<mlir::Type> resultsTy = {elementType, elementType};
fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, ifCompatElem,
/*withElseRegion=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
// Set flag that mask was true at some point
mlir::Value flagSet = builder.createIntegerConstant(
loc, mlir::cast<fir::ReferenceType>(flagRef.getType()).getEleTy(), 1);
mlir::Value isFirst = builder.create<fir::LoadOp>(loc, flagRef);
mlir::Type eleRefTy = builder.getRefType(elementType);
mlir::Value addr =
builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
mlir::Value cmp;
if (mlir::isa<mlir::FloatType>(elementType)) {
// For FP reductions we want the first smallest value to be used, that
// is not NaN. A OGL/OLT condition will usually work for this unless all
// the values are Nan or Inf. This follows the same logic as
// NumericCompare for Minloc/Maxlox in extrema.cpp.
cmp = builder.create<mlir::arith::CmpFOp>(
loc,
isMax ? mlir::arith::CmpFPredicate::OGT
: mlir::arith::CmpFPredicate::OLT,
elem, reduction);
mlir::Value cmpNan = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::UNE, reduction, reduction);
mlir::Value cmpNan2 = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::OEQ, elem, elem);
cmpNan = builder.create<mlir::arith::AndIOp>(loc, cmpNan, cmpNan2);
cmp = builder.create<mlir::arith::OrIOp>(loc, cmp, cmpNan);
} else if (mlir::isa<mlir::IntegerType>(elementType)) {
cmp = builder.create<mlir::arith::CmpIOp>(
loc,
isMax ? mlir::arith::CmpIPredicate::sgt
: mlir::arith::CmpIPredicate::slt,
elem, reduction);
} else {
llvm_unreachable("unsupported type");
}
// The condition used for the loop is isFirst || <the condition above>.
isFirst = builder.create<fir::ConvertOp>(loc, cmp.getType(), isFirst);
isFirst = builder.create<mlir::arith::XOrIOp>(
loc, isFirst, builder.createIntegerConstant(loc, cmp.getType(), 1));
cmp = builder.create<mlir::arith::OrIOp>(loc, cmp, isFirst);
fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cmp,
/*withElseRegion*/ true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
builder.create<fir::StoreOp>(loc, flagSet, flagRef);
mlir::Type resultElemTy = hlfir::getFortranElementType(resultArr.getType());
mlir::Type returnRefTy = builder.getRefType(resultElemTy);
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value one = builder.createIntegerConstant(loc, resultElemTy, 1);
for (unsigned int i = 0; i < rank; ++i) {
mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
mlir::Value resultElemAddr =
builder.create<fir::CoordinateOp>(loc, returnRefTy, resultArr, index);
mlir::Value convert =
builder.create<fir::ConvertOp>(loc, resultElemTy, indices[i]);
mlir::Value fortranIndex =
builder.create<mlir::arith::AddIOp>(loc, convert, one);
builder.create<fir::StoreOp>(loc, fortranIndex, resultElemAddr);
}
builder.create<fir::ResultOp>(loc, elem);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<fir::ResultOp>(loc, reduction);
builder.setInsertionPointAfter(ifOp);
mlir::Value reductionVal = ifOp.getResult(0);
// Close the mask if needed
if (maskRank > 0) {
fir::IfOp ifOp =
mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp());
builder.create<fir::ResultOp>(loc, reductionVal);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<fir::ResultOp>(loc, reduction);
reductionVal = ifOp.getResult(0);
builder.setInsertionPointAfter(ifOp);
}
return reductionVal;
};
// if mask is a logical scalar, we can check its value before the main loop
// and either ignore the fact it is there or exit early.
if (maskRank == 0) {
mlir::Type logical = builder.getI1Type();
mlir::IndexType idxTy = builder.getIndexType();
fir::SequenceType::Shape singleElement(1, 1);
mlir::Type arrTy = fir::SequenceType::get(singleElement, logical);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, mask);
mlir::Value indx = builder.createIntegerConstant(loc, idxTy, 0);
mlir::Type logicalRefTy = builder.getRefType(logical);
mlir::Value condAddr =
builder.create<fir::CoordinateOp>(loc, logicalRefTy, array, indx);
mlir::Value cond = builder.create<fir::LoadOp>(loc, condAddr);
fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cond,
/*withElseRegion=*/true);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
mlir::Value basicValue;
if (mlir::isa<mlir::IntegerType>(elementType)) {
basicValue = builder.createIntegerConstant(loc, elementType, 0);
} else {
basicValue = builder.createRealConstant(loc, elementType, 0);
}
builder.create<fir::ResultOp>(loc, basicValue);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
auto getAddrFn = [](fir::FirOpBuilder builder, mlir::Location loc,
const mlir::Type &resultElemType, mlir::Value resultArr,
mlir::Value index) {
mlir::Type resultRefTy = builder.getRefType(resultElemType);
return builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr,
index);
};
genMinMaxlocReductionLoop(builder, funcOp.front().getArgument(1), init,
genBodyOp, getAddrFn, rank, elementType, loc,
maskElemType, resultArr, maskRank == 0);
// Store newly created output array to the reference passed in
if (isDim) {
mlir::Type resultBoxTy =
fir::BoxType::get(fir::HeapType::get(resultElemTy));
mlir::Value outputArr = builder.create<fir::ConvertOp>(
loc, builder.getRefType(resultBoxTy), funcOp.front().getArgument(0));
mlir::Value resultArrScalar = builder.create<fir::ConvertOp>(
loc, fir::HeapType::get(resultElemTy), resultArrInit);
mlir::Value resultBox =
builder.create<fir::EmboxOp>(loc, resultBoxTy, resultArrScalar);
builder.create<fir::StoreOp>(loc, resultBox, outputArr);
} else {
fir::SequenceType::Shape resultShape(1, rank);
mlir::Type outputArrTy = fir::SequenceType::get(resultShape, resultElemTy);
mlir::Type outputHeapTy = fir::HeapType::get(outputArrTy);
mlir::Type outputBoxTy = fir::BoxType::get(outputHeapTy);
mlir::Type outputRefTy = builder.getRefType(outputBoxTy);
mlir::Value outputArr = builder.create<fir::ConvertOp>(
loc, outputRefTy, funcOp.front().getArgument(0));
builder.create<fir::StoreOp>(loc, resultArr, outputArr);
}
builder.create<mlir::func::ReturnOp>(loc);
}
/// Generate function type for the simplified version of RTNAME(DotProduct)
/// operating on the given \p elementType.
static mlir::FunctionType genRuntimeDotType(fir::FirOpBuilder &builder,
const mlir::Type &elementType) {
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
return mlir::FunctionType::get(builder.getContext(), {boxType, boxType},
{elementType});
}
/// Generate function body of the simplified version of RTNAME(DotProduct)
/// with signature provided by \p funcOp. The caller is responsible
/// for saving/restoring the original insertion point of \p builder.
/// \p funcOp is expected to be empty on entry to this function.
/// \p arg1ElementTy and \p arg2ElementTy specify elements types
/// of the underlying array objects - they are used to generate proper
/// element accesses.
static void genRuntimeDotBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp,
mlir::Type arg1ElementTy,
mlir::Type arg2ElementTy) {
// function RTNAME(DotProduct)<T>_simplified(arr1, arr2)
// T, dimension(:) :: arr1, arr2
// T product = 0
// integer iter
// do iter = 0, extent(arr1)
// product = product + arr1[iter] * arr2[iter]
// end do
// RTNAME(ADotProduct)<T>_simplified = product
// end function RTNAME(DotProduct)<T>_simplified
auto loc = mlir::UnknownLoc::get(builder.getContext());
mlir::Type resultElementType = funcOp.getResultTypes()[0];
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value zero =
mlir::isa<mlir::FloatType>(resultElementType)
? builder.createRealConstant(loc, resultElementType, 0.0)
: builder.createIntegerConstant(loc, resultElementType, 0);
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
mlir::Value arg1 = args[0];
mlir::Value arg2 = args[1];
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape = {fir::SequenceType::getUnknownExtent()};
mlir::Type arrTy1 = fir::SequenceType::get(flatShape, arg1ElementTy);
mlir::Type boxArrTy1 = fir::BoxType::get(arrTy1);
mlir::Value array1 = builder.create<fir::ConvertOp>(loc, boxArrTy1, arg1);
mlir::Type arrTy2 = fir::SequenceType::get(flatShape, arg2ElementTy);
mlir::Type boxArrTy2 = fir::BoxType::get(arrTy2);
mlir::Value array2 = builder.create<fir::ConvertOp>(loc, boxArrTy2, arg2);
// This version takes the loop trip count from the first argument.
// If the first argument's box has unknown (at compilation time)
// extent, then it may be better to take the extent from the second
// argument - so that after inlining the loop may be better optimized, e.g.
// fully unrolled. This requires generating two versions of the simplified
// function and some analysis at the call site to choose which version
// is more profitable to call.
// Note that we can assume that both arguments have the same extent.
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array1, zeroIdx);
mlir::Value len = dims.getResult(1);
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
mlir::Value step = one;
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step,
/*unordered=*/false,
/*finalCountValue=*/false, zero);
mlir::Value sumVal = loop.getRegionIterArgs()[0];
// Begin loop code
mlir::OpBuilder::InsertPoint loopEndPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loop.getBody());
mlir::Type eleRef1Ty = builder.getRefType(arg1ElementTy);
mlir::Value index = loop.getInductionVar();
mlir::Value addr1 =
builder.create<fir::CoordinateOp>(loc, eleRef1Ty, array1, index);
mlir::Value elem1 = builder.create<fir::LoadOp>(loc, addr1);
// Convert to the result type.
elem1 = builder.create<fir::ConvertOp>(loc, resultElementType, elem1);
mlir::Type eleRef2Ty = builder.getRefType(arg2ElementTy);
mlir::Value addr2 =
builder.create<fir::CoordinateOp>(loc, eleRef2Ty, array2, index);
mlir::Value elem2 = builder.create<fir::LoadOp>(loc, addr2);
// Convert to the result type.
elem2 = builder.create<fir::ConvertOp>(loc, resultElementType, elem2);
if (mlir::isa<mlir::FloatType>(resultElementType))
sumVal = builder.create<mlir::arith::AddFOp>(
loc, builder.create<mlir::arith::MulFOp>(loc, elem1, elem2), sumVal);
else if (mlir::isa<mlir::IntegerType>(resultElementType))
sumVal = builder.create<mlir::arith::AddIOp>(
loc, builder.create<mlir::arith::MulIOp>(loc, elem1, elem2), sumVal);
else
llvm_unreachable("unsupported type");
builder.create<fir::ResultOp>(loc, sumVal);
// End of loop.
builder.restoreInsertionPoint(loopEndPt);
mlir::Value resultVal = loop.getResult(0);
builder.create<mlir::func::ReturnOp>(loc, resultVal);
}
mlir::func::FuncOp SimplifyIntrinsicsPass::getOrCreateFunction(
fir::FirOpBuilder &builder, const mlir::StringRef &baseName,
FunctionTypeGeneratorTy typeGenerator,
FunctionBodyGeneratorTy bodyGenerator) {
// WARNING: if the function generated here changes its signature
// or behavior (the body code), we should probably embed some
// versioning information into its name, otherwise libraries
// statically linked with older versions of Flang may stop
// working with object files created with newer Flang.
// We can also avoid this by using internal linkage, but
// this may increase the size of final executable/shared library.
std::string replacementName = mlir::Twine{baseName, "_simplified"}.str();
// If we already have a function, just return it.
mlir::func::FuncOp newFunc = builder.getNamedFunction(replacementName);
mlir::FunctionType fType = typeGenerator(builder);
if (newFunc) {
assert(newFunc.getFunctionType() == fType &&
"type mismatch for simplified function");
return newFunc;
}
// Need to build the function!
auto loc = mlir::UnknownLoc::get(builder.getContext());
newFunc = builder.createFunction(loc, replacementName, fType);
auto inlineLinkage = mlir::LLVM::linkage::Linkage::LinkonceODR;
auto linkage =
mlir::LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
newFunc->setAttr("llvm.linkage", linkage);
// Save the position of the original call.
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
bodyGenerator(builder, newFunc);
// Now back to where we were adding code earlier...
builder.restoreInsertionPoint(insertPt);
return newFunc;
}
void SimplifyIntrinsicsPass::simplifyIntOrFloatReduction(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc) {
// args[1] and args[2] are source filename and line number, ignored.
mlir::Operation::operand_range args = call.getArgs();
const mlir::Value &dim = args[3];
const mlir::Value &mask = args[4];
// dim is zero when it is absent, which is an implementation
// detail in the runtime library.
bool dimAndMaskAbsent = isZero(dim) && isOperandAbsent(mask);
unsigned rank = getDimCount(args[0]);
// Rank is set to 0 for assumed shape arrays, don't simplify
// in these cases
if (!(dimAndMaskAbsent && rank > 0))
return;
mlir::Type resultType = call.getResult(0).getType();
if (!mlir::isa<mlir::FloatType>(resultType) &&
!mlir::isa<mlir::IntegerType>(resultType))
return;
auto argType = getArgElementType(args[0]);
if (!argType)
return;
assert(*argType == resultType &&
"Argument/result types mismatch in reduction");
mlir::SymbolRefAttr callee = call.getCalleeAttr();
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
std::string fmfString{builder.getFastMathFlagsString()};
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "x"} +
mlir::Twine{rank} +
// We must mangle the generated function name with FastMathFlags
// value.
(fmfString.empty() ? mlir::Twine{} : mlir::Twine{"_", fmfString}))
.str();
simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
resultType);
}
void SimplifyIntrinsicsPass::simplifyLogicalDim0Reduction(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc) {
mlir::Operation::operand_range args = call.getArgs();
const mlir::Value &dim = args[3];
unsigned rank = getDimCount(args[0]);
// getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in
// these cases.
if (!(isZero(dim) && rank > 0))
return;
mlir::Value inputBox = findBoxDef(args[0]);
mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType());
mlir::SymbolRefAttr callee = call.getCalleeAttr();
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
// Treating logicals as integers makes things a lot easier
fir::LogicalType logicalType = {
mlir::dyn_cast<fir::LogicalType>(elementType)};
fir::KindTy kind = logicalType.getFKind();
mlir::Type intElementType = builder.getIntegerType(kind * 8);
// Mangle kind into function name as it is not done by default
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "Logical"} +
mlir::Twine{kind} + "x" + mlir::Twine{rank})
.str();
simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
intElementType);
}
void SimplifyIntrinsicsPass::simplifyLogicalDim1Reduction(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc) {
mlir::Operation::operand_range args = call.getArgs();
mlir::SymbolRefAttr callee = call.getCalleeAttr();
mlir::StringRef funcNameBase = callee.getLeafReference().getValue();
unsigned rank = getDimCount(args[0]);
// getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in
// these cases. We check for Dim at the end as some logical functions (Any,
// All) set dim to 1 instead of 0 when the argument is not present.
if (funcNameBase.ends_with("Dim") || !(rank > 0))
return;
mlir::Value inputBox = findBoxDef(args[0]);
mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType());
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
// Treating logicals as integers makes things a lot easier
fir::LogicalType logicalType = {
mlir::dyn_cast<fir::LogicalType>(elementType)};
fir::KindTy kind = logicalType.getFKind();
mlir::Type intElementType = builder.getIntegerType(kind * 8);
// Mangle kind into function name as it is not done by default
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "Logical"} +
mlir::Twine{kind} + "x" + mlir::Twine{rank})
.str();
simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
intElementType);
}
void SimplifyIntrinsicsPass::simplifyMinMaxlocReduction(
fir::CallOp call, const fir::KindMapping &kindMap, bool isMax) {
mlir::Operation::operand_range args = call.getArgs();
mlir::SymbolRefAttr callee = call.getCalleeAttr();
mlir::StringRef funcNameBase = callee.getLeafReference().getValue();
bool isDim = funcNameBase.ends_with("Dim");
mlir::Value back = args[isDim ? 7 : 6];
if (isTrueOrNotConstant(back))
return;
mlir::Value mask = args[isDim ? 6 : 5];
mlir::Value maskDef = findMaskDef(mask);
// maskDef is set to NULL when the defining op is not one we accept.
// This tends to be because it is a selectOp, in which case let the
// runtime deal with it.
if (maskDef == NULL)
return;
unsigned rank = getDimCount(args[1]);
if ((isDim && rank != 1) || !(rank > 0))
return;
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
mlir::Location loc = call.getLoc();
auto inputBox = findBoxDef(args[1]);
mlir::Type inputType = hlfir::getFortranElementType(inputBox.getType());
if (mlir::isa<fir::CharacterType>(inputType))
return;
int maskRank;
fir::KindTy kind = 0;
mlir::Type logicalElemType = builder.getI1Type();
if (isOperandAbsent(mask)) {
maskRank = -1;
} else {
maskRank = getDimCount(mask);
mlir::Type maskElemTy = hlfir::getFortranElementType(maskDef.getType());
fir::LogicalType logicalFirType = {
mlir::dyn_cast<fir::LogicalType>(maskElemTy)};
kind = logicalFirType.getFKind();
// Convert fir::LogicalType to mlir::Type
logicalElemType = logicalFirType;
}
mlir::Operation *outputDef = args[0].getDefiningOp();
mlir::Value outputAlloc = outputDef->getOperand(0);
mlir::Type outType = hlfir::getFortranElementType(outputAlloc.getType());
std::string fmfString{builder.getFastMathFlagsString()};
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "x"} +
mlir::Twine{rank} +
(maskRank >= 0
? "_Logical" + mlir::Twine{kind} + "x" + mlir::Twine{maskRank}
: "") +
"_")
.str();
llvm::raw_string_ostream nameOS(funcName);
outType.print(nameOS);
if (isDim)
nameOS << '_' << inputType;
nameOS << '_' << fmfString;
auto typeGenerator = [rank](fir::FirOpBuilder &builder) {
return genRuntimeMinlocType(builder, rank);
};
auto bodyGenerator = [rank, maskRank, inputType, logicalElemType, outType,
isMax, isDim](fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp) {
genRuntimeMinMaxlocBody(builder, funcOp, isMax, rank, maskRank, inputType,
logicalElemType, outType, isDim);
};
mlir::func::FuncOp newFunc =
getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator);
builder.create<fir::CallOp>(loc, newFunc,
mlir::ValueRange{args[0], args[1], mask});
call->dropAllReferences();
call->erase();
}
void SimplifyIntrinsicsPass::simplifyReductionBody(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc, fir::FirOpBuilder &builder,
const mlir::StringRef &funcName, mlir::Type elementType) {
mlir::Operation::operand_range args = call.getArgs();
mlir::Type resultType = call.getResult(0).getType();
unsigned rank = getDimCount(args[0]);
mlir::Location loc = call.getLoc();
auto typeGenerator = [&resultType](fir::FirOpBuilder &builder) {
return genNoneBoxType(builder, resultType);
};
auto bodyGenerator = [&rank, &genBodyFunc,
&elementType](fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp) {
genBodyFunc(builder, funcOp, rank, elementType);
};
// Mangle the function name with the rank value as "x<rank>".
mlir::func::FuncOp newFunc =
getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator);
auto newCall =
builder.create<fir::CallOp>(loc, newFunc, mlir::ValueRange{args[0]});
call->replaceAllUsesWith(newCall.getResults());
call->dropAllReferences();
call->erase();
}
void SimplifyIntrinsicsPass::runOnOperation() {
LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
mlir::ModuleOp module = getOperation();
fir::KindMapping kindMap = fir::getKindMapping(module);
module.walk([&](mlir::Operation *op) {
if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
if (mlir::SymbolRefAttr callee = call.getCalleeAttr()) {
mlir::StringRef funcName = callee.getLeafReference().getValue();
// Replace call to runtime function for SUM when it has single
// argument (no dim or mask argument) for 1D arrays with either
// Integer4 or Real8 types. Other forms are ignored.
// The new function is added to the module.
//
// Prototype for runtime call (from sum.cpp):
// RTNAME(Sum<T>)(const Descriptor &x, const char *source, int line,
// int dim, const Descriptor *mask)
//
if (funcName.starts_with(RTNAME_STRING(Sum))) {
simplifyIntOrFloatReduction(call, kindMap, genRuntimeSumBody);
return;
}
if (funcName.starts_with(RTNAME_STRING(DotProduct))) {
LLVM_DEBUG(llvm::dbgs() << "Handling " << funcName << "\n");
LLVM_DEBUG(llvm::dbgs() << "Call operation:\n"; op->dump();
llvm::dbgs() << "\n");
mlir::Operation::operand_range args = call.getArgs();
const mlir::Value &v1 = args[0];
const mlir::Value &v2 = args[1];
mlir::Location loc = call.getLoc();
fir::FirOpBuilder builder{getSimplificationBuilder(op, kindMap)};
// Stringize the builder's FastMathFlags flags for mangling
// the generated function name.
std::string fmfString{builder.getFastMathFlagsString()};
mlir::Type type = call.getResult(0).getType();
if (!mlir::isa<mlir::FloatType>(type) &&
!mlir::isa<mlir::IntegerType>(type))
return;
// Try to find the element types of the boxed arguments.
auto arg1Type = getArgElementType(v1);
auto arg2Type = getArgElementType(v2);
if (!arg1Type || !arg2Type)
return;
// Support only floating point and integer arguments
// now (e.g. logical is skipped here).
if (!mlir::isa<mlir::FloatType, mlir::IntegerType>(*arg1Type))
return;
if (!mlir::isa<mlir::FloatType, mlir::IntegerType>(*arg2Type))
return;
auto typeGenerator = [&type](fir::FirOpBuilder &builder) {
return genRuntimeDotType(builder, type);
};
auto bodyGenerator = [&arg1Type,
&arg2Type](fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp) {
genRuntimeDotBody(builder, funcOp, *arg1Type, *arg2Type);
};
// Suffix the function name with the element types
// of the arguments.
std::string typedFuncName(funcName);
llvm::raw_string_ostream nameOS(typedFuncName);
// We must mangle the generated function name with FastMathFlags
// value.
if (!fmfString.empty())
nameOS << '_' << fmfString;
nameOS << '_';
arg1Type->print(nameOS);
nameOS << '_';
arg2Type->print(nameOS);
mlir::func::FuncOp newFunc = getOrCreateFunction(
builder, typedFuncName, typeGenerator, bodyGenerator);
auto newCall = builder.create<fir::CallOp>(loc, newFunc,
mlir::ValueRange{v1, v2});
call->replaceAllUsesWith(newCall.getResults());
call->dropAllReferences();
call->erase();
LLVM_DEBUG(llvm::dbgs() << "Replaced with:\n"; newCall.dump();
llvm::dbgs() << "\n");
return;
}
if (funcName.starts_with(RTNAME_STRING(Maxval))) {
simplifyIntOrFloatReduction(call, kindMap, genRuntimeMaxvalBody);
return;
}
if (funcName.starts_with(RTNAME_STRING(Count))) {
simplifyLogicalDim0Reduction(call, kindMap, genRuntimeCountBody);
return;
}
if (funcName.starts_with(RTNAME_STRING(Any))) {
simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAnyBody);
return;
}
if (funcName.ends_with(RTNAME_STRING(All))) {
simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAllBody);
return;
}
if (funcName.starts_with(RTNAME_STRING(Minloc))) {
simplifyMinMaxlocReduction(call, kindMap, false);
return;
}
if (funcName.starts_with(RTNAME_STRING(Maxloc))) {
simplifyMinMaxlocReduction(call, kindMap, true);
return;
}
}
}
});
LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
}
void SimplifyIntrinsicsPass::getDependentDialects(
mlir::DialectRegistry ®istry) const {
// LLVM::LinkageAttr creation requires that LLVM dialect is loaded.
registry.insert<mlir::LLVM::LLVMDialect>();
}