//===-- TargetRewrite.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Target rewrite: rewriting of ops to make target-specific lowerings manifest.
// LLVM expects different lowering idioms to be used for distinct target
// triples. These distinctions are handled by this pass.
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/CodeGen/CodeGen.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/CodeGen/Target.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include <optional>
namespace fir {
#define GEN_PASS_DEF_TARGETREWRITEPASS
#include "flang/Optimizer/CodeGen/CGPasses.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-target-rewrite"
namespace {
/// Fixups for updating a FuncOp's arguments and return values.
struct FixupTy {
enum class Codes {
ArgumentAsLoad,
ArgumentType,
CharPair,
ReturnAsStore,
ReturnType,
Split,
Trailing,
TrailingCharProc
};
FixupTy(Codes code, std::size_t index, std::size_t second = 0)
: code{code}, index{index}, second{second} {}
FixupTy(Codes code, std::size_t index,
std::function<void(mlir::func::FuncOp)> &&finalizer)
: code{code}, index{index}, finalizer{finalizer} {}
FixupTy(Codes code, std::size_t index, std::size_t second,
std::function<void(mlir::func::FuncOp)> &&finalizer)
: code{code}, index{index}, second{second}, finalizer{finalizer} {}
Codes code;
std::size_t index;
std::size_t second{};
std::optional<std::function<void(mlir::func::FuncOp)>> finalizer{};
}; // namespace
/// Target-specific rewriting of the FIR. This is a prerequisite pass to code
/// generation that traverses the FIR and modifies types and operations to a
/// form that is appropriate for the specific target. LLVM IR has specific
/// idioms that are used for distinct target processor and ABI combinations.
class TargetRewrite : public fir::impl::TargetRewritePassBase<TargetRewrite> {
public:
using TargetRewritePassBase<TargetRewrite>::TargetRewritePassBase;
void runOnOperation() override final {
auto &context = getContext();
mlir::OpBuilder rewriter(&context);
auto mod = getModule();
if (!forcedTargetTriple.empty())
fir::setTargetTriple(mod, forcedTargetTriple);
if (!forcedTargetCPU.empty())
fir::setTargetCPU(mod, forcedTargetCPU);
if (!forcedTuneCPU.empty())
fir::setTuneCPU(mod, forcedTuneCPU);
if (!forcedTargetFeatures.empty())
fir::setTargetFeatures(mod, forcedTargetFeatures);
// TargetRewrite will require querying the type storage sizes, if it was
// not set already, create a DataLayoutSpec for the ModuleOp now.
std::optional<mlir::DataLayout> dl =
fir::support::getOrSetDataLayout(mod, /*allowDefaultLayout=*/true);
if (!dl) {
mlir::emitError(mod.getLoc(),
"module operation must carry a data layout attribute "
"to perform target ABI rewrites on FIR");
signalPassFailure();
return;
}
auto specifics = fir::CodeGenSpecifics::get(
mod.getContext(), fir::getTargetTriple(mod), fir::getKindMapping(mod),
fir::getTargetCPU(mod), fir::getTargetFeatures(mod), *dl,
fir::getTuneCPU(mod));
setMembers(specifics.get(), &rewriter, &*dl);
// Perform type conversion on signatures and call sites.
if (mlir::failed(convertTypes(mod))) {
mlir::emitError(mlir::UnknownLoc::get(&context),
"error in converting types to target abi");
signalPassFailure();
}
// Convert ops in target-specific patterns.
mod.walk([&](mlir::Operation *op) {
if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
if (!hasPortableSignature(call.getFunctionType(), op))
convertCallOp(call);
} else if (auto dispatch = mlir::dyn_cast<fir::DispatchOp>(op)) {
if (!hasPortableSignature(dispatch.getFunctionType(), op))
convertCallOp(dispatch);
} else if (auto addr = mlir::dyn_cast<fir::AddrOfOp>(op)) {
if (mlir::isa<mlir::FunctionType>(addr.getType()) &&
!hasPortableSignature(addr.getType(), op))
convertAddrOp(addr);
}
});
clearMembers();
}
mlir::ModuleOp getModule() { return getOperation(); }
template <typename A, typename B, typename C>
std::optional<std::function<mlir::Value(mlir::Operation *)>>
rewriteCallComplexResultType(
mlir::Location loc, A ty, B &newResTys,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, C &newOpers,
mlir::Value &savedStackPtr) {
if (noComplexConversion) {
newResTys.push_back(ty);
return std::nullopt;
}
auto m = specifics->complexReturnType(loc, ty.getElementType());
// Currently targets mandate COMPLEX is a single aggregate or packed
// scalar, including the sret case.
assert(m.size() == 1 && "target of complex return not supported");
auto resTy = std::get<mlir::Type>(m[0]);
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
if (attr.isSRet()) {
assert(fir::isa_ref_type(resTy) && "must be a memory reference type");
// Save the stack pointer, if it has not been saved for this call yet.
// We will need to restore it after the call, because the alloca
// needs to be deallocated.
if (!savedStackPtr)
savedStackPtr = genStackSave(loc);
mlir::Value stack =
rewriter->create<fir::AllocaOp>(loc, fir::dyn_cast_ptrEleTy(resTy));
newInTyAndAttrs.push_back(m[0]);
newOpers.push_back(stack);
return [=](mlir::Operation *) -> mlir::Value {
auto memTy = fir::ReferenceType::get(ty);
auto cast = rewriter->create<fir::ConvertOp>(loc, memTy, stack);
return rewriter->create<fir::LoadOp>(loc, cast);
};
}
newResTys.push_back(resTy);
return [=, &savedStackPtr](mlir::Operation *call) -> mlir::Value {
// We are going to generate an alloca, so save the stack pointer.
if (!savedStackPtr)
savedStackPtr = genStackSave(loc);
return this->convertValueInMemory(loc, call->getResult(0), ty,
/*inputMayBeBigger=*/true);
};
}
void passArgumentOnStackOrWithNewType(
mlir::Location loc, fir::CodeGenSpecifics::TypeAndAttr newTypeAndAttr,
mlir::Type oldType, mlir::Value oper,
llvm::SmallVectorImpl<mlir::Value> &newOpers,
mlir::Value &savedStackPtr) {
auto resTy = std::get<mlir::Type>(newTypeAndAttr);
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(newTypeAndAttr);
// We are going to generate an alloca, so save the stack pointer.
if (!savedStackPtr)
savedStackPtr = genStackSave(loc);
if (attr.isByVal()) {
mlir::Value mem = rewriter->create<fir::AllocaOp>(loc, oldType);
rewriter->create<fir::StoreOp>(loc, oper, mem);
if (mem.getType() != resTy)
mem = rewriter->create<fir::ConvertOp>(loc, resTy, mem);
newOpers.push_back(mem);
} else {
mlir::Value bitcast =
convertValueInMemory(loc, oper, resTy, /*inputMayBeBigger=*/false);
newOpers.push_back(bitcast);
}
}
// Do a bitcast (convert a value via its memory representation).
// The input and output types may have different storage sizes,
// "inputMayBeBigger" should be set to indicate which of the input or
// output type may be bigger in order for the load/store to be safe.
// The mismatch comes from the fact that the LLVM register used for passing
// may be bigger than the value being passed (e.g., passing
// a `!fir.type<t{fir.array<3xi8>}>` into an i32 LLVM register).
mlir::Value convertValueInMemory(mlir::Location loc, mlir::Value value,
mlir::Type newType, bool inputMayBeBigger) {
if (inputMayBeBigger) {
auto newRefTy = fir::ReferenceType::get(newType);
auto mem = rewriter->create<fir::AllocaOp>(loc, value.getType());
rewriter->create<fir::StoreOp>(loc, value, mem);
auto cast = rewriter->create<fir::ConvertOp>(loc, newRefTy, mem);
return rewriter->create<fir::LoadOp>(loc, cast);
} else {
auto oldRefTy = fir::ReferenceType::get(value.getType());
auto mem = rewriter->create<fir::AllocaOp>(loc, newType);
auto cast = rewriter->create<fir::ConvertOp>(loc, oldRefTy, mem);
rewriter->create<fir::StoreOp>(loc, value, cast);
return rewriter->create<fir::LoadOp>(loc, mem);
}
}
void passSplitArgument(mlir::Location loc,
fir::CodeGenSpecifics::Marshalling splitArgs,
mlir::Type oldType, mlir::Value oper,
llvm::SmallVectorImpl<mlir::Value> &newOpers,
mlir::Value &savedStackPtr) {
// COMPLEX or struct argument split into separate arguments
if (!fir::isa_complex(oldType)) {
// Cast original operand to a tuple of the new arguments
// via memory.
llvm::SmallVector<mlir::Type> partTypes;
for (auto argPart : splitArgs)
partTypes.push_back(std::get<mlir::Type>(argPart));
mlir::Type tupleType =
mlir::TupleType::get(oldType.getContext(), partTypes);
if (!savedStackPtr)
savedStackPtr = genStackSave(loc);
oper = convertValueInMemory(loc, oper, tupleType,
/*inputMayBeBigger=*/false);
}
auto iTy = rewriter->getIntegerType(32);
for (auto e : llvm::enumerate(splitArgs)) {
auto &tup = e.value();
auto ty = std::get<mlir::Type>(tup);
auto index = e.index();
auto idx = rewriter->getIntegerAttr(iTy, index);
auto val = rewriter->create<fir::ExtractValueOp>(
loc, ty, oper, rewriter->getArrayAttr(idx));
newOpers.push_back(val);
}
}
void rewriteCallOperands(
mlir::Location loc, fir::CodeGenSpecifics::Marshalling passArgAs,
mlir::Type originalArgTy, mlir::Value oper,
llvm::SmallVectorImpl<mlir::Value> &newOpers, mlir::Value &savedStackPtr,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
if (passArgAs.size() == 1) {
// COMPLEX or derived type is passed as a single argument.
passArgumentOnStackOrWithNewType(loc, passArgAs[0], originalArgTy, oper,
newOpers, savedStackPtr);
} else {
// COMPLEX or derived type is split into separate arguments
passSplitArgument(loc, passArgAs, originalArgTy, oper, newOpers,
savedStackPtr);
}
newInTyAndAttrs.insert(newInTyAndAttrs.end(), passArgAs.begin(),
passArgAs.end());
}
template <typename CPLX>
void rewriteCallComplexInputType(
mlir::Location loc, CPLX ty, mlir::Value oper,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
llvm::SmallVectorImpl<mlir::Value> &newOpers,
mlir::Value &savedStackPtr) {
if (noComplexConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(ty));
newOpers.push_back(oper);
return;
}
auto m = specifics->complexArgumentType(loc, ty.getElementType());
rewriteCallOperands(loc, m, ty, oper, newOpers, savedStackPtr,
newInTyAndAttrs);
}
void rewriteCallStructInputType(
mlir::Location loc, fir::RecordType recTy, mlir::Value oper,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
llvm::SmallVectorImpl<mlir::Value> &newOpers,
mlir::Value &savedStackPtr) {
if (noStructConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy));
newOpers.push_back(oper);
return;
}
auto structArgs =
specifics->structArgumentType(loc, recTy, newInTyAndAttrs);
rewriteCallOperands(loc, structArgs, recTy, oper, newOpers, savedStackPtr,
newInTyAndAttrs);
}
static bool hasByValOrSRetArgs(
const fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
return llvm::any_of(newInTyAndAttrs, [](auto arg) {
const auto &attr = std::get<fir::CodeGenSpecifics::Attributes>(arg);
return attr.isByVal() || attr.isSRet();
});
}
// Convert fir.call and fir.dispatch Ops.
template <typename A>
void convertCallOp(A callOp) {
auto fnTy = callOp.getFunctionType();
auto loc = callOp.getLoc();
rewriter->setInsertionPoint(callOp);
llvm::SmallVector<mlir::Type> newResTys;
fir::CodeGenSpecifics::Marshalling newInTyAndAttrs;
llvm::SmallVector<mlir::Value> newOpers;
mlir::Value savedStackPtr = nullptr;
// If the call is indirect, the first argument must still be the function
// to call.
int dropFront = 0;
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
if (!callOp.getCallee()) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(fnTy.getInput(0)));
newOpers.push_back(callOp.getOperand(0));
dropFront = 1;
}
} else {
dropFront = 1; // First operand is the polymorphic object.
}
// Determine the rewrite function, `wrap`, for the result value.
std::optional<std::function<mlir::Value(mlir::Operation *)>> wrap;
if (fnTy.getResults().size() == 1) {
mlir::Type ty = fnTy.getResult(0);
llvm::TypeSwitch<mlir::Type>(ty)
.template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
wrap = rewriteCallComplexResultType(loc, cmplx, newResTys,
newInTyAndAttrs, newOpers,
savedStackPtr);
})
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
wrap = rewriteCallComplexResultType(loc, cmplx, newResTys,
newInTyAndAttrs, newOpers,
savedStackPtr);
})
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
} else if (fnTy.getResults().size() > 1) {
TODO(loc, "multiple results not supported yet");
}
llvm::SmallVector<mlir::Type> trailingInTys;
llvm::SmallVector<mlir::Value> trailingOpers;
unsigned passArgShift = 0;
for (auto e : llvm::enumerate(
llvm::zip(fnTy.getInputs().drop_front(dropFront),
callOp.getOperands().drop_front(dropFront)))) {
mlir::Type ty = std::get<0>(e.value());
mlir::Value oper = std::get<1>(e.value());
unsigned index = e.index();
llvm::TypeSwitch<mlir::Type>(ty)
.template Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
bool sret;
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
if (noCharacterConversion) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(boxTy));
newOpers.push_back(oper);
return;
}
sret = callOp.getCallee() &&
functionArgIsSRet(
index, getModule().lookupSymbol<mlir::func::FuncOp>(
*callOp.getCallee()));
} else {
// TODO: dispatch case; how do we put arguments on a call?
// We cannot put both an sret and the dispatch object first.
sret = false;
TODO(loc, "dispatch + sret not supported yet");
}
auto m = specifics->boxcharArgumentType(boxTy.getEleTy(), sret);
auto unbox = rewriter->create<fir::UnboxCharOp>(
loc, std::get<mlir::Type>(m[0]), std::get<mlir::Type>(m[1]),
oper);
// unboxed CHARACTER arguments
for (auto e : llvm::enumerate(m)) {
unsigned idx = e.index();
auto attr =
std::get<fir::CodeGenSpecifics::Attributes>(e.value());
auto argTy = std::get<mlir::Type>(e.value());
if (attr.isAppend()) {
trailingInTys.push_back(argTy);
trailingOpers.push_back(unbox.getResult(idx));
} else {
newInTyAndAttrs.push_back(e.value());
newOpers.push_back(unbox.getResult(idx));
}
}
})
.template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
rewriteCallComplexInputType(loc, cmplx, oper, newInTyAndAttrs,
newOpers, savedStackPtr);
})
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
rewriteCallComplexInputType(loc, cmplx, oper, newInTyAndAttrs,
newOpers, savedStackPtr);
})
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
rewriteCallStructInputType(loc, recTy, oper, newInTyAndAttrs,
newOpers, savedStackPtr);
})
.template Case<mlir::TupleType>([&](mlir::TupleType tuple) {
if (fir::isCharacterProcedureTuple(tuple)) {
mlir::ModuleOp module = getModule();
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
if (callOp.getCallee()) {
llvm::StringRef charProcAttr =
fir::getCharacterProcedureDummyAttrName();
// The charProcAttr attribute is only used as a safety to
// confirm that this is a dummy procedure and should be split.
// It cannot be used to match because attributes are not
// available in case of indirect calls.
auto funcOp = module.lookupSymbol<mlir::func::FuncOp>(
*callOp.getCallee());
if (funcOp &&
!funcOp.template getArgAttrOfType<mlir::UnitAttr>(
index, charProcAttr))
mlir::emitError(loc, "tuple argument will be split even "
"though it does not have the `" +
charProcAttr + "` attribute");
}
}
mlir::Type funcPointerType = tuple.getType(0);
mlir::Type lenType = tuple.getType(1);
fir::FirOpBuilder builder(*rewriter, module);
auto [funcPointer, len] =
fir::factory::extractCharacterProcedureTuple(builder, loc,
oper);
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(funcPointerType));
newOpers.push_back(funcPointer);
trailingInTys.push_back(lenType);
trailingOpers.push_back(len);
} else {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(tuple));
newOpers.push_back(oper);
}
})
.Default([&](mlir::Type ty) {
if constexpr (std::is_same_v<std::decay_t<A>, fir::DispatchOp>) {
if (callOp.getPassArgPos() && *callOp.getPassArgPos() == index)
passArgShift = newOpers.size() - *callOp.getPassArgPos();
}
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(ty));
newOpers.push_back(oper);
});
}
llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs);
newInTypes.insert(newInTypes.end(), trailingInTys.begin(),
trailingInTys.end());
newOpers.insert(newOpers.end(), trailingOpers.begin(), trailingOpers.end());
llvm::SmallVector<mlir::Value, 1> newCallResults;
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
fir::CallOp newCall;
if (callOp.getCallee()) {
newCall =
rewriter->create<A>(loc, *callOp.getCallee(), newResTys, newOpers);
} else {
// TODO: llvm dialect must be updated to propagate argument on
// attributes for indirect calls. See:
// https://discourse.llvm.org/t/should-llvm-callop-be-able-to-carry-argument-attributes-for-indirect-calls/75431
if (hasByValOrSRetArgs(newInTyAndAttrs))
TODO(loc,
"passing argument or result on the stack in indirect calls");
newOpers[0].setType(mlir::FunctionType::get(
callOp.getContext(),
mlir::TypeRange{newInTypes}.drop_front(dropFront), newResTys));
newCall = rewriter->create<A>(loc, newResTys, newOpers);
}
LLVM_DEBUG(llvm::dbgs() << "replacing call with " << newCall << '\n');
if (wrap)
newCallResults.push_back((*wrap)(newCall.getOperation()));
else
newCallResults.append(newCall.result_begin(), newCall.result_end());
} else {
fir::DispatchOp dispatchOp = rewriter->create<A>(
loc, newResTys, rewriter->getStringAttr(callOp.getMethod()),
callOp.getOperands()[0], newOpers,
rewriter->getI32IntegerAttr(*callOp.getPassArgPos() + passArgShift));
if (wrap)
newCallResults.push_back((*wrap)(dispatchOp.getOperation()));
else
newCallResults.append(dispatchOp.result_begin(),
dispatchOp.result_end());
}
if (newCallResults.size() <= 1) {
if (savedStackPtr) {
if (newCallResults.size() == 1) {
// We assume that all the allocas are inserted before
// the operation that defines the new call result.
rewriter->setInsertionPointAfterValue(newCallResults[0]);
} else {
// If the call does not have results, then insert
// stack restore after the original call operation.
rewriter->setInsertionPointAfter(callOp);
}
genStackRestore(loc, savedStackPtr);
}
replaceOp(callOp, newCallResults);
} else {
// The TODO is duplicated here to make sure this part
// handles the stackrestore insertion properly, if
// we add support for multiple call results.
TODO(loc, "multiple results not supported yet");
}
}
// Result type fixup for fir::ComplexType and mlir::ComplexType
template <typename A, typename B>
void lowerComplexSignatureRes(
mlir::Location loc, A cmplx, B &newResTys,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
if (noComplexConversion) {
newResTys.push_back(cmplx);
return;
}
for (auto &tup :
specifics->complexReturnType(loc, cmplx.getElementType())) {
auto argTy = std::get<mlir::Type>(tup);
if (std::get<fir::CodeGenSpecifics::Attributes>(tup).isSRet())
newInTyAndAttrs.push_back(tup);
else
newResTys.push_back(argTy);
}
}
// Argument type fixup for fir::ComplexType and mlir::ComplexType
template <typename A>
void lowerComplexSignatureArg(
mlir::Location loc, A cmplx,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
if (noComplexConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx));
} else {
auto cplxArgs =
specifics->complexArgumentType(loc, cmplx.getElementType());
newInTyAndAttrs.insert(newInTyAndAttrs.end(), cplxArgs.begin(),
cplxArgs.end());
}
}
void
lowerStructSignatureArg(mlir::Location loc, fir::RecordType recTy,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
if (noStructConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy));
return;
}
auto structArgs =
specifics->structArgumentType(loc, recTy, newInTyAndAttrs);
newInTyAndAttrs.insert(newInTyAndAttrs.end(), structArgs.begin(),
structArgs.end());
}
llvm::SmallVector<mlir::Type>
toTypeList(const fir::CodeGenSpecifics::Marshalling &marshalled) {
llvm::SmallVector<mlir::Type> typeList;
for (auto &typeAndAttr : marshalled)
typeList.emplace_back(std::get<mlir::Type>(typeAndAttr));
return typeList;
}
/// Taking the address of a function. Modify the signature as needed.
void convertAddrOp(fir::AddrOfOp addrOp) {
rewriter->setInsertionPoint(addrOp);
auto addrTy = mlir::cast<mlir::FunctionType>(addrOp.getType());
fir::CodeGenSpecifics::Marshalling newInTyAndAttrs;
llvm::SmallVector<mlir::Type> newResTys;
auto loc = addrOp.getLoc();
for (mlir::Type ty : addrTy.getResults()) {
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::ComplexType>([&](fir::ComplexType ty) {
lowerComplexSignatureRes(loc, ty, newResTys, newInTyAndAttrs);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
lowerComplexSignatureRes(loc, ty, newResTys, newInTyAndAttrs);
})
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
}
llvm::SmallVector<mlir::Type> trailingInTys;
for (mlir::Type ty : addrTy.getInputs()) {
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::BoxCharType>([&](auto box) {
if (noCharacterConversion) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(box));
} else {
for (auto &tup : specifics->boxcharArgumentType(box.getEleTy())) {
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argTy = std::get<mlir::Type>(tup);
if (attr.isAppend())
trailingInTys.push_back(argTy);
else
newInTyAndAttrs.push_back(tup);
}
}
})
.Case<fir::ComplexType>([&](fir::ComplexType ty) {
lowerComplexSignatureArg(loc, ty, newInTyAndAttrs);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
lowerComplexSignatureArg(loc, ty, newInTyAndAttrs);
})
.Case<mlir::TupleType>([&](mlir::TupleType tuple) {
if (fir::isCharacterProcedureTuple(tuple)) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0)));
trailingInTys.push_back(tuple.getType(1));
} else {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(ty));
}
})
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
lowerStructSignatureArg(loc, recTy, newInTyAndAttrs);
})
.Default([&](mlir::Type ty) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(ty));
});
}
llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs);
// append trailing input types
newInTypes.insert(newInTypes.end(), trailingInTys.begin(),
trailingInTys.end());
// replace this op with a new one with the updated signature
auto newTy = rewriter->getFunctionType(newInTypes, newResTys);
auto newOp = rewriter->create<fir::AddrOfOp>(addrOp.getLoc(), newTy,
addrOp.getSymbol());
replaceOp(addrOp, newOp.getResult());
}
/// Convert the type signatures on all the functions present in the module.
/// As the type signature is being changed, this must also update the
/// function itself to use any new arguments, etc.
llvm::LogicalResult convertTypes(mlir::ModuleOp mod) {
mlir::MLIRContext *ctx = mod->getContext();
auto targetCPU = specifics->getTargetCPU();
mlir::StringAttr targetCPUAttr =
targetCPU.empty() ? nullptr : mlir::StringAttr::get(ctx, targetCPU);
auto tuneCPU = specifics->getTuneCPU();
mlir::StringAttr tuneCPUAttr =
tuneCPU.empty() ? nullptr : mlir::StringAttr::get(ctx, tuneCPU);
auto targetFeaturesAttr = specifics->getTargetFeatures();
for (auto fn : mod.getOps<mlir::func::FuncOp>()) {
if (targetCPUAttr)
fn->setAttr("target_cpu", targetCPUAttr);
if (tuneCPUAttr)
fn->setAttr("tune_cpu", tuneCPUAttr);
if (targetFeaturesAttr)
fn->setAttr("target_features", targetFeaturesAttr);
convertSignature(fn);
}
return mlir::success();
}
// Returns true if the function should be interoperable with C.
static bool isFuncWithCCallingConvention(mlir::Operation *op) {
auto funcOp = mlir::dyn_cast<mlir::func::FuncOp>(op);
if (!funcOp)
return false;
return op->hasAttrOfType<mlir::UnitAttr>(
fir::FIROpsDialect::getFirRuntimeAttrName()) ||
op->hasAttrOfType<mlir::StringAttr>(fir::getSymbolAttrName());
}
/// If the signature does not need any special target-specific conversions,
/// then it is considered portable for any target, and this function will
/// return `true`. Otherwise, the signature is not portable and `false` is
/// returned.
bool hasPortableSignature(mlir::Type signature, mlir::Operation *op) {
assert(mlir::isa<mlir::FunctionType>(signature));
auto func = mlir::dyn_cast<mlir::FunctionType>(signature);
bool hasCCallingConv = isFuncWithCCallingConvention(op);
for (auto ty : func.getResults())
if ((mlir::isa<fir::BoxCharType>(ty) && !noCharacterConversion) ||
(fir::isa_complex(ty) && !noComplexConversion) ||
(mlir::isa<mlir::IntegerType>(ty) && hasCCallingConv)) {
LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
return false;
}
for (auto ty : func.getInputs())
if (((mlir::isa<fir::BoxCharType>(ty) ||
fir::isCharacterProcedureTuple(ty)) &&
!noCharacterConversion) ||
(fir::isa_complex(ty) && !noComplexConversion) ||
(mlir::isa<mlir::IntegerType>(ty) && hasCCallingConv) ||
(mlir::isa<fir::RecordType>(ty) && !noStructConversion)) {
LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
return false;
}
return true;
}
/// Determine if the signature has host associations. The host association
/// argument may need special target specific rewriting.
static bool hasHostAssociations(mlir::func::FuncOp func) {
std::size_t end = func.getFunctionType().getInputs().size();
for (std::size_t i = 0; i < end; ++i)
if (func.getArgAttrOfType<mlir::UnitAttr>(i, fir::getHostAssocAttrName()))
return true;
return false;
}
/// Rewrite the signatures and body of the `FuncOp`s in the module for
/// the immediately subsequent target code gen.
void convertSignature(mlir::func::FuncOp func) {
auto funcTy = mlir::cast<mlir::FunctionType>(func.getFunctionType());
if (hasPortableSignature(funcTy, func) && !hasHostAssociations(func))
return;
llvm::SmallVector<mlir::Type> newResTys;
fir::CodeGenSpecifics::Marshalling newInTyAndAttrs;
llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> savedAttrs;
llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> extraAttrs;
llvm::SmallVector<FixupTy> fixups;
llvm::SmallVector<std::pair<unsigned, mlir::NamedAttrList>, 1> resultAttrs;
// Save argument attributes in case there is a shift so we can replace them
// correctly.
for (auto e : llvm::enumerate(funcTy.getInputs())) {
unsigned index = e.index();
llvm::ArrayRef<mlir::NamedAttribute> attrs =
mlir::function_interface_impl::getArgAttrs(func, index);
for (mlir::NamedAttribute attr : attrs) {
savedAttrs.push_back({index, attr});
}
}
// Convert return value(s)
for (auto ty : funcTy.getResults())
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
if (noComplexConversion)
newResTys.push_back(cmplx);
else
doComplexReturn(func, cmplx, newResTys, newInTyAndAttrs, fixups);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
if (noComplexConversion)
newResTys.push_back(cmplx);
else
doComplexReturn(func, cmplx, newResTys, newInTyAndAttrs, fixups);
})
.Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
auto m = specifics->integerArgumentType(func.getLoc(), intTy);
assert(m.size() == 1);
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
auto retTy = std::get<mlir::Type>(m[0]);
std::size_t resId = newResTys.size();
llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName();
if (!extensionAttrName.empty() &&
isFuncWithCCallingConvention(func))
resultAttrs.emplace_back(
resId, rewriter->getNamedAttr(extensionAttrName,
rewriter->getUnitAttr()));
newResTys.push_back(retTy);
})
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
// Saved potential shift in argument. Handling of result can add arguments
// at the beginning of the function signature.
unsigned argumentShift = newInTyAndAttrs.size();
// Convert arguments
llvm::SmallVector<mlir::Type> trailingTys;
for (auto e : llvm::enumerate(funcTy.getInputs())) {
auto ty = e.value();
unsigned index = e.index();
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
if (noCharacterConversion) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(boxTy));
} else {
// Convert a CHARACTER argument type. This can involve separating
// the pointer and the LEN into two arguments and moving the LEN
// argument to the end of the arg list.
bool sret = functionArgIsSRet(index, func);
for (auto e : llvm::enumerate(specifics->boxcharArgumentType(
boxTy.getEleTy(), sret))) {
auto &tup = e.value();
auto index = e.index();
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argTy = std::get<mlir::Type>(tup);
if (attr.isAppend()) {
trailingTys.push_back(argTy);
} else {
if (sret) {
fixups.emplace_back(FixupTy::Codes::CharPair,
newInTyAndAttrs.size(), index);
} else {
fixups.emplace_back(FixupTy::Codes::Trailing,
newInTyAndAttrs.size(),
trailingTys.size());
}
newInTyAndAttrs.push_back(tup);
}
}
}
})
.Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
doComplexArg(func, cmplx, newInTyAndAttrs, fixups);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
doComplexArg(func, cmplx, newInTyAndAttrs, fixups);
})
.Case<mlir::TupleType>([&](mlir::TupleType tuple) {
if (fir::isCharacterProcedureTuple(tuple)) {
fixups.emplace_back(FixupTy::Codes::TrailingCharProc,
newInTyAndAttrs.size(), trailingTys.size());
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0)));
trailingTys.push_back(tuple.getType(1));
} else {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(ty));
}
})
.Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
auto m = specifics->integerArgumentType(func.getLoc(), intTy);
assert(m.size() == 1);
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
auto argNo = newInTyAndAttrs.size();
llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName();
if (!extensionAttrName.empty() &&
isFuncWithCCallingConvention(func))
fixups.emplace_back(FixupTy::Codes::ArgumentType, argNo,
[=](mlir::func::FuncOp func) {
func.setArgAttr(
argNo, extensionAttrName,
mlir::UnitAttr::get(func.getContext()));
});
newInTyAndAttrs.push_back(m[0]);
})
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
doStructArg(func, recTy, newInTyAndAttrs, fixups);
})
.Default([&](mlir::Type ty) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(ty));
});
if (func.getArgAttrOfType<mlir::UnitAttr>(index,
fir::getHostAssocAttrName())) {
extraAttrs.push_back(
{newInTyAndAttrs.size() - 1,
rewriter->getNamedAttr("llvm.nest", rewriter->getUnitAttr())});
}
}
if (!func.empty()) {
// If the function has a body, then apply the fixups to the arguments and
// return ops as required. These fixups are done in place.
auto loc = func.getLoc();
const auto fixupSize = fixups.size();
const auto oldArgTys = func.getFunctionType().getInputs();
int offset = 0;
for (std::remove_const_t<decltype(fixupSize)> i = 0; i < fixupSize; ++i) {
const auto &fixup = fixups[i];
mlir::Type fixupType =
fixup.index < newInTyAndAttrs.size()
? std::get<mlir::Type>(newInTyAndAttrs[fixup.index])
: mlir::Type{};
switch (fixup.code) {
case FixupTy::Codes::ArgumentAsLoad: {
// Argument was pass-by-value, but is now pass-by-reference and
// possibly with a different element type.
auto newArg =
func.front().insertArgument(fixup.index, fixupType, loc);
rewriter->setInsertionPointToStart(&func.front());
auto oldArgTy =
fir::ReferenceType::get(oldArgTys[fixup.index - offset]);
auto cast = rewriter->create<fir::ConvertOp>(loc, oldArgTy, newArg);
auto load = rewriter->create<fir::LoadOp>(loc, cast);
func.getArgument(fixup.index + 1).replaceAllUsesWith(load);
func.front().eraseArgument(fixup.index + 1);
} break;
case FixupTy::Codes::ArgumentType: {
// Argument is pass-by-value, but its type has likely been modified to
// suit the target ABI convention.
auto oldArgTy = oldArgTys[fixup.index - offset];
// If type did not change, keep the original argument.
if (fixupType == oldArgTy)
break;
auto newArg =
func.front().insertArgument(fixup.index, fixupType, loc);
rewriter->setInsertionPointToStart(&func.front());
mlir::Value bitcast = convertValueInMemory(loc, newArg, oldArgTy,
/*inputMayBeBigger=*/true);
func.getArgument(fixup.index + 1).replaceAllUsesWith(bitcast);
func.front().eraseArgument(fixup.index + 1);
LLVM_DEBUG(llvm::dbgs()
<< "old argument: " << oldArgTy << ", repl: " << bitcast
<< ", new argument: "
<< func.getArgument(fixup.index).getType() << '\n');
} break;
case FixupTy::Codes::CharPair: {
// The FIR boxchar argument has been split into a pair of distinct
// arguments that are in juxtaposition to each other.
auto newArg =
func.front().insertArgument(fixup.index, fixupType, loc);
if (fixup.second == 1) {
rewriter->setInsertionPointToStart(&func.front());
auto boxTy = oldArgTys[fixup.index - offset - fixup.second];
auto box = rewriter->create<fir::EmboxCharOp>(
loc, boxTy, func.front().getArgument(fixup.index - 1), newArg);
func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
func.front().eraseArgument(fixup.index + 1);
offset++;
}
} break;
case FixupTy::Codes::ReturnAsStore: {
// The value being returned is now being returned in memory (callee
// stack space) through a hidden reference argument.
auto newArg =
func.front().insertArgument(fixup.index, fixupType, loc);
offset++;
func.walk([&](mlir::func::ReturnOp ret) {
rewriter->setInsertionPoint(ret);
auto oldOper = ret.getOperand(0);
auto oldOperTy = fir::ReferenceType::get(oldOper.getType());
auto cast =
rewriter->create<fir::ConvertOp>(loc, oldOperTy, newArg);
rewriter->create<fir::StoreOp>(loc, oldOper, cast);
rewriter->create<mlir::func::ReturnOp>(loc);
ret.erase();
});
} break;
case FixupTy::Codes::ReturnType: {
// The function is still returning a value, but its type has likely
// changed to suit the target ABI convention.
func.walk([&](mlir::func::ReturnOp ret) {
rewriter->setInsertionPoint(ret);
auto oldOper = ret.getOperand(0);
mlir::Value bitcast =
convertValueInMemory(loc, oldOper, newResTys[fixup.index],
/*inputMayBeBigger=*/false);
rewriter->create<mlir::func::ReturnOp>(loc, bitcast);
ret.erase();
});
} break;
case FixupTy::Codes::Split: {
// The FIR argument has been split into a pair of distinct arguments
// that are in juxtaposition to each other. (For COMPLEX value or
// derived type passed with VALUE in BIND(C) context).
auto newArg =
func.front().insertArgument(fixup.index, fixupType, loc);
if (fixup.second == 1) {
rewriter->setInsertionPointToStart(&func.front());
mlir::Value firstArg = func.front().getArgument(fixup.index - 1);
mlir::Type originalTy =
oldArgTys[fixup.index - offset - fixup.second];
mlir::Type pairTy = originalTy;
if (!fir::isa_complex(originalTy)) {
pairTy = mlir::TupleType::get(
originalTy.getContext(),
mlir::TypeRange{firstArg.getType(), newArg.getType()});
}
auto undef = rewriter->create<fir::UndefOp>(loc, pairTy);
auto iTy = rewriter->getIntegerType(32);
auto zero = rewriter->getIntegerAttr(iTy, 0);
auto one = rewriter->getIntegerAttr(iTy, 1);
mlir::Value pair1 = rewriter->create<fir::InsertValueOp>(
loc, pairTy, undef, firstArg, rewriter->getArrayAttr(zero));
mlir::Value pair = rewriter->create<fir::InsertValueOp>(
loc, pairTy, pair1, newArg, rewriter->getArrayAttr(one));
// Cast local argument tuple to original type via memory if needed.
if (pairTy != originalTy)
pair = convertValueInMemory(loc, pair, originalTy,
/*inputMayBeBigger=*/true);
func.getArgument(fixup.index + 1).replaceAllUsesWith(pair);
func.front().eraseArgument(fixup.index + 1);
offset++;
}
} break;
case FixupTy::Codes::Trailing: {
// The FIR argument has been split into a pair of distinct arguments.
// The first part of the pair appears in the original argument
// position. The second part of the pair is appended after all the
// original arguments. (Boxchar arguments.)
auto newBufArg =
func.front().insertArgument(fixup.index, fixupType, loc);
auto newLenArg =
func.front().addArgument(trailingTys[fixup.second], loc);
auto boxTy = oldArgTys[fixup.index - offset];
rewriter->setInsertionPointToStart(&func.front());
auto box = rewriter->create<fir::EmboxCharOp>(loc, boxTy, newBufArg,
newLenArg);
func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
func.front().eraseArgument(fixup.index + 1);
} break;
case FixupTy::Codes::TrailingCharProc: {
// The FIR character procedure argument tuple must be split into a
// pair of distinct arguments. The first part of the pair appears in
// the original argument position. The second part of the pair is
// appended after all the original arguments.
auto newProcPointerArg =
func.front().insertArgument(fixup.index, fixupType, loc);
auto newLenArg =
func.front().addArgument(trailingTys[fixup.second], loc);
auto tupleType = oldArgTys[fixup.index - offset];
rewriter->setInsertionPointToStart(&func.front());
fir::FirOpBuilder builder(*rewriter, getModule());
auto tuple = fir::factory::createCharacterProcedureTuple(
builder, loc, tupleType, newProcPointerArg, newLenArg);
func.getArgument(fixup.index + 1).replaceAllUsesWith(tuple);
func.front().eraseArgument(fixup.index + 1);
} break;
}
}
}
llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs);
// Set the new type and finalize the arguments, etc.
newInTypes.insert(newInTypes.end(), trailingTys.begin(), trailingTys.end());
auto newFuncTy =
mlir::FunctionType::get(func.getContext(), newInTypes, newResTys);
LLVM_DEBUG(llvm::dbgs() << "new func: " << newFuncTy << '\n');
func.setType(newFuncTy);
for (std::pair<unsigned, mlir::NamedAttribute> extraAttr : extraAttrs)
func.setArgAttr(extraAttr.first, extraAttr.second.getName(),
extraAttr.second.getValue());
for (auto [resId, resAttrList] : resultAttrs)
for (mlir::NamedAttribute resAttr : resAttrList)
func.setResultAttr(resId, resAttr.getName(), resAttr.getValue());
// Replace attributes to the correct argument if there was an argument shift
// to the right.
if (argumentShift > 0) {
for (std::pair<unsigned, mlir::NamedAttribute> savedAttr : savedAttrs) {
func.removeArgAttr(savedAttr.first, savedAttr.second.getName());
func.setArgAttr(savedAttr.first + argumentShift,
savedAttr.second.getName(),
savedAttr.second.getValue());
}
}
for (auto &fixup : fixups)
if (fixup.finalizer)
(*fixup.finalizer)(func);
}
inline bool functionArgIsSRet(unsigned index, mlir::func::FuncOp func) {
if (auto attr = func.getArgAttrOfType<mlir::TypeAttr>(index, "llvm.sret"))
return true;
return false;
}
/// Convert a complex return value. This can involve converting the return
/// value to a "hidden" first argument or packing the complex into a wide
/// GPR.
template <typename A, typename B, typename C>
void doComplexReturn(mlir::func::FuncOp func, A cmplx, B &newResTys,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
C &fixups) {
if (noComplexConversion) {
newResTys.push_back(cmplx);
return;
}
auto m =
specifics->complexReturnType(func.getLoc(), cmplx.getElementType());
assert(m.size() == 1);
auto &tup = m[0];
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argTy = std::get<mlir::Type>(tup);
if (attr.isSRet()) {
unsigned argNo = newInTyAndAttrs.size();
if (auto align = attr.getAlignment())
fixups.emplace_back(
FixupTy::Codes::ReturnAsStore, argNo, [=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.sret",
mlir::TypeAttr::get(elemType));
func.setArgAttr(argNo, "llvm.align",
rewriter->getIntegerAttr(
rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(FixupTy::Codes::ReturnAsStore, argNo,
[=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.sret",
mlir::TypeAttr::get(elemType));
});
newInTyAndAttrs.push_back(tup);
return;
}
if (auto align = attr.getAlignment())
fixups.emplace_back(
FixupTy::Codes::ReturnType, newResTys.size(),
[=](mlir::func::FuncOp func) {
func.setArgAttr(
newResTys.size(), "llvm.align",
rewriter->getIntegerAttr(rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size());
newResTys.push_back(argTy);
}
template <typename FIXUPS>
void
createFuncOpArgFixups(mlir::func::FuncOp func,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
fir::CodeGenSpecifics::Marshalling &argsInTys,
FIXUPS &fixups) {
const auto fixupCode = argsInTys.size() > 1 ? FixupTy::Codes::Split
: FixupTy::Codes::ArgumentType;
for (auto e : llvm::enumerate(argsInTys)) {
auto &tup = e.value();
auto index = e.index();
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argNo = newInTyAndAttrs.size();
if (attr.isByVal()) {
if (auto align = attr.getAlignment())
fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, argNo,
[=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.byval",
mlir::TypeAttr::get(elemType));
func.setArgAttr(
argNo, "llvm.align",
rewriter->getIntegerAttr(
rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad,
newInTyAndAttrs.size(),
[=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.byval",
mlir::TypeAttr::get(elemType));
});
} else {
if (auto align = attr.getAlignment())
fixups.emplace_back(
fixupCode, argNo, index, [=](mlir::func::FuncOp func) {
func.setArgAttr(argNo, "llvm.align",
rewriter->getIntegerAttr(
rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(fixupCode, argNo, index);
}
newInTyAndAttrs.push_back(tup);
}
}
/// Convert a complex argument value. This can involve storing the value to
/// a temporary memory location or factoring the value into two distinct
/// arguments.
template <typename A, typename B>
void doComplexArg(mlir::func::FuncOp func, A cmplx,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
B &fixups) {
if (noComplexConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx));
return;
}
auto cplxArgs =
specifics->complexArgumentType(func.getLoc(), cmplx.getElementType());
createFuncOpArgFixups(func, newInTyAndAttrs, cplxArgs, fixups);
}
template <typename FIXUPS>
void doStructArg(mlir::func::FuncOp func, fir::RecordType recTy,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
FIXUPS &fixups) {
if (noStructConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy));
return;
}
auto structArgs =
specifics->structArgumentType(func.getLoc(), recTy, newInTyAndAttrs);
createFuncOpArgFixups(func, newInTyAndAttrs, structArgs, fixups);
}
private:
// Replace `op` and remove it.
void replaceOp(mlir::Operation *op, mlir::ValueRange newValues) {
op->replaceAllUsesWith(newValues);
op->dropAllReferences();
op->erase();
}
inline void setMembers(fir::CodeGenSpecifics *s, mlir::OpBuilder *r,
mlir::DataLayout *dl) {
specifics = s;
rewriter = r;
dataLayout = dl;
}
inline void clearMembers() { setMembers(nullptr, nullptr, nullptr); }
// Inserts a call to llvm.stacksave at the current insertion
// point and the given location. Returns the call's result Value.
inline mlir::Value genStackSave(mlir::Location loc) {
fir::FirOpBuilder builder(*rewriter, getModule());
return builder.genStackSave(loc);
}
// Inserts a call to llvm.stackrestore at the current insertion
// point and the given location and argument.
inline void genStackRestore(mlir::Location loc, mlir::Value sp) {
fir::FirOpBuilder builder(*rewriter, getModule());
return builder.genStackRestore(loc, sp);
}
fir::CodeGenSpecifics *specifics = nullptr;
mlir::OpBuilder *rewriter = nullptr;
mlir::DataLayout *dataLayout = nullptr;
};
} // namespace