//===-- ControlFlowConverter.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Support/TypeCode.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Runtime/derived-api.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/CommandLine.h"
namespace fir {
#define GEN_PASS_DEF_CFGCONVERSION
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
using namespace fir;
using namespace mlir;
namespace {
// Conversion of fir control ops to more primitive control-flow.
//
// FIR loops that cannot be converted to the affine dialect will remain as
// `fir.do_loop` operations. These can be converted to control-flow operations.
/// Convert `fir.do_loop` to CFG
class CfgLoopConv : public mlir::OpRewritePattern<fir::DoLoopOp> {
public:
using OpRewritePattern::OpRewritePattern;
CfgLoopConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce, bool setNSW)
: mlir::OpRewritePattern<fir::DoLoopOp>(ctx),
forceLoopToExecuteOnce(forceLoopToExecuteOnce), setNSW(setNSW) {}
llvm::LogicalResult
matchAndRewrite(DoLoopOp loop,
mlir::PatternRewriter &rewriter) const override {
auto loc = loop.getLoc();
mlir::arith::IntegerOverflowFlags flags{};
if (setNSW)
flags = bitEnumSet(flags, mlir::arith::IntegerOverflowFlags::nsw);
auto iofAttr = mlir::arith::IntegerOverflowFlagsAttr::get(
rewriter.getContext(), flags);
// Create the start and end blocks that will wrap the DoLoopOp with an
// initalizer and an end point
auto *initBlock = rewriter.getInsertionBlock();
auto initPos = rewriter.getInsertionPoint();
auto *endBlock = rewriter.splitBlock(initBlock, initPos);
// Split the first DoLoopOp block in two parts. The part before will be the
// conditional block since it already has the induction variable and
// loop-carried values as arguments.
auto *conditionalBlock = &loop.getRegion().front();
conditionalBlock->addArgument(rewriter.getIndexType(), loc);
auto *firstBlock =
rewriter.splitBlock(conditionalBlock, conditionalBlock->begin());
auto *lastBlock = &loop.getRegion().back();
// Move the blocks from the DoLoopOp between initBlock and endBlock
rewriter.inlineRegionBefore(loop.getRegion(), endBlock);
// Get loop values from the DoLoopOp
auto low = loop.getLowerBound();
auto high = loop.getUpperBound();
assert(low && high && "must be a Value");
auto step = loop.getStep();
// Initalization block
rewriter.setInsertionPointToEnd(initBlock);
auto diff = rewriter.create<mlir::arith::SubIOp>(loc, high, low);
auto distance = rewriter.create<mlir::arith::AddIOp>(loc, diff, step);
mlir::Value iters =
rewriter.create<mlir::arith::DivSIOp>(loc, distance, step);
if (forceLoopToExecuteOnce) {
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
auto cond = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::sle, iters, zero);
auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
iters = rewriter.create<mlir::arith::SelectOp>(loc, cond, one, iters);
}
llvm::SmallVector<mlir::Value> loopOperands;
loopOperands.push_back(low);
auto operands = loop.getIterOperands();
loopOperands.append(operands.begin(), operands.end());
loopOperands.push_back(iters);
rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopOperands);
// Last loop block
auto *terminator = lastBlock->getTerminator();
rewriter.setInsertionPointToEnd(lastBlock);
auto iv = conditionalBlock->getArgument(0);
mlir::Value steppedIndex =
rewriter.create<mlir::arith::AddIOp>(loc, iv, step, iofAttr);
assert(steppedIndex && "must be a Value");
auto lastArg = conditionalBlock->getNumArguments() - 1;
auto itersLeft = conditionalBlock->getArgument(lastArg);
auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
mlir::Value itersMinusOne =
rewriter.create<mlir::arith::SubIOp>(loc, itersLeft, one);
llvm::SmallVector<mlir::Value> loopCarried;
loopCarried.push_back(steppedIndex);
auto begin = loop.getFinalValue() ? std::next(terminator->operand_begin())
: terminator->operand_begin();
loopCarried.append(begin, terminator->operand_end());
loopCarried.push_back(itersMinusOne);
rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopCarried);
rewriter.eraseOp(terminator);
// Conditional block
rewriter.setInsertionPointToEnd(conditionalBlock);
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
auto comparison = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::sgt, itersLeft, zero);
auto cond = rewriter.create<mlir::cf::CondBranchOp>(
loc, comparison, firstBlock, llvm::ArrayRef<mlir::Value>(), endBlock,
llvm::ArrayRef<mlir::Value>());
// Copy loop annotations from the do loop to the loop entry condition.
if (auto ann = loop.getLoopAnnotation())
cond->setAttr("loop_annotation", *ann);
// The result of the loop operation is the values of the condition block
// arguments except the induction variable on the last iteration.
auto args = loop.getFinalValue()
? conditionalBlock->getArguments()
: conditionalBlock->getArguments().drop_front();
rewriter.replaceOp(loop, args.drop_back());
return success();
}
private:
bool forceLoopToExecuteOnce;
bool setNSW;
};
/// Convert `fir.if` to control-flow
class CfgIfConv : public mlir::OpRewritePattern<fir::IfOp> {
public:
using OpRewritePattern::OpRewritePattern;
CfgIfConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce, bool setNSW)
: mlir::OpRewritePattern<fir::IfOp>(ctx) {}
llvm::LogicalResult
matchAndRewrite(IfOp ifOp, mlir::PatternRewriter &rewriter) const override {
auto loc = ifOp.getLoc();
// Split the block containing the 'fir.if' into two parts. The part before
// will contain the condition, the part after will be the continuation
// point.
auto *condBlock = rewriter.getInsertionBlock();
auto opPosition = rewriter.getInsertionPoint();
auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition);
mlir::Block *continueBlock;
if (ifOp.getNumResults() == 0) {
continueBlock = remainingOpsBlock;
} else {
continueBlock = rewriter.createBlock(
remainingOpsBlock, ifOp.getResultTypes(),
llvm::SmallVector<mlir::Location>(ifOp.getNumResults(), loc));
rewriter.create<mlir::cf::BranchOp>(loc, remainingOpsBlock);
}
// Move blocks from the "then" region to the region containing 'fir.if',
// place it before the continuation block, and branch to it.
auto &ifOpRegion = ifOp.getThenRegion();
auto *ifOpBlock = &ifOpRegion.front();
auto *ifOpTerminator = ifOpRegion.back().getTerminator();
auto ifOpTerminatorOperands = ifOpTerminator->getOperands();
rewriter.setInsertionPointToEnd(&ifOpRegion.back());
rewriter.create<mlir::cf::BranchOp>(loc, continueBlock,
ifOpTerminatorOperands);
rewriter.eraseOp(ifOpTerminator);
rewriter.inlineRegionBefore(ifOpRegion, continueBlock);
// Move blocks from the "else" region (if present) to the region containing
// 'fir.if', place it before the continuation block and branch to it. It
// will be placed after the "then" regions.
auto *otherwiseBlock = continueBlock;
auto &otherwiseRegion = ifOp.getElseRegion();
if (!otherwiseRegion.empty()) {
otherwiseBlock = &otherwiseRegion.front();
auto *otherwiseTerm = otherwiseRegion.back().getTerminator();
auto otherwiseTermOperands = otherwiseTerm->getOperands();
rewriter.setInsertionPointToEnd(&otherwiseRegion.back());
rewriter.create<mlir::cf::BranchOp>(loc, continueBlock,
otherwiseTermOperands);
rewriter.eraseOp(otherwiseTerm);
rewriter.inlineRegionBefore(otherwiseRegion, continueBlock);
}
rewriter.setInsertionPointToEnd(condBlock);
rewriter.create<mlir::cf::CondBranchOp>(
loc, ifOp.getCondition(), ifOpBlock, llvm::ArrayRef<mlir::Value>(),
otherwiseBlock, llvm::ArrayRef<mlir::Value>());
rewriter.replaceOp(ifOp, continueBlock->getArguments());
return success();
}
};
/// Convert `fir.iter_while` to control-flow.
class CfgIterWhileConv : public mlir::OpRewritePattern<fir::IterWhileOp> {
public:
using OpRewritePattern::OpRewritePattern;
CfgIterWhileConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce,
bool setNSW)
: mlir::OpRewritePattern<fir::IterWhileOp>(ctx), setNSW(setNSW) {}
llvm::LogicalResult
matchAndRewrite(fir::IterWhileOp whileOp,
mlir::PatternRewriter &rewriter) const override {
auto loc = whileOp.getLoc();
mlir::arith::IntegerOverflowFlags flags{};
if (setNSW)
flags = bitEnumSet(flags, mlir::arith::IntegerOverflowFlags::nsw);
auto iofAttr = mlir::arith::IntegerOverflowFlagsAttr::get(
rewriter.getContext(), flags);
// Start by splitting the block containing the 'fir.do_loop' into two parts.
// The part before will get the init code, the part after will be the end
// point.
auto *initBlock = rewriter.getInsertionBlock();
auto initPosition = rewriter.getInsertionPoint();
auto *endBlock = rewriter.splitBlock(initBlock, initPosition);
// Use the first block of the loop body as the condition block since it is
// the block that has the induction variable and loop-carried values as
// arguments. Split out all operations from the first block into a new
// block. Move all body blocks from the loop body region to the region
// containing the loop.
auto *conditionBlock = &whileOp.getRegion().front();
auto *firstBodyBlock =
rewriter.splitBlock(conditionBlock, conditionBlock->begin());
auto *lastBodyBlock = &whileOp.getRegion().back();
rewriter.inlineRegionBefore(whileOp.getRegion(), endBlock);
auto iv = conditionBlock->getArgument(0);
auto iterateVar = conditionBlock->getArgument(1);
// Append the induction variable stepping logic to the last body block and
// branch back to the condition block. Loop-carried values are taken from
// operands of the loop terminator.
auto *terminator = lastBodyBlock->getTerminator();
rewriter.setInsertionPointToEnd(lastBodyBlock);
auto step = whileOp.getStep();
mlir::Value stepped =
rewriter.create<mlir::arith::AddIOp>(loc, iv, step, iofAttr);
assert(stepped && "must be a Value");
llvm::SmallVector<mlir::Value> loopCarried;
loopCarried.push_back(stepped);
auto begin = whileOp.getFinalValue()
? std::next(terminator->operand_begin())
: terminator->operand_begin();
loopCarried.append(begin, terminator->operand_end());
rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, loopCarried);
rewriter.eraseOp(terminator);
// Compute loop bounds before branching to the condition.
rewriter.setInsertionPointToEnd(initBlock);
auto lowerBound = whileOp.getLowerBound();
auto upperBound = whileOp.getUpperBound();
assert(lowerBound && upperBound && "must be a Value");
// The initial values of loop-carried values is obtained from the operands
// of the loop operation.
llvm::SmallVector<mlir::Value> destOperands;
destOperands.push_back(lowerBound);
auto iterOperands = whileOp.getIterOperands();
destOperands.append(iterOperands.begin(), iterOperands.end());
rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, destOperands);
// With the body block done, we can fill in the condition block.
rewriter.setInsertionPointToEnd(conditionBlock);
// The comparison depends on the sign of the step value. We fully expect
// this expression to be folded by the optimizer or LLVM. This expression
// is written this way so that `step == 0` always returns `false`.
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
auto compl0 = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, zero, step);
auto compl1 = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::sle, iv, upperBound);
auto compl2 = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, step, zero);
auto compl3 = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::sle, upperBound, iv);
auto cmp0 = rewriter.create<mlir::arith::AndIOp>(loc, compl0, compl1);
auto cmp1 = rewriter.create<mlir::arith::AndIOp>(loc, compl2, compl3);
auto cmp2 = rewriter.create<mlir::arith::OrIOp>(loc, cmp0, cmp1);
// Remember to AND in the early-exit bool.
auto comparison =
rewriter.create<mlir::arith::AndIOp>(loc, iterateVar, cmp2);
rewriter.create<mlir::cf::CondBranchOp>(
loc, comparison, firstBodyBlock, llvm::ArrayRef<mlir::Value>(),
endBlock, llvm::ArrayRef<mlir::Value>());
// The result of the loop operation is the values of the condition block
// arguments except the induction variable on the last iteration.
auto args = whileOp.getFinalValue()
? conditionBlock->getArguments()
: conditionBlock->getArguments().drop_front();
rewriter.replaceOp(whileOp, args);
return success();
}
private:
bool setNSW;
};
/// Convert FIR structured control flow ops to CFG ops.
class CfgConversion : public fir::impl::CFGConversionBase<CfgConversion> {
public:
using CFGConversionBase<CfgConversion>::CFGConversionBase;
CfgConversion(bool setNSW) { this->setNSW = setNSW; }
void runOnOperation() override {
auto *context = &this->getContext();
mlir::RewritePatternSet patterns(context);
fir::populateCfgConversionRewrites(patterns, this->forceLoopToExecuteOnce,
this->setNSW);
mlir::ConversionTarget target(*context);
target.addLegalDialect<mlir::affine::AffineDialect,
mlir::cf::ControlFlowDialect, FIROpsDialect,
mlir::func::FuncDialect>();
// apply the patterns
target.addIllegalOp<ResultOp, DoLoopOp, IfOp, IterWhileOp>();
target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
if (mlir::failed(mlir::applyPartialConversion(this->getOperation(), target,
std::move(patterns)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"error in converting to CFG\n");
this->signalPassFailure();
}
}
};
} // namespace
/// Expose conversion rewriters to other passes
void fir::populateCfgConversionRewrites(mlir::RewritePatternSet &patterns,
bool forceLoopToExecuteOnce,
bool setNSW) {
patterns.insert<CfgLoopConv, CfgIfConv, CfgIterWhileConv>(
patterns.getContext(), forceLoopToExecuteOnce, setNSW);
}
std::unique_ptr<mlir::Pass> fir::createCFGConversionPassWithNSW() {
return std::make_unique<CfgConversion>(true);
}