//===-- CodeGen.cpp -- bridge to lower to LLVM ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/CodeGen/CodeGen.h"
#include "flang/Optimizer/CodeGen/CGOps.h"
#include "flang/Optimizer/CodeGen/CodeGenOpenMP.h"
#include "flang/Optimizer/CodeGen/FIROpPatterns.h"
#include "flang/Optimizer/CodeGen/TypeConverter.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Support/TypeCode.h"
#include "flang/Optimizer/Support/Utils.h"
#include "flang/Runtime/allocator-registry.h"
#include "flang/Runtime/descriptor.h"
#include "flang/Semantics/runtime-type-info.h"
#include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h"
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/ComplexToLLVM/ComplexToLLVM.h"
#include "mlir/Conversion/ComplexToStandard/ComplexToStandard.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/MathToFuncs/MathToFuncs.h"
#include "mlir/Conversion/MathToLLVM/MathToLLVM.h"
#include "mlir/Conversion/MathToLibm/MathToLibm.h"
#include "mlir/Conversion/MathToROCDL/MathToROCDL.h"
#include "mlir/Conversion/OpenMPToLLVM/ConvertOpenMPToLLVM.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/LLVMIR/LLVMAttrs.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/Transforms/AddComdats.h"
#include "mlir/Dialect/OpenACC/OpenACC.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Target/LLVMIR/Import.h"
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/TypeSwitch.h"
namespace fir {
#define GEN_PASS_DEF_FIRTOLLVMLOWERING
#include "flang/Optimizer/CodeGen/CGPasses.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-codegen"
// TODO: This should really be recovered from the specified target.
static constexpr unsigned defaultAlign = 8;
/// `fir.box` attribute values as defined for CFI_attribute_t in
/// flang/ISO_Fortran_binding.h.
static constexpr unsigned kAttrPointer = CFI_attribute_pointer;
static constexpr unsigned kAttrAllocatable = CFI_attribute_allocatable;
static inline mlir::Type getLlvmPtrType(mlir::MLIRContext *context,
unsigned addressSpace = 0) {
return mlir::LLVM::LLVMPointerType::get(context, addressSpace);
}
static inline mlir::Type getI8Type(mlir::MLIRContext *context) {
return mlir::IntegerType::get(context, 8);
}
static mlir::LLVM::ConstantOp
genConstantIndex(mlir::Location loc, mlir::Type ity,
mlir::ConversionPatternRewriter &rewriter,
std::int64_t offset) {
auto cattr = rewriter.getI64IntegerAttr(offset);
return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr);
}
static mlir::Block *createBlock(mlir::ConversionPatternRewriter &rewriter,
mlir::Block *insertBefore) {
assert(insertBefore && "expected valid insertion block");
return rewriter.createBlock(insertBefore->getParent(),
mlir::Region::iterator(insertBefore));
}
/// Extract constant from a value that must be the result of one of the
/// ConstantOp operations.
static int64_t getConstantIntValue(mlir::Value val) {
if (auto constVal = fir::getIntIfConstant(val))
return *constVal;
fir::emitFatalError(val.getLoc(), "must be a constant");
}
static unsigned getTypeDescFieldId(mlir::Type ty) {
auto isArray = mlir::isa<fir::SequenceType>(fir::dyn_cast_ptrOrBoxEleTy(ty));
return isArray ? kOptTypePtrPosInBox : kDimsPosInBox;
}
static unsigned getLenParamFieldId(mlir::Type ty) {
return getTypeDescFieldId(ty) + 1;
}
static llvm::SmallVector<mlir::NamedAttribute>
addLLVMOpBundleAttrs(mlir::ConversionPatternRewriter &rewriter,
llvm::ArrayRef<mlir::NamedAttribute> attrs,
int32_t numCallOperands) {
llvm::SmallVector<mlir::NamedAttribute> newAttrs;
newAttrs.reserve(attrs.size() + 2);
for (mlir::NamedAttribute attr : attrs) {
if (attr.getName() != "operandSegmentSizes")
newAttrs.push_back(attr);
}
newAttrs.push_back(rewriter.getNamedAttr(
"operandSegmentSizes",
rewriter.getDenseI32ArrayAttr({numCallOperands, 0})));
newAttrs.push_back(rewriter.getNamedAttr("op_bundle_sizes",
rewriter.getDenseI32ArrayAttr({})));
return newAttrs;
}
namespace {
/// Lower `fir.address_of` operation to `llvm.address_of` operation.
struct AddrOfOpConversion : public fir::FIROpConversion<fir::AddrOfOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::AddrOfOp addr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto ty = convertType(addr.getType());
rewriter.replaceOpWithNewOp<mlir::LLVM::AddressOfOp>(
addr, ty, addr.getSymbol().getRootReference().getValue());
return mlir::success();
}
};
} // namespace
/// Lookup the function to compute the memory size of this parametric derived
/// type. The size of the object may depend on the LEN type parameters of the
/// derived type.
static mlir::LLVM::LLVMFuncOp
getDependentTypeMemSizeFn(fir::RecordType recTy, fir::AllocaOp op,
mlir::ConversionPatternRewriter &rewriter) {
auto module = op->getParentOfType<mlir::ModuleOp>();
std::string name = recTy.getName().str() + "P.mem.size";
if (auto memSizeFunc = module.lookupSymbol<mlir::LLVM::LLVMFuncOp>(name))
return memSizeFunc;
TODO(op.getLoc(), "did not find allocation function");
}
// Compute the alloc scale size (constant factors encoded in the array type).
// We do this for arrays without a constant interior or arrays of character with
// dynamic length arrays, since those are the only ones that get decayed to a
// pointer to the element type.
template <typename OP>
static mlir::Value
genAllocationScaleSize(OP op, mlir::Type ity,
mlir::ConversionPatternRewriter &rewriter) {
mlir::Location loc = op.getLoc();
mlir::Type dataTy = op.getInType();
auto seqTy = mlir::dyn_cast<fir::SequenceType>(dataTy);
fir::SequenceType::Extent constSize = 1;
if (seqTy) {
int constRows = seqTy.getConstantRows();
const fir::SequenceType::ShapeRef &shape = seqTy.getShape();
if (constRows != static_cast<int>(shape.size())) {
for (auto extent : shape) {
if (constRows-- > 0)
continue;
if (extent != fir::SequenceType::getUnknownExtent())
constSize *= extent;
}
}
}
if (constSize != 1) {
mlir::Value constVal{
genConstantIndex(loc, ity, rewriter, constSize).getResult()};
return constVal;
}
return nullptr;
}
namespace {
struct DeclareOpConversion : public fir::FIROpConversion<fir::cg::XDeclareOp> {
public:
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::cg::XDeclareOp declareOp, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto memRef = adaptor.getOperands()[0];
if (auto fusedLoc = mlir::dyn_cast<mlir::FusedLoc>(declareOp.getLoc())) {
if (auto varAttr =
mlir::dyn_cast_or_null<mlir::LLVM::DILocalVariableAttr>(
fusedLoc.getMetadata())) {
rewriter.create<mlir::LLVM::DbgDeclareOp>(memRef.getLoc(), memRef,
varAttr, nullptr);
}
}
rewriter.replaceOp(declareOp, memRef);
return mlir::success();
}
};
} // namespace
namespace {
/// convert to LLVM IR dialect `alloca`
struct AllocaOpConversion : public fir::FIROpConversion<fir::AllocaOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::AllocaOp alloc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
auto loc = alloc.getLoc();
mlir::Type ity = lowerTy().indexType();
unsigned i = 0;
mlir::Value size = genConstantIndex(loc, ity, rewriter, 1).getResult();
mlir::Type firObjType = fir::unwrapRefType(alloc.getType());
mlir::Type llvmObjectType = convertObjectType(firObjType);
if (alloc.hasLenParams()) {
unsigned end = alloc.numLenParams();
llvm::SmallVector<mlir::Value> lenParams;
for (; i < end; ++i)
lenParams.push_back(operands[i]);
mlir::Type scalarType = fir::unwrapSequenceType(alloc.getInType());
if (auto chrTy = mlir::dyn_cast<fir::CharacterType>(scalarType)) {
fir::CharacterType rawCharTy = fir::CharacterType::getUnknownLen(
chrTy.getContext(), chrTy.getFKind());
llvmObjectType = convertType(rawCharTy);
assert(end == 1);
size = integerCast(loc, rewriter, ity, lenParams[0], /*fold=*/true);
} else if (auto recTy = mlir::dyn_cast<fir::RecordType>(scalarType)) {
mlir::LLVM::LLVMFuncOp memSizeFn =
getDependentTypeMemSizeFn(recTy, alloc, rewriter);
if (!memSizeFn)
emitError(loc, "did not find allocation function");
mlir::NamedAttribute attr = rewriter.getNamedAttr(
"callee", mlir::SymbolRefAttr::get(memSizeFn));
auto call = rewriter.create<mlir::LLVM::CallOp>(
loc, ity, lenParams,
addLLVMOpBundleAttrs(rewriter, {attr}, lenParams.size()));
size = call.getResult();
llvmObjectType = ::getI8Type(alloc.getContext());
} else {
return emitError(loc, "unexpected type ")
<< scalarType << " with type parameters";
}
}
if (auto scaleSize = genAllocationScaleSize(alloc, ity, rewriter))
size =
rewriter.createOrFold<mlir::LLVM::MulOp>(loc, ity, size, scaleSize);
if (alloc.hasShapeOperands()) {
unsigned end = operands.size();
for (; i < end; ++i)
size = rewriter.createOrFold<mlir::LLVM::MulOp>(
loc, ity, size,
integerCast(loc, rewriter, ity, operands[i], /*fold=*/true));
}
unsigned allocaAs = getAllocaAddressSpace(rewriter);
unsigned programAs = getProgramAddressSpace(rewriter);
if (mlir::isa<mlir::LLVM::ConstantOp>(size.getDefiningOp())) {
// Set the Block in which the llvm alloca should be inserted.
mlir::Operation *parentOp = rewriter.getInsertionBlock()->getParentOp();
mlir::Region *parentRegion = rewriter.getInsertionBlock()->getParent();
mlir::Block *insertBlock =
getBlockForAllocaInsert(parentOp, parentRegion);
size.getDefiningOp()->moveBefore(&insertBlock->front());
rewriter.setInsertionPointAfter(size.getDefiningOp());
}
// NOTE: we used to pass alloc->getAttrs() in the builder for non opaque
// pointers! Only propagate pinned and bindc_name to help debugging, but
// this should have no functional purpose (and passing the operand segment
// attribute like before is certainly bad).
auto llvmAlloc = rewriter.create<mlir::LLVM::AllocaOp>(
loc, ::getLlvmPtrType(alloc.getContext(), allocaAs), llvmObjectType,
size);
if (alloc.getPinned())
llvmAlloc->setDiscardableAttr(alloc.getPinnedAttrName(),
alloc.getPinnedAttr());
if (alloc.getBindcName())
llvmAlloc->setDiscardableAttr(alloc.getBindcNameAttrName(),
alloc.getBindcNameAttr());
if (allocaAs == programAs) {
rewriter.replaceOp(alloc, llvmAlloc);
} else {
// if our allocation address space, is not the same as the program address
// space, then we must emit a cast to the program address space before
// use. An example case would be on AMDGPU, where the allocation address
// space is the numeric value 5 (private), and the program address space
// is 0 (generic).
rewriter.replaceOpWithNewOp<mlir::LLVM::AddrSpaceCastOp>(
alloc, ::getLlvmPtrType(alloc.getContext(), programAs), llvmAlloc);
}
return mlir::success();
}
};
} // namespace
namespace {
/// Lower `fir.box_addr` to the sequence of operations to extract the first
/// element of the box.
struct BoxAddrOpConversion : public fir::FIROpConversion<fir::BoxAddrOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxAddrOp boxaddr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxaddr.getLoc();
if (auto argty =
mlir::dyn_cast<fir::BaseBoxType>(boxaddr.getVal().getType())) {
TypePair boxTyPair = getBoxTypePair(argty);
rewriter.replaceOp(boxaddr,
getBaseAddrFromBox(loc, boxTyPair, a, rewriter));
} else {
rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(boxaddr, a, 0);
}
return mlir::success();
}
};
/// Convert `!fir.boxchar_len` to `!llvm.extractvalue` for the 2nd part of the
/// boxchar.
struct BoxCharLenOpConversion : public fir::FIROpConversion<fir::BoxCharLenOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxCharLenOp boxCharLen, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value boxChar = adaptor.getOperands()[0];
mlir::Location loc = boxChar.getLoc();
mlir::Type returnValTy = boxCharLen.getResult().getType();
constexpr int boxcharLenIdx = 1;
auto len = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, boxChar,
boxcharLenIdx);
mlir::Value lenAfterCast = integerCast(loc, rewriter, returnValTy, len);
rewriter.replaceOp(boxCharLen, lenAfterCast);
return mlir::success();
}
};
/// Lower `fir.box_dims` to a sequence of operations to extract the requested
/// dimension information from the boxed value.
/// Result in a triple set of GEPs and loads.
struct BoxDimsOpConversion : public fir::FIROpConversion<fir::BoxDimsOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxDimsOp boxdims, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<mlir::Type, 3> resultTypes = {
convertType(boxdims.getResult(0).getType()),
convertType(boxdims.getResult(1).getType()),
convertType(boxdims.getResult(2).getType()),
};
TypePair boxTyPair = getBoxTypePair(boxdims.getVal().getType());
auto results = getDimsFromBox(boxdims.getLoc(), resultTypes, boxTyPair,
adaptor.getOperands()[0],
adaptor.getOperands()[1], rewriter);
rewriter.replaceOp(boxdims, results);
return mlir::success();
}
};
/// Lower `fir.box_elesize` to a sequence of operations ro extract the size of
/// an element in the boxed value.
struct BoxEleSizeOpConversion : public fir::FIROpConversion<fir::BoxEleSizeOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxEleSizeOp boxelesz, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxelesz.getLoc();
auto ty = convertType(boxelesz.getType());
TypePair boxTyPair = getBoxTypePair(boxelesz.getVal().getType());
auto elemSize = getElementSizeFromBox(loc, ty, boxTyPair, box, rewriter);
rewriter.replaceOp(boxelesz, elemSize);
return mlir::success();
}
};
/// Lower `fir.box_isalloc` to a sequence of operations to determine if the
/// boxed value was from an ALLOCATABLE entity.
struct BoxIsAllocOpConversion : public fir::FIROpConversion<fir::BoxIsAllocOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxIsAllocOp boxisalloc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxisalloc.getLoc();
TypePair boxTyPair = getBoxTypePair(boxisalloc.getVal().getType());
mlir::Value check =
genBoxAttributeCheck(loc, boxTyPair, box, rewriter, kAttrAllocatable);
rewriter.replaceOp(boxisalloc, check);
return mlir::success();
}
};
/// Lower `fir.box_isarray` to a sequence of operations to determine if the
/// boxed is an array.
struct BoxIsArrayOpConversion : public fir::FIROpConversion<fir::BoxIsArrayOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxIsArrayOp boxisarray, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxisarray.getLoc();
TypePair boxTyPair = getBoxTypePair(boxisarray.getVal().getType());
mlir::Value rank = getRankFromBox(loc, boxTyPair, a, rewriter);
mlir::Value c0 = genConstantIndex(loc, rank.getType(), rewriter, 0);
rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
boxisarray, mlir::LLVM::ICmpPredicate::ne, rank, c0);
return mlir::success();
}
};
/// Lower `fir.box_isptr` to a sequence of operations to determined if the
/// boxed value was from a POINTER entity.
struct BoxIsPtrOpConversion : public fir::FIROpConversion<fir::BoxIsPtrOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxIsPtrOp boxisptr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxisptr.getLoc();
TypePair boxTyPair = getBoxTypePair(boxisptr.getVal().getType());
mlir::Value check =
genBoxAttributeCheck(loc, boxTyPair, box, rewriter, kAttrPointer);
rewriter.replaceOp(boxisptr, check);
return mlir::success();
}
};
/// Lower `fir.box_rank` to the sequence of operation to extract the rank from
/// the box.
struct BoxRankOpConversion : public fir::FIROpConversion<fir::BoxRankOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxRankOp boxrank, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxrank.getLoc();
mlir::Type ty = convertType(boxrank.getType());
TypePair boxTyPair =
getBoxTypePair(fir::unwrapRefType(boxrank.getBox().getType()));
mlir::Value rank = getRankFromBox(loc, boxTyPair, a, rewriter);
mlir::Value result = integerCast(loc, rewriter, ty, rank);
rewriter.replaceOp(boxrank, result);
return mlir::success();
}
};
/// Lower `fir.boxproc_host` operation. Extracts the host pointer from the
/// boxproc.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct BoxProcHostOpConversion
: public fir::FIROpConversion<fir::BoxProcHostOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxProcHostOp boxprochost, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(boxprochost.getLoc(), "fir.boxproc_host codegen");
return mlir::failure();
}
};
/// Lower `fir.box_tdesc` to the sequence of operations to extract the type
/// descriptor from the box.
struct BoxTypeDescOpConversion
: public fir::FIROpConversion<fir::BoxTypeDescOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxTypeDescOp boxtypedesc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
TypePair boxTyPair = getBoxTypePair(boxtypedesc.getBox().getType());
auto typeDescAddr =
loadTypeDescAddress(boxtypedesc.getLoc(), boxTyPair, box, rewriter);
rewriter.replaceOp(boxtypedesc, typeDescAddr);
return mlir::success();
}
};
/// Lower `fir.box_typecode` to a sequence of operations to extract the type
/// code in the boxed value.
struct BoxTypeCodeOpConversion
: public fir::FIROpConversion<fir::BoxTypeCodeOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxTypeCodeOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = box.getLoc();
auto ty = convertType(op.getType());
TypePair boxTyPair = getBoxTypePair(op.getBox().getType());
auto typeCode =
getValueFromBox(loc, boxTyPair, box, ty, rewriter, kTypePosInBox);
rewriter.replaceOp(op, typeCode);
return mlir::success();
}
};
/// Lower `fir.string_lit` to LLVM IR dialect operation.
struct StringLitOpConversion : public fir::FIROpConversion<fir::StringLitOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::StringLitOp constop, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto ty = convertType(constop.getType());
auto attr = constop.getValue();
if (mlir::isa<mlir::StringAttr>(attr)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(constop, ty, attr);
return mlir::success();
}
auto charTy = mlir::cast<fir::CharacterType>(constop.getType());
unsigned bits = lowerTy().characterBitsize(charTy);
mlir::Type intTy = rewriter.getIntegerType(bits);
mlir::Location loc = constop.getLoc();
mlir::Value cst = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
if (auto arr = mlir::dyn_cast<mlir::DenseElementsAttr>(attr)) {
cst = rewriter.create<mlir::LLVM::ConstantOp>(loc, ty, arr);
} else if (auto arr = mlir::dyn_cast<mlir::ArrayAttr>(attr)) {
for (auto a : llvm::enumerate(arr.getValue())) {
// convert each character to a precise bitsize
auto elemAttr = mlir::IntegerAttr::get(
intTy,
mlir::cast<mlir::IntegerAttr>(a.value()).getValue().zextOrTrunc(
bits));
auto elemCst =
rewriter.create<mlir::LLVM::ConstantOp>(loc, intTy, elemAttr);
cst = rewriter.create<mlir::LLVM::InsertValueOp>(loc, cst, elemCst,
a.index());
}
} else {
return mlir::failure();
}
rewriter.replaceOp(constop, cst);
return mlir::success();
}
};
/// `fir.call` -> `llvm.call`
struct CallOpConversion : public fir::FIROpConversion<fir::CallOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::CallOp call, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<mlir::Type> resultTys;
for (auto r : call.getResults())
resultTys.push_back(convertType(r.getType()));
// Convert arith::FastMathFlagsAttr to LLVM::FastMathFlagsAttr.
mlir::arith::AttrConvertFastMathToLLVM<fir::CallOp, mlir::LLVM::CallOp>
attrConvert(call);
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
call, resultTys, adaptor.getOperands(),
addLLVMOpBundleAttrs(rewriter, attrConvert.getAttrs(),
adaptor.getOperands().size()));
return mlir::success();
}
};
} // namespace
static mlir::Type getComplexEleTy(mlir::Type complex) {
if (auto cc = mlir::dyn_cast<mlir::ComplexType>(complex))
return cc.getElementType();
return mlir::cast<fir::ComplexType>(complex).getElementType();
}
namespace {
/// Compare complex values
///
/// Per 10.1, the only comparisons available are .EQ. (oeq) and .NE. (une).
///
/// For completeness, all other comparison are done on the real component only.
struct CmpcOpConversion : public fir::FIROpConversion<fir::CmpcOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::CmpcOp cmp, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
mlir::Type resTy = convertType(cmp.getType());
mlir::Location loc = cmp.getLoc();
mlir::LLVM::FastmathFlags fmf =
mlir::arith::convertArithFastMathFlagsToLLVM(cmp.getFastmath());
mlir::LLVM::FCmpPredicate pred =
static_cast<mlir::LLVM::FCmpPredicate>(cmp.getPredicate());
auto rcp = rewriter.create<mlir::LLVM::FCmpOp>(
loc, resTy, pred,
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, operands[0], 0),
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, operands[1], 0), fmf);
auto icp = rewriter.create<mlir::LLVM::FCmpOp>(
loc, resTy, pred,
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, operands[0], 1),
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, operands[1], 1), fmf);
llvm::SmallVector<mlir::Value, 2> cp = {rcp, icp};
switch (cmp.getPredicate()) {
case mlir::arith::CmpFPredicate::OEQ: // .EQ.
rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(cmp, resTy, cp);
break;
case mlir::arith::CmpFPredicate::UNE: // .NE.
rewriter.replaceOpWithNewOp<mlir::LLVM::OrOp>(cmp, resTy, cp);
break;
default:
rewriter.replaceOp(cmp, rcp.getResult());
break;
}
return mlir::success();
}
};
/// convert value of from-type to value of to-type
struct ConvertOpConversion : public fir::FIROpConversion<fir::ConvertOp> {
using FIROpConversion::FIROpConversion;
static bool isFloatingPointTy(mlir::Type ty) {
return mlir::isa<mlir::FloatType>(ty);
}
llvm::LogicalResult
matchAndRewrite(fir::ConvertOp convert, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto fromFirTy = convert.getValue().getType();
auto toFirTy = convert.getRes().getType();
auto fromTy = convertType(fromFirTy);
auto toTy = convertType(toFirTy);
mlir::Value op0 = adaptor.getOperands()[0];
if (fromFirTy == toFirTy) {
rewriter.replaceOp(convert, op0);
return mlir::success();
}
auto loc = convert.getLoc();
auto i1Type = mlir::IntegerType::get(convert.getContext(), 1);
if (mlir::isa<fir::LogicalType>(fromFirTy) ||
mlir::isa<fir::LogicalType>(toFirTy)) {
// By specification fir::LogicalType value may be any number,
// where non-zero value represents .true. and zero value represents
// .false.
//
// integer<->logical conversion requires value normalization.
// Conversion from wide logical to narrow logical must set the result
// to non-zero iff the input is non-zero - the easiest way to implement
// it is to compare the input agains zero and set the result to
// the canonical 0/1.
// Conversion from narrow logical to wide logical may be implemented
// as a zero or sign extension of the input, but it may use value
// normalization as well.
if (!mlir::isa<mlir::IntegerType>(fromTy) ||
!mlir::isa<mlir::IntegerType>(toTy))
return mlir::emitError(loc)
<< "unsupported types for logical conversion: " << fromTy
<< " -> " << toTy;
// Do folding for constant inputs.
if (auto constVal = fir::getIntIfConstant(op0)) {
mlir::Value normVal =
genConstantIndex(loc, toTy, rewriter, *constVal ? 1 : 0);
rewriter.replaceOp(convert, normVal);
return mlir::success();
}
// If the input is i1, then we can just zero extend it, and
// the result will be normalized.
if (fromTy == i1Type) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ZExtOp>(convert, toTy, op0);
return mlir::success();
}
// Compare the input with zero.
mlir::Value zero = genConstantIndex(loc, fromTy, rewriter, 0);
auto isTrue = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::ne, op0, zero);
// Zero extend the i1 isTrue result to the required type (unless it is i1
// itself).
if (toTy != i1Type)
rewriter.replaceOpWithNewOp<mlir::LLVM::ZExtOp>(convert, toTy, isTrue);
else
rewriter.replaceOp(convert, isTrue.getResult());
return mlir::success();
}
if (fromTy == toTy) {
rewriter.replaceOp(convert, op0);
return mlir::success();
}
auto convertFpToFp = [&](mlir::Value val, unsigned fromBits,
unsigned toBits, mlir::Type toTy) -> mlir::Value {
if (fromBits == toBits) {
// TODO: Converting between two floating-point representations with the
// same bitwidth is not allowed for now.
mlir::emitError(loc,
"cannot implicitly convert between two floating-point "
"representations of the same bitwidth");
return {};
}
if (fromBits > toBits)
return rewriter.create<mlir::LLVM::FPTruncOp>(loc, toTy, val);
return rewriter.create<mlir::LLVM::FPExtOp>(loc, toTy, val);
};
// Complex to complex conversion.
if (fir::isa_complex(fromFirTy) && fir::isa_complex(toFirTy)) {
// Special case: handle the conversion of a complex such that both the
// real and imaginary parts are converted together.
auto ty = convertType(getComplexEleTy(convert.getValue().getType()));
auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, op0, 0);
auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, op0, 1);
auto nt = convertType(getComplexEleTy(convert.getRes().getType()));
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(nt);
auto rc = convertFpToFp(rp, fromBits, toBits, nt);
auto ic = convertFpToFp(ip, fromBits, toBits, nt);
auto un = rewriter.create<mlir::LLVM::UndefOp>(loc, toTy);
auto i1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, un, rc, 0);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(convert, i1, ic,
1);
return mlir::success();
}
// Floating point to floating point conversion.
if (isFloatingPointTy(fromTy)) {
if (isFloatingPointTy(toTy)) {
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
auto v = convertFpToFp(op0, fromBits, toBits, toTy);
rewriter.replaceOp(convert, v);
return mlir::success();
}
if (mlir::isa<mlir::IntegerType>(toTy)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::FPToSIOp>(convert, toTy, op0);
return mlir::success();
}
} else if (mlir::isa<mlir::IntegerType>(fromTy)) {
// Integer to integer conversion.
if (mlir::isa<mlir::IntegerType>(toTy)) {
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
assert(fromBits != toBits);
if (fromBits > toBits) {
rewriter.replaceOpWithNewOp<mlir::LLVM::TruncOp>(convert, toTy, op0);
return mlir::success();
}
if (fromFirTy == i1Type) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ZExtOp>(convert, toTy, op0);
return mlir::success();
}
rewriter.replaceOpWithNewOp<mlir::LLVM::SExtOp>(convert, toTy, op0);
return mlir::success();
}
// Integer to floating point conversion.
if (isFloatingPointTy(toTy)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::SIToFPOp>(convert, toTy, op0);
return mlir::success();
}
// Integer to pointer conversion.
if (mlir::isa<mlir::LLVM::LLVMPointerType>(toTy)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(convert, toTy, op0);
return mlir::success();
}
} else if (mlir::isa<mlir::LLVM::LLVMPointerType>(fromTy)) {
// Pointer to integer conversion.
if (mlir::isa<mlir::IntegerType>(toTy)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::PtrToIntOp>(convert, toTy, op0);
return mlir::success();
}
// Pointer to pointer conversion.
if (mlir::isa<mlir::LLVM::LLVMPointerType>(toTy)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(convert, toTy, op0);
return mlir::success();
}
}
return emitError(loc) << "cannot convert " << fromTy << " to " << toTy;
}
};
/// `fir.type_info` operation has no specific CodeGen. The operation is
/// only used to carry information during FIR to FIR passes. It may be used
/// in the future to generate the runtime type info data structures instead
/// of generating them in lowering.
struct TypeInfoOpConversion : public fir::FIROpConversion<fir::TypeInfoOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::TypeInfoOp op, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.eraseOp(op);
return mlir::success();
}
};
/// `fir.dt_entry` operation has no specific CodeGen. The operation is only used
/// to carry information during FIR to FIR passes.
struct DTEntryOpConversion : public fir::FIROpConversion<fir::DTEntryOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::DTEntryOp op, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.eraseOp(op);
return mlir::success();
}
};
/// Lower `fir.global_len` operation.
struct GlobalLenOpConversion : public fir::FIROpConversion<fir::GlobalLenOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::GlobalLenOp globalLen, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(globalLen.getLoc(), "fir.global_len codegen");
return mlir::failure();
}
};
/// Lower fir.len_param_index
struct LenParamIndexOpConversion
: public fir::FIROpConversion<fir::LenParamIndexOp> {
using FIROpConversion::FIROpConversion;
// FIXME: this should be specialized by the runtime target
llvm::LogicalResult
matchAndRewrite(fir::LenParamIndexOp lenp, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(lenp.getLoc(), "fir.len_param_index codegen");
}
};
/// Convert `!fir.emboxchar<!fir.char<KIND, ?>, #n>` into a sequence of
/// instructions that generate `!llvm.struct<(ptr<ik>, i64)>`. The 1st element
/// in this struct is a pointer. Its type is determined from `KIND`. The 2nd
/// element is the length of the character buffer (`#n`).
struct EmboxCharOpConversion : public fir::FIROpConversion<fir::EmboxCharOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::EmboxCharOp emboxChar, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
mlir::Value charBuffer = operands[0];
mlir::Value charBufferLen = operands[1];
mlir::Location loc = emboxChar.getLoc();
mlir::Type llvmStructTy = convertType(emboxChar.getType());
auto llvmStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, llvmStructTy);
mlir::Type lenTy =
mlir::cast<mlir::LLVM::LLVMStructType>(llvmStructTy).getBody()[1];
mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, charBufferLen);
mlir::Type addrTy =
mlir::cast<mlir::LLVM::LLVMStructType>(llvmStructTy).getBody()[0];
if (addrTy != charBuffer.getType())
charBuffer =
rewriter.create<mlir::LLVM::BitcastOp>(loc, addrTy, charBuffer);
auto insertBufferOp = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, llvmStruct, charBuffer, 0);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
emboxChar, insertBufferOp, lenAfterCast, 1);
return mlir::success();
}
};
} // namespace
/// Return the LLVMFuncOp corresponding to the standard malloc call.
static mlir::SymbolRefAttr
getMalloc(fir::AllocMemOp op, mlir::ConversionPatternRewriter &rewriter) {
static constexpr char mallocName[] = "malloc";
auto module = op->getParentOfType<mlir::ModuleOp>();
if (auto mallocFunc = module.lookupSymbol<mlir::LLVM::LLVMFuncOp>(mallocName))
return mlir::SymbolRefAttr::get(mallocFunc);
if (auto userMalloc = module.lookupSymbol<mlir::func::FuncOp>(mallocName))
return mlir::SymbolRefAttr::get(userMalloc);
mlir::OpBuilder moduleBuilder(
op->getParentOfType<mlir::ModuleOp>().getBodyRegion());
auto indexType = mlir::IntegerType::get(op.getContext(), 64);
auto mallocDecl = moduleBuilder.create<mlir::LLVM::LLVMFuncOp>(
op.getLoc(), mallocName,
mlir::LLVM::LLVMFunctionType::get(getLlvmPtrType(op.getContext()),
indexType,
/*isVarArg=*/false));
return mlir::SymbolRefAttr::get(mallocDecl);
}
/// Helper function for generating the LLVM IR that computes the distance
/// in bytes between adjacent elements pointed to by a pointer
/// of type \p ptrTy. The result is returned as a value of \p idxTy integer
/// type.
static mlir::Value
computeElementDistance(mlir::Location loc, mlir::Type llvmObjectType,
mlir::Type idxTy,
mlir::ConversionPatternRewriter &rewriter) {
// Note that we cannot use something like
// mlir::LLVM::getPrimitiveTypeSizeInBits() for the element type here. For
// example, it returns 10 bytes for mlir::Float80Type for targets where it
// occupies 16 bytes. Proper solution is probably to use
// mlir::DataLayout::getTypeABIAlignment(), but DataLayout is not being set
// yet (see llvm-project#57230). For the time being use the '(intptr_t)((type
// *)0 + 1)' trick for all types. The generated instructions are optimized
// into constant by the first pass of InstCombine, so it should not be a
// performance issue.
auto llvmPtrTy = ::getLlvmPtrType(llvmObjectType.getContext());
auto nullPtr = rewriter.create<mlir::LLVM::ZeroOp>(loc, llvmPtrTy);
auto gep = rewriter.create<mlir::LLVM::GEPOp>(
loc, llvmPtrTy, llvmObjectType, nullPtr,
llvm::ArrayRef<mlir::LLVM::GEPArg>{1});
return rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, gep);
}
/// Return value of the stride in bytes between adjacent elements
/// of LLVM type \p llTy. The result is returned as a value of
/// \p idxTy integer type.
static mlir::Value
genTypeStrideInBytes(mlir::Location loc, mlir::Type idxTy,
mlir::ConversionPatternRewriter &rewriter,
mlir::Type llTy) {
// Create a pointer type and use computeElementDistance().
return computeElementDistance(loc, llTy, idxTy, rewriter);
}
namespace {
/// Lower a `fir.allocmem` instruction into `llvm.call @malloc`
struct AllocMemOpConversion : public fir::FIROpConversion<fir::AllocMemOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::AllocMemOp heap, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type heapTy = heap.getType();
mlir::Location loc = heap.getLoc();
auto ity = lowerTy().indexType();
mlir::Type dataTy = fir::unwrapRefType(heapTy);
mlir::Type llvmObjectTy = convertObjectType(dataTy);
if (fir::isRecordWithTypeParameters(fir::unwrapSequenceType(dataTy)))
TODO(loc, "fir.allocmem codegen of derived type with length parameters");
mlir::Value size = genTypeSizeInBytes(loc, ity, rewriter, llvmObjectTy);
if (auto scaleSize = genAllocationScaleSize(heap, ity, rewriter))
size = rewriter.create<mlir::LLVM::MulOp>(loc, ity, size, scaleSize);
for (mlir::Value opnd : adaptor.getOperands())
size = rewriter.create<mlir::LLVM::MulOp>(
loc, ity, size, integerCast(loc, rewriter, ity, opnd));
heap->setAttr("callee", getMalloc(heap, rewriter));
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
heap, ::getLlvmPtrType(heap.getContext()), size,
addLLVMOpBundleAttrs(rewriter, heap->getAttrs(), 1));
return mlir::success();
}
/// Compute the allocation size in bytes of the element type of
/// \p llTy pointer type. The result is returned as a value of \p idxTy
/// integer type.
mlir::Value genTypeSizeInBytes(mlir::Location loc, mlir::Type idxTy,
mlir::ConversionPatternRewriter &rewriter,
mlir::Type llTy) const {
return computeElementDistance(loc, llTy, idxTy, rewriter);
}
};
} // namespace
/// Return the LLVMFuncOp corresponding to the standard free call.
static mlir::SymbolRefAttr getFree(fir::FreeMemOp op,
mlir::ConversionPatternRewriter &rewriter) {
static constexpr char freeName[] = "free";
auto module = op->getParentOfType<mlir::ModuleOp>();
// Check if free already defined in the module.
if (auto freeFunc = module.lookupSymbol<mlir::LLVM::LLVMFuncOp>(freeName))
return mlir::SymbolRefAttr::get(freeFunc);
if (auto freeDefinedByUser =
module.lookupSymbol<mlir::func::FuncOp>(freeName))
return mlir::SymbolRefAttr::get(freeDefinedByUser);
// Create llvm declaration for free.
mlir::OpBuilder moduleBuilder(module.getBodyRegion());
auto voidType = mlir::LLVM::LLVMVoidType::get(op.getContext());
auto freeDecl = moduleBuilder.create<mlir::LLVM::LLVMFuncOp>(
rewriter.getUnknownLoc(), freeName,
mlir::LLVM::LLVMFunctionType::get(voidType,
getLlvmPtrType(op.getContext()),
/*isVarArg=*/false));
return mlir::SymbolRefAttr::get(freeDecl);
}
static unsigned getDimension(mlir::LLVM::LLVMArrayType ty) {
unsigned result = 1;
for (auto eleTy =
mlir::dyn_cast<mlir::LLVM::LLVMArrayType>(ty.getElementType());
eleTy; eleTy = mlir::dyn_cast<mlir::LLVM::LLVMArrayType>(
eleTy.getElementType()))
++result;
return result;
}
namespace {
/// Lower a `fir.freemem` instruction into `llvm.call @free`
struct FreeMemOpConversion : public fir::FIROpConversion<fir::FreeMemOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::FreeMemOp freemem, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = freemem.getLoc();
freemem->setAttr("callee", getFree(freemem, rewriter));
rewriter.create<mlir::LLVM::CallOp>(
loc, mlir::TypeRange{}, mlir::ValueRange{adaptor.getHeapref()},
addLLVMOpBundleAttrs(rewriter, freemem->getAttrs(), 1));
rewriter.eraseOp(freemem);
return mlir::success();
}
};
} // namespace
// Convert subcomponent array indices from column-major to row-major ordering.
static llvm::SmallVector<mlir::Value>
convertSubcomponentIndices(mlir::Location loc, mlir::Type eleTy,
mlir::ValueRange indices,
mlir::Type *retTy = nullptr) {
llvm::SmallVector<mlir::Value> result;
llvm::SmallVector<mlir::Value> arrayIndices;
auto appendArrayIndices = [&] {
if (arrayIndices.empty())
return;
std::reverse(arrayIndices.begin(), arrayIndices.end());
result.append(arrayIndices.begin(), arrayIndices.end());
arrayIndices.clear();
};
for (mlir::Value index : indices) {
// Component indices can be field index to select a component, or array
// index, to select an element in an array component.
if (auto structTy = mlir::dyn_cast<mlir::LLVM::LLVMStructType>(eleTy)) {
std::int64_t cstIndex = getConstantIntValue(index);
assert(cstIndex < (int64_t)structTy.getBody().size() &&
"out-of-bounds struct field index");
eleTy = structTy.getBody()[cstIndex];
appendArrayIndices();
result.push_back(index);
} else if (auto arrayTy =
mlir::dyn_cast<mlir::LLVM::LLVMArrayType>(eleTy)) {
eleTy = arrayTy.getElementType();
arrayIndices.push_back(index);
} else
fir::emitFatalError(loc, "Unexpected subcomponent type");
}
appendArrayIndices();
if (retTy)
*retTy = eleTy;
return result;
}
/// Common base class for embox to descriptor conversion.
template <typename OP>
struct EmboxCommonConversion : public fir::FIROpConversion<OP> {
using fir::FIROpConversion<OP>::FIROpConversion;
using TypePair = typename fir::FIROpConversion<OP>::TypePair;
static int getCFIAttr(fir::BaseBoxType boxTy) {
auto eleTy = boxTy.getEleTy();
if (mlir::isa<fir::PointerType>(eleTy))
return CFI_attribute_pointer;
if (mlir::isa<fir::HeapType>(eleTy))
return CFI_attribute_allocatable;
return CFI_attribute_other;
}
mlir::Value getCharacterByteSize(mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter,
fir::CharacterType charTy,
mlir::ValueRange lenParams) const {
auto i64Ty = mlir::IntegerType::get(rewriter.getContext(), 64);
mlir::Value size =
genTypeStrideInBytes(loc, i64Ty, rewriter, this->convertType(charTy));
if (charTy.hasConstantLen())
return size; // Length accounted for in the genTypeStrideInBytes GEP.
// Otherwise, multiply the single character size by the length.
assert(!lenParams.empty());
auto len64 = fir::FIROpConversion<OP>::integerCast(loc, rewriter, i64Ty,
lenParams.back());
return rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, size, len64);
}
// Get the element size and CFI type code of the boxed value.
std::tuple<mlir::Value, mlir::Value> getSizeAndTypeCode(
mlir::Location loc, mlir::ConversionPatternRewriter &rewriter,
mlir::Type boxEleTy, mlir::ValueRange lenParams = {}) const {
auto i64Ty = mlir::IntegerType::get(rewriter.getContext(), 64);
if (auto eleTy = fir::dyn_cast_ptrEleTy(boxEleTy))
boxEleTy = eleTy;
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(boxEleTy))
return getSizeAndTypeCode(loc, rewriter, seqTy.getEleTy(), lenParams);
if (mlir::isa<mlir::NoneType>(
boxEleTy)) // unlimited polymorphic or assumed type
return {rewriter.create<mlir::LLVM::ConstantOp>(loc, i64Ty, 0),
this->genConstantOffset(loc, rewriter, CFI_type_other)};
mlir::Value typeCodeVal = this->genConstantOffset(
loc, rewriter,
fir::getTypeCode(boxEleTy, this->lowerTy().getKindMap()));
if (fir::isa_integer(boxEleTy) ||
mlir::dyn_cast<fir::LogicalType>(boxEleTy) || fir::isa_real(boxEleTy) ||
fir::isa_complex(boxEleTy))
return {genTypeStrideInBytes(loc, i64Ty, rewriter,
this->convertType(boxEleTy)),
typeCodeVal};
if (auto charTy = mlir::dyn_cast<fir::CharacterType>(boxEleTy))
return {getCharacterByteSize(loc, rewriter, charTy, lenParams),
typeCodeVal};
if (fir::isa_ref_type(boxEleTy)) {
auto ptrTy = ::getLlvmPtrType(rewriter.getContext());
return {genTypeStrideInBytes(loc, i64Ty, rewriter, ptrTy), typeCodeVal};
}
if (mlir::isa<fir::RecordType>(boxEleTy))
return {genTypeStrideInBytes(loc, i64Ty, rewriter,
this->convertType(boxEleTy)),
typeCodeVal};
fir::emitFatalError(loc, "unhandled type in fir.box code generation");
}
/// Basic pattern to write a field in the descriptor
mlir::Value insertField(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
llvm::ArrayRef<std::int64_t> fldIndexes,
mlir::Value value, bool bitcast = false) const {
auto boxTy = dest.getType();
auto fldTy = this->getBoxEleTy(boxTy, fldIndexes);
if (!bitcast)
value = this->integerCast(loc, rewriter, fldTy, value);
// bitcast are no-ops with LLVM opaque pointers.
return rewriter.create<mlir::LLVM::InsertValueOp>(loc, dest, value,
fldIndexes);
}
inline mlir::Value
insertBaseAddress(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
mlir::Value base) const {
return insertField(rewriter, loc, dest, {kAddrPosInBox}, base,
/*bitCast=*/true);
}
inline mlir::Value insertLowerBound(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
unsigned dim, mlir::Value lb) const {
return insertField(rewriter, loc, dest,
{kDimsPosInBox, dim, kDimLowerBoundPos}, lb);
}
inline mlir::Value insertExtent(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
unsigned dim, mlir::Value extent) const {
return insertField(rewriter, loc, dest, {kDimsPosInBox, dim, kDimExtentPos},
extent);
}
inline mlir::Value insertStride(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
unsigned dim, mlir::Value stride) const {
return insertField(rewriter, loc, dest, {kDimsPosInBox, dim, kDimStridePos},
stride);
}
/// Get the address of the type descriptor global variable that was created by
/// lowering for derived type \p recType.
mlir::Value getTypeDescriptor(mlir::ModuleOp mod,
mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc,
fir::RecordType recType) const {
std::string name =
this->options.typeDescriptorsRenamedForAssembly
? fir::NameUniquer::getTypeDescriptorAssemblyName(recType.getName())
: fir::NameUniquer::getTypeDescriptorName(recType.getName());
mlir::Type llvmPtrTy = ::getLlvmPtrType(mod.getContext());
if (auto global = mod.template lookupSymbol<fir::GlobalOp>(name)) {
return rewriter.create<mlir::LLVM::AddressOfOp>(loc, llvmPtrTy,
global.getSymName());
}
if (auto global = mod.template lookupSymbol<mlir::LLVM::GlobalOp>(name)) {
// The global may have already been translated to LLVM.
return rewriter.create<mlir::LLVM::AddressOfOp>(loc, llvmPtrTy,
global.getSymName());
}
// Type info derived types do not have type descriptors since they are the
// types defining type descriptors.
if (!this->options.ignoreMissingTypeDescriptors &&
!fir::NameUniquer::belongsToModule(
name, Fortran::semantics::typeInfoBuiltinModule))
fir::emitFatalError(
loc, "runtime derived type info descriptor was not generated");
return rewriter.create<mlir::LLVM::ZeroOp>(loc, llvmPtrTy);
}
mlir::Value populateDescriptor(mlir::Location loc, mlir::ModuleOp mod,
fir::BaseBoxType boxTy, mlir::Type inputType,
mlir::ConversionPatternRewriter &rewriter,
unsigned rank, mlir::Value eleSize,
mlir::Value cfiTy, mlir::Value typeDesc,
int allocatorIdx = kDefaultAllocator,
mlir::Value extraField = {}) const {
auto llvmBoxTy = this->lowerTy().convertBoxTypeAsStruct(boxTy, rank);
bool isUnlimitedPolymorphic = fir::isUnlimitedPolymorphicType(boxTy);
bool useInputType = fir::isPolymorphicType(boxTy) || isUnlimitedPolymorphic;
mlir::Value descriptor =
rewriter.create<mlir::LLVM::UndefOp>(loc, llvmBoxTy);
descriptor =
insertField(rewriter, loc, descriptor, {kElemLenPosInBox}, eleSize);
descriptor = insertField(rewriter, loc, descriptor, {kVersionPosInBox},
this->genI32Constant(loc, rewriter, CFI_VERSION));
descriptor = insertField(rewriter, loc, descriptor, {kRankPosInBox},
this->genI32Constant(loc, rewriter, rank));
descriptor = insertField(rewriter, loc, descriptor, {kTypePosInBox}, cfiTy);
descriptor =
insertField(rewriter, loc, descriptor, {kAttributePosInBox},
this->genI32Constant(loc, rewriter, getCFIAttr(boxTy)));
const bool hasAddendum = fir::boxHasAddendum(boxTy);
if (extraField) {
// Make sure to set the addendum presence flag according to the
// destination box.
if (hasAddendum) {
auto maskAttr = mlir::IntegerAttr::get(
rewriter.getIntegerType(8, /*isSigned=*/false),
llvm::APInt(8, (uint64_t)_CFI_ADDENDUM_FLAG, /*isSigned=*/false));
mlir::LLVM::ConstantOp mask = rewriter.create<mlir::LLVM::ConstantOp>(
loc, rewriter.getI8Type(), maskAttr);
extraField = rewriter.create<mlir::LLVM::OrOp>(loc, extraField, mask);
} else {
auto maskAttr = mlir::IntegerAttr::get(
rewriter.getIntegerType(8, /*isSigned=*/false),
llvm::APInt(8, (uint64_t)~_CFI_ADDENDUM_FLAG, /*isSigned=*/true));
mlir::LLVM::ConstantOp mask = rewriter.create<mlir::LLVM::ConstantOp>(
loc, rewriter.getI8Type(), maskAttr);
extraField = rewriter.create<mlir::LLVM::AndOp>(loc, extraField, mask);
}
// Extra field value is provided so just use it.
descriptor =
insertField(rewriter, loc, descriptor, {kExtraPosInBox}, extraField);
} else {
// Compute the value of the extra field based on allocator_idx and
// addendum present using a Descriptor object.
Fortran::runtime::StaticDescriptor staticDescriptor;
Fortran::runtime::Descriptor &desc{staticDescriptor.descriptor()};
desc.raw().extra = 0;
desc.SetAllocIdx(allocatorIdx);
if (hasAddendum)
desc.SetHasAddendum();
descriptor =
insertField(rewriter, loc, descriptor, {kExtraPosInBox},
this->genI32Constant(loc, rewriter, desc.raw().extra));
}
if (hasAddendum) {
unsigned typeDescFieldId = getTypeDescFieldId(boxTy);
if (!typeDesc) {
if (useInputType) {
mlir::Type innerType = fir::unwrapInnerType(inputType);
if (innerType && mlir::isa<fir::RecordType>(innerType)) {
auto recTy = mlir::dyn_cast<fir::RecordType>(innerType);
typeDesc = getTypeDescriptor(mod, rewriter, loc, recTy);
} else {
// Unlimited polymorphic type descriptor with no record type. Set
// type descriptor address to a clean state.
typeDesc = rewriter.create<mlir::LLVM::ZeroOp>(
loc, ::getLlvmPtrType(mod.getContext()));
}
} else {
typeDesc = getTypeDescriptor(mod, rewriter, loc,
fir::unwrapIfDerived(boxTy));
}
}
if (typeDesc)
descriptor =
insertField(rewriter, loc, descriptor, {typeDescFieldId}, typeDesc,
/*bitCast=*/true);
// Always initialize the length parameter field to zero to avoid issues
// with uninitialized values in Fortran code trying to compare physical
// representation of derived types with pointer/allocatable components.
// This has been seen in hashing algorithms using TRANSFER.
mlir::Value zero =
genConstantIndex(loc, rewriter.getI64Type(), rewriter, 0);
descriptor = insertField(rewriter, loc, descriptor,
{getLenParamFieldId(boxTy), 0}, zero);
}
return descriptor;
}
// Template used for fir::EmboxOp and fir::cg::XEmboxOp
template <typename BOX>
std::tuple<fir::BaseBoxType, mlir::Value, mlir::Value>
consDescriptorPrefix(BOX box, mlir::Type inputType,
mlir::ConversionPatternRewriter &rewriter, unsigned rank,
[[maybe_unused]] mlir::ValueRange substrParams,
mlir::ValueRange lenParams, mlir::Value sourceBox = {},
mlir::Type sourceBoxType = {}) const {
auto loc = box.getLoc();
auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(box.getType());
bool useInputType = fir::isPolymorphicType(boxTy) &&
!fir::isUnlimitedPolymorphicType(inputType);
llvm::SmallVector<mlir::Value> typeparams = lenParams;
if constexpr (!std::is_same_v<BOX, fir::EmboxOp>) {
if (!box.getSubstr().empty() && fir::hasDynamicSize(boxTy.getEleTy()))
typeparams.push_back(substrParams[1]);
}
int allocatorIdx = 0;
if constexpr (std::is_same_v<BOX, fir::EmboxOp> ||
std::is_same_v<BOX, fir::cg::XEmboxOp>) {
if (box.getAllocatorIdx())
allocatorIdx = *box.getAllocatorIdx();
}
// Write each of the fields with the appropriate values.
// When emboxing an element to a polymorphic descriptor, use the
// input type since the destination descriptor type has not the exact
// information.
auto [eleSize, cfiTy] = getSizeAndTypeCode(
loc, rewriter, useInputType ? inputType : boxTy.getEleTy(), typeparams);
mlir::Value typeDesc;
mlir::Value extraField;
// When emboxing to a polymorphic box, get the type descriptor, type code
// and element size from the source box if any.
if (fir::isPolymorphicType(boxTy) && sourceBox) {
TypePair sourceBoxTyPair = this->getBoxTypePair(sourceBoxType);
typeDesc =
this->loadTypeDescAddress(loc, sourceBoxTyPair, sourceBox, rewriter);
mlir::Type idxTy = this->lowerTy().indexType();
eleSize = this->getElementSizeFromBox(loc, idxTy, sourceBoxTyPair,
sourceBox, rewriter);
cfiTy = this->getValueFromBox(loc, sourceBoxTyPair, sourceBox,
cfiTy.getType(), rewriter, kTypePosInBox);
extraField =
this->getExtraFromBox(loc, sourceBoxTyPair, sourceBox, rewriter);
}
auto mod = box->template getParentOfType<mlir::ModuleOp>();
mlir::Value descriptor =
populateDescriptor(loc, mod, boxTy, inputType, rewriter, rank, eleSize,
cfiTy, typeDesc, allocatorIdx, extraField);
return {boxTy, descriptor, eleSize};
}
std::tuple<fir::BaseBoxType, mlir::Value, mlir::Value>
consDescriptorPrefix(fir::cg::XReboxOp box, mlir::Value loweredBox,
mlir::ConversionPatternRewriter &rewriter, unsigned rank,
mlir::ValueRange substrParams,
mlir::ValueRange lenParams,
mlir::Value typeDesc = {}) const {
auto loc = box.getLoc();
auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(box.getType());
auto inputBoxTy = mlir::dyn_cast<fir::BaseBoxType>(box.getBox().getType());
auto inputBoxTyPair = this->getBoxTypePair(inputBoxTy);
llvm::SmallVector<mlir::Value> typeparams = lenParams;
if (!box.getSubstr().empty() && fir::hasDynamicSize(boxTy.getEleTy()))
typeparams.push_back(substrParams[1]);
auto [eleSize, cfiTy] =
getSizeAndTypeCode(loc, rewriter, boxTy.getEleTy(), typeparams);
// Reboxing to a polymorphic entity. eleSize and type code need to
// be retrieved from the initial box and propagated to the new box.
// If the initial box has an addendum, the type desc must be propagated as
// well.
if (fir::isPolymorphicType(boxTy)) {
mlir::Type idxTy = this->lowerTy().indexType();
eleSize = this->getElementSizeFromBox(loc, idxTy, inputBoxTyPair,
loweredBox, rewriter);
cfiTy = this->getValueFromBox(loc, inputBoxTyPair, loweredBox,
cfiTy.getType(), rewriter, kTypePosInBox);
// TODO: For initial box that are unlimited polymorphic entities, this
// code must be made conditional because unlimited polymorphic entities
// with intrinsic type spec does not have addendum.
if (fir::boxHasAddendum(inputBoxTy))
typeDesc = this->loadTypeDescAddress(loc, inputBoxTyPair, loweredBox,
rewriter);
}
mlir::Value extraField =
this->getExtraFromBox(loc, inputBoxTyPair, loweredBox, rewriter);
auto mod = box->template getParentOfType<mlir::ModuleOp>();
mlir::Value descriptor =
populateDescriptor(loc, mod, boxTy, box.getBox().getType(), rewriter,
rank, eleSize, cfiTy, typeDesc,
/*allocatorIdx=*/kDefaultAllocator, extraField);
return {boxTy, descriptor, eleSize};
}
// Compute the base address of a fir.box given the indices from the slice.
// The indices from the "outer" dimensions (every dimension after the first
// one (included) that is not a compile time constant) must have been
// multiplied with the related extents and added together into \p outerOffset.
mlir::Value
genBoxOffsetGep(mlir::ConversionPatternRewriter &rewriter, mlir::Location loc,
mlir::Value base, mlir::Type llvmBaseObjectType,
mlir::Value outerOffset, mlir::ValueRange cstInteriorIndices,
mlir::ValueRange componentIndices,
std::optional<mlir::Value> substringOffset) const {
llvm::SmallVector<mlir::LLVM::GEPArg> gepArgs{outerOffset};
mlir::Type resultTy = llvmBaseObjectType;
// Fortran is column major, llvm GEP is row major: reverse the indices here.
for (mlir::Value interiorIndex : llvm::reverse(cstInteriorIndices)) {
auto arrayTy = mlir::dyn_cast<mlir::LLVM::LLVMArrayType>(resultTy);
if (!arrayTy)
fir::emitFatalError(
loc,
"corrupted GEP generated being generated in fir.embox/fir.rebox");
resultTy = arrayTy.getElementType();
gepArgs.push_back(interiorIndex);
}
llvm::SmallVector<mlir::Value> gepIndices =
convertSubcomponentIndices(loc, resultTy, componentIndices, &resultTy);
gepArgs.append(gepIndices.begin(), gepIndices.end());
if (substringOffset) {
if (auto arrayTy = mlir::dyn_cast<mlir::LLVM::LLVMArrayType>(resultTy)) {
gepArgs.push_back(*substringOffset);
resultTy = arrayTy.getElementType();
} else {
// If the CHARACTER length is dynamic, the whole base type should have
// degenerated to an llvm.ptr<i[width]>, and there should not be any
// cstInteriorIndices/componentIndices. The substring offset can be
// added to the outterOffset since it applies on the same LLVM type.
if (gepArgs.size() != 1)
fir::emitFatalError(loc,
"corrupted substring GEP in fir.embox/fir.rebox");
mlir::Type outterOffsetTy = gepArgs[0].get<mlir::Value>().getType();
mlir::Value cast =
this->integerCast(loc, rewriter, outterOffsetTy, *substringOffset);
gepArgs[0] = rewriter.create<mlir::LLVM::AddOp>(
loc, outterOffsetTy, gepArgs[0].get<mlir::Value>(), cast);
}
}
mlir::Type llvmPtrTy = ::getLlvmPtrType(resultTy.getContext());
return rewriter.create<mlir::LLVM::GEPOp>(
loc, llvmPtrTy, llvmBaseObjectType, base, gepArgs);
}
template <typename BOX>
void
getSubcomponentIndices(BOX xbox, mlir::Value memref,
mlir::ValueRange operands,
mlir::SmallVectorImpl<mlir::Value> &indices) const {
// For each field in the path add the offset to base via the args list.
// In the most general case, some offsets must be computed since
// they are not be known until runtime.
if (fir::hasDynamicSize(fir::unwrapSequenceType(
fir::unwrapPassByRefType(memref.getType()))))
TODO(xbox.getLoc(),
"fir.embox codegen dynamic size component in derived type");
indices.append(operands.begin() + xbox.getSubcomponentOperandIndex(),
operands.begin() + xbox.getSubcomponentOperandIndex() +
xbox.getSubcomponent().size());
}
static bool isInGlobalOp(mlir::ConversionPatternRewriter &rewriter) {
auto *thisBlock = rewriter.getInsertionBlock();
return thisBlock &&
mlir::isa<mlir::LLVM::GlobalOp>(thisBlock->getParentOp());
}
/// If the embox is not in a globalOp body, allocate storage for the box;
/// store the value inside and return the generated alloca. Return the input
/// value otherwise.
mlir::Value
placeInMemoryIfNotGlobalInit(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Type boxTy,
mlir::Value boxValue) const {
if (isInGlobalOp(rewriter))
return boxValue;
mlir::Type llvmBoxTy = boxValue.getType();
auto alloca = this->genAllocaAndAddrCastWithType(loc, llvmBoxTy,
defaultAlign, rewriter);
auto storeOp = rewriter.create<mlir::LLVM::StoreOp>(loc, boxValue, alloca);
this->attachTBAATag(storeOp, boxTy, boxTy, nullptr);
return alloca;
}
};
/// Compute the extent of a triplet slice (lb:ub:step).
static mlir::Value
computeTripletExtent(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value lb, mlir::Value ub,
mlir::Value step, mlir::Value zero, mlir::Type type) {
mlir::Value extent = rewriter.create<mlir::LLVM::SubOp>(loc, type, ub, lb);
extent = rewriter.create<mlir::LLVM::AddOp>(loc, type, extent, step);
extent = rewriter.create<mlir::LLVM::SDivOp>(loc, type, extent, step);
// If the resulting extent is negative (`ub-lb` and `step` have different
// signs), zero must be returned instead.
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sgt, extent, zero);
return rewriter.create<mlir::LLVM::SelectOp>(loc, cmp, extent, zero);
}
/// Create a generic box on a memory reference. This conversions lowers the
/// abstract box to the appropriate, initialized descriptor.
struct EmboxOpConversion : public EmboxCommonConversion<fir::EmboxOp> {
using EmboxCommonConversion::EmboxCommonConversion;
llvm::LogicalResult
matchAndRewrite(fir::EmboxOp embox, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
mlir::Value sourceBox;
mlir::Type sourceBoxType;
if (embox.getSourceBox()) {
sourceBox = operands[embox.getSourceBoxOperandIndex()];
sourceBoxType = embox.getSourceBox().getType();
}
assert(!embox.getShape() && "There should be no dims on this embox op");
auto [boxTy, dest, eleSize] = consDescriptorPrefix(
embox, fir::unwrapRefType(embox.getMemref().getType()), rewriter,
/*rank=*/0, /*substrParams=*/mlir::ValueRange{},
adaptor.getTypeparams(), sourceBox, sourceBoxType);
dest = insertBaseAddress(rewriter, embox.getLoc(), dest, operands[0]);
if (fir::isDerivedTypeWithLenParams(boxTy)) {
TODO(embox.getLoc(),
"fir.embox codegen of derived with length parameters");
return mlir::failure();
}
auto result =
placeInMemoryIfNotGlobalInit(rewriter, embox.getLoc(), boxTy, dest);
rewriter.replaceOp(embox, result);
return mlir::success();
}
};
/// Create a generic box on a memory reference.
struct XEmboxOpConversion : public EmboxCommonConversion<fir::cg::XEmboxOp> {
using EmboxCommonConversion::EmboxCommonConversion;
llvm::LogicalResult
matchAndRewrite(fir::cg::XEmboxOp xbox, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
mlir::Value sourceBox;
mlir::Type sourceBoxType;
if (xbox.getSourceBox()) {
sourceBox = operands[xbox.getSourceBoxOperandIndex()];
sourceBoxType = xbox.getSourceBox().getType();
}
auto [boxTy, dest, resultEleSize] = consDescriptorPrefix(
xbox, fir::unwrapRefType(xbox.getMemref().getType()), rewriter,
xbox.getOutRank(), adaptor.getSubstr(), adaptor.getLenParams(),
sourceBox, sourceBoxType);
// Generate the triples in the dims field of the descriptor
auto i64Ty = mlir::IntegerType::get(xbox.getContext(), 64);
assert(!xbox.getShape().empty() && "must have a shape");
unsigned shapeOffset = xbox.getShapeOperandIndex();
bool hasShift = !xbox.getShift().empty();
unsigned shiftOffset = xbox.getShiftOperandIndex();
bool hasSlice = !xbox.getSlice().empty();
unsigned sliceOffset = xbox.getSliceOperandIndex();
mlir::Location loc = xbox.getLoc();
mlir::Value zero = genConstantIndex(loc, i64Ty, rewriter, 0);
mlir::Value one = genConstantIndex(loc, i64Ty, rewriter, 1);
mlir::Value prevPtrOff = one;
mlir::Type eleTy = boxTy.getEleTy();
const unsigned rank = xbox.getRank();
llvm::SmallVector<mlir::Value> cstInteriorIndices;
unsigned constRows = 0;
mlir::Value ptrOffset = zero;
mlir::Type memEleTy = fir::dyn_cast_ptrEleTy(xbox.getMemref().getType());
assert(mlir::isa<fir::SequenceType>(memEleTy));
auto seqTy = mlir::cast<fir::SequenceType>(memEleTy);
mlir::Type seqEleTy = seqTy.getEleTy();
// Adjust the element scaling factor if the element is a dependent type.
if (fir::hasDynamicSize(seqEleTy)) {
if (auto charTy = mlir::dyn_cast<fir::CharacterType>(seqEleTy)) {
// The GEP pointer type decays to llvm.ptr<i[width]>.
// The scaling factor is the runtime value of the length.
assert(!adaptor.getLenParams().empty());
prevPtrOff = FIROpConversion::integerCast(
loc, rewriter, i64Ty, adaptor.getLenParams().back());
} else if (mlir::isa<fir::RecordType>(seqEleTy)) {
// prevPtrOff = ;
TODO(loc, "generate call to calculate size of PDT");
} else {
fir::emitFatalError(loc, "unexpected dynamic type");
}
} else {
constRows = seqTy.getConstantRows();
}
const auto hasSubcomp = !xbox.getSubcomponent().empty();
const bool hasSubstr = !xbox.getSubstr().empty();
// Initial element stride that will be use to compute the step in
// each dimension. Initially, this is the size of the input element.
// Note that when there are no components/substring, the resultEleSize
// that was previously computed matches the input element size.
mlir::Value prevDimByteStride = resultEleSize;
if (hasSubcomp) {
// We have a subcomponent. The step value needs to be the number of
// bytes per element (which is a derived type).
prevDimByteStride =
genTypeStrideInBytes(loc, i64Ty, rewriter, convertType(seqEleTy));
} else if (hasSubstr) {
// We have a substring. The step value needs to be the number of bytes
// per CHARACTER element.
auto charTy = mlir::cast<fir::CharacterType>(seqEleTy);
if (fir::hasDynamicSize(charTy)) {
prevDimByteStride =
getCharacterByteSize(loc, rewriter, charTy, adaptor.getLenParams());
} else {
prevDimByteStride = genConstantIndex(
loc, i64Ty, rewriter,
charTy.getLen() * lowerTy().characterBitsize(charTy) / 8);
}
}
// Process the array subspace arguments (shape, shift, etc.), if any,
// translating everything to values in the descriptor wherever the entity
// has a dynamic array dimension.
for (unsigned di = 0, descIdx = 0; di < rank; ++di) {
mlir::Value extent = operands[shapeOffset];
mlir::Value outerExtent = extent;
bool skipNext = false;
if (hasSlice) {
mlir::Value off = operands[sliceOffset];
mlir::Value adj = one;
if (hasShift)
adj = operands[shiftOffset];
auto ao = rewriter.create<mlir::LLVM::SubOp>(loc, i64Ty, off, adj);
if (constRows > 0) {
cstInteriorIndices.push_back(ao);
} else {
auto dimOff =
rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, ao, prevPtrOff);
ptrOffset =
rewriter.create<mlir::LLVM::AddOp>(loc, i64Ty, dimOff, ptrOffset);
}
if (mlir::isa_and_nonnull<fir::UndefOp>(
xbox.getSlice()[3 * di + 1].getDefiningOp())) {
// This dimension contains a scalar expression in the array slice op.
// The dimension is loop invariant, will be dropped, and will not
// appear in the descriptor.
skipNext = true;
}
}
if (!skipNext) {
// store extent
if (hasSlice)
extent = computeTripletExtent(rewriter, loc, operands[sliceOffset],
operands[sliceOffset + 1],
operands[sliceOffset + 2], zero, i64Ty);
// Lower bound is normalized to 0 for BIND(C) interoperability.
mlir::Value lb = zero;
const bool isaPointerOrAllocatable =
mlir::isa<fir::PointerType, fir::HeapType>(eleTy);
// Lower bound is defaults to 1 for POINTER, ALLOCATABLE, and
// denormalized descriptors.
if (isaPointerOrAllocatable || !normalizedLowerBound(xbox))
lb = one;
// If there is a shifted origin, and no fir.slice, and this is not
// a normalized descriptor then use the value from the shift op as
// the lower bound.
if (hasShift && !(hasSlice || hasSubcomp || hasSubstr) &&
(isaPointerOrAllocatable || !normalizedLowerBound(xbox))) {
lb = operands[shiftOffset];
auto extentIsEmpty = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, extent, zero);
lb = rewriter.create<mlir::LLVM::SelectOp>(loc, extentIsEmpty, one,
lb);
}
dest = insertLowerBound(rewriter, loc, dest, descIdx, lb);
dest = insertExtent(rewriter, loc, dest, descIdx, extent);
// store step (scaled by shaped extent)
mlir::Value step = prevDimByteStride;
if (hasSlice)
step = rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, step,
operands[sliceOffset + 2]);
dest = insertStride(rewriter, loc, dest, descIdx, step);
++descIdx;
}
// compute the stride and offset for the next natural dimension
prevDimByteStride = rewriter.create<mlir::LLVM::MulOp>(
loc, i64Ty, prevDimByteStride, outerExtent);
if (constRows == 0)
prevPtrOff = rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, prevPtrOff,
outerExtent);
else
--constRows;
// increment iterators
++shapeOffset;
if (hasShift)
++shiftOffset;
if (hasSlice)
sliceOffset += 3;
}
mlir::Value base = adaptor.getMemref();
if (hasSlice || hasSubcomp || hasSubstr) {
// Shift the base address.
llvm::SmallVector<mlir::Value> fieldIndices;
std::optional<mlir::Value> substringOffset;
if (hasSubcomp)
getSubcomponentIndices(xbox, xbox.getMemref(), operands, fieldIndices);
if (hasSubstr)
substringOffset = operands[xbox.getSubstrOperandIndex()];
mlir::Type llvmBaseType =
convertType(fir::unwrapRefType(xbox.getMemref().getType()));
base = genBoxOffsetGep(rewriter, loc, base, llvmBaseType, ptrOffset,
cstInteriorIndices, fieldIndices, substringOffset);
}
dest = insertBaseAddress(rewriter, loc, dest, base);
if (fir::isDerivedTypeWithLenParams(boxTy))
TODO(loc, "fir.embox codegen of derived with length parameters");
mlir::Value result =
placeInMemoryIfNotGlobalInit(rewriter, loc, boxTy, dest);
rewriter.replaceOp(xbox, result);
return mlir::success();
}
/// Return true if `xbox` has a normalized lower bounds attribute. A box value
/// that is neither a POINTER nor an ALLOCATABLE should be normalized to a
/// zero origin lower bound for interoperability with BIND(C).
inline static bool normalizedLowerBound(fir::cg::XEmboxOp xbox) {
return xbox->hasAttr(fir::getNormalizedLowerBoundAttrName());
}
};
/// Create a new box given a box reference.
struct XReboxOpConversion : public EmboxCommonConversion<fir::cg::XReboxOp> {
using EmboxCommonConversion::EmboxCommonConversion;
llvm::LogicalResult
matchAndRewrite(fir::cg::XReboxOp rebox, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = rebox.getLoc();
mlir::Type idxTy = lowerTy().indexType();
mlir::Value loweredBox = adaptor.getOperands()[0];
mlir::ValueRange operands = adaptor.getOperands();
// Inside a fir.global, the input box was produced as an llvm.struct<>
// because objects cannot be handled in memory inside a fir.global body that
// must be constant foldable. However, the type translation are not
// contextual, so the fir.box<T> type of the operation that produced the
// fir.box was translated to an llvm.ptr<llvm.struct<>> and the MLIR pass
// manager inserted a builtin.unrealized_conversion_cast that was inserted
// and needs to be removed here.
if (isInGlobalOp(rewriter))
if (auto unrealizedCast =
loweredBox.getDefiningOp<mlir::UnrealizedConversionCastOp>())
loweredBox = unrealizedCast.getInputs()[0];
TypePair inputBoxTyPair = getBoxTypePair(rebox.getBox().getType());
// Create new descriptor and fill its non-shape related data.
llvm::SmallVector<mlir::Value, 2> lenParams;
mlir::Type inputEleTy = getInputEleTy(rebox);
if (auto charTy = mlir::dyn_cast<fir::CharacterType>(inputEleTy)) {
if (charTy.hasConstantLen()) {
mlir::Value len =
genConstantIndex(loc, idxTy, rewriter, charTy.getLen());
lenParams.emplace_back(len);
} else {
mlir::Value len = getElementSizeFromBox(loc, idxTy, inputBoxTyPair,
loweredBox, rewriter);
if (charTy.getFKind() != 1) {
assert(!isInGlobalOp(rewriter) &&
"character target in global op must have constant length");
mlir::Value width =
genConstantIndex(loc, idxTy, rewriter, charTy.getFKind());
len = rewriter.create<mlir::LLVM::SDivOp>(loc, idxTy, len, width);
}
lenParams.emplace_back(len);
}
} else if (auto recTy = mlir::dyn_cast<fir::RecordType>(inputEleTy)) {
if (recTy.getNumLenParams() != 0)
TODO(loc, "reboxing descriptor of derived type with length parameters");
}
// Rebox on polymorphic entities needs to carry over the dynamic type.
mlir::Value typeDescAddr;
if (mlir::isa<fir::ClassType>(inputBoxTyPair.fir) &&
mlir::isa<fir::ClassType>(rebox.getType()))
typeDescAddr =
loadTypeDescAddress(loc, inputBoxTyPair, loweredBox, rewriter);
auto [boxTy, dest, eleSize] =
consDescriptorPrefix(rebox, loweredBox, rewriter, rebox.getOutRank(),
adaptor.getSubstr(), lenParams, typeDescAddr);
// Read input extents, strides, and base address
llvm::SmallVector<mlir::Value> inputExtents;
llvm::SmallVector<mlir::Value> inputStrides;
const unsigned inputRank = rebox.getRank();
for (unsigned dim = 0; dim < inputRank; ++dim) {
llvm::SmallVector<mlir::Value, 3> dimInfo =
getDimsFromBox(loc, {idxTy, idxTy, idxTy}, inputBoxTyPair, loweredBox,
dim, rewriter);
inputExtents.emplace_back(dimInfo[1]);
inputStrides.emplace_back(dimInfo[2]);
}
mlir::Value baseAddr =
getBaseAddrFromBox(loc, inputBoxTyPair, loweredBox, rewriter);
if (!rebox.getSlice().empty() || !rebox.getSubcomponent().empty())
return sliceBox(rebox, boxTy, dest, baseAddr, inputExtents, inputStrides,
operands, rewriter);
return reshapeBox(rebox, boxTy, dest, baseAddr, inputExtents, inputStrides,
operands, rewriter);
}
private:
/// Write resulting shape and base address in descriptor, and replace rebox
/// op.
llvm::LogicalResult
finalizeRebox(fir::cg::XReboxOp rebox, mlir::Type destBoxTy, mlir::Value dest,
mlir::Value base, mlir::ValueRange lbounds,
mlir::ValueRange extents, mlir::ValueRange strides,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Location loc = rebox.getLoc();
mlir::Value zero =
genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
mlir::Value one = genConstantIndex(loc, lowerTy().indexType(), rewriter, 1);
for (auto iter : llvm::enumerate(llvm::zip(extents, strides))) {
mlir::Value extent = std::get<0>(iter.value());
unsigned dim = iter.index();
mlir::Value lb = one;
if (!lbounds.empty()) {
lb = lbounds[dim];
auto extentIsEmpty = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, extent, zero);
lb = rewriter.create<mlir::LLVM::SelectOp>(loc, extentIsEmpty, one, lb);
};
dest = insertLowerBound(rewriter, loc, dest, dim, lb);
dest = insertExtent(rewriter, loc, dest, dim, extent);
dest = insertStride(rewriter, loc, dest, dim, std::get<1>(iter.value()));
}
dest = insertBaseAddress(rewriter, loc, dest, base);
mlir::Value result =
placeInMemoryIfNotGlobalInit(rewriter, rebox.getLoc(), destBoxTy, dest);
rewriter.replaceOp(rebox, result);
return mlir::success();
}
// Apply slice given the base address, extents and strides of the input box.
llvm::LogicalResult
sliceBox(fir::cg::XReboxOp rebox, mlir::Type destBoxTy, mlir::Value dest,
mlir::Value base, mlir::ValueRange inputExtents,
mlir::ValueRange inputStrides, mlir::ValueRange operands,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Location loc = rebox.getLoc();
mlir::Type byteTy = ::getI8Type(rebox.getContext());
mlir::Type idxTy = lowerTy().indexType();
mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
// Apply subcomponent and substring shift on base address.
if (!rebox.getSubcomponent().empty() || !rebox.getSubstr().empty()) {
// Cast to inputEleTy* so that a GEP can be used.
mlir::Type inputEleTy = getInputEleTy(rebox);
mlir::Type llvmBaseObjectType = convertType(inputEleTy);
llvm::SmallVector<mlir::Value> fieldIndices;
std::optional<mlir::Value> substringOffset;
if (!rebox.getSubcomponent().empty())
getSubcomponentIndices(rebox, rebox.getBox(), operands, fieldIndices);
if (!rebox.getSubstr().empty())
substringOffset = operands[rebox.getSubstrOperandIndex()];
base = genBoxOffsetGep(rewriter, loc, base, llvmBaseObjectType, zero,
/*cstInteriorIndices=*/std::nullopt, fieldIndices,
substringOffset);
}
if (rebox.getSlice().empty())
// The array section is of the form array[%component][substring], keep
// the input array extents and strides.
return finalizeRebox(rebox, destBoxTy, dest, base,
/*lbounds*/ std::nullopt, inputExtents, inputStrides,
rewriter);
// The slice is of the form array(i:j:k)[%component]. Compute new extents
// and strides.
llvm::SmallVector<mlir::Value> slicedExtents;
llvm::SmallVector<mlir::Value> slicedStrides;
mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
const bool sliceHasOrigins = !rebox.getShift().empty();
unsigned sliceOps = rebox.getSliceOperandIndex();
unsigned shiftOps = rebox.getShiftOperandIndex();
auto strideOps = inputStrides.begin();
const unsigned inputRank = inputStrides.size();
for (unsigned i = 0; i < inputRank;
++i, ++strideOps, ++shiftOps, sliceOps += 3) {
mlir::Value sliceLb =
integerCast(loc, rewriter, idxTy, operands[sliceOps]);
mlir::Value inputStride = *strideOps; // already idxTy
// Apply origin shift: base += (lb-shift)*input_stride
mlir::Value sliceOrigin =
sliceHasOrigins
? integerCast(loc, rewriter, idxTy, operands[shiftOps])
: one;
mlir::Value diff =
rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, sliceLb, sliceOrigin);
mlir::Value offset =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, inputStride);
// Strides from the fir.box are in bytes.
base = genGEP(loc, byteTy, rewriter, base, offset);
// Apply upper bound and step if this is a triplet. Otherwise, the
// dimension is dropped and no extents/strides are computed.
mlir::Value upper = operands[sliceOps + 1];
const bool isTripletSlice =
!mlir::isa_and_nonnull<mlir::LLVM::UndefOp>(upper.getDefiningOp());
if (isTripletSlice) {
mlir::Value step =
integerCast(loc, rewriter, idxTy, operands[sliceOps + 2]);
// extent = ub-lb+step/step
mlir::Value sliceUb = integerCast(loc, rewriter, idxTy, upper);
mlir::Value extent = computeTripletExtent(rewriter, loc, sliceLb,
sliceUb, step, zero, idxTy);
slicedExtents.emplace_back(extent);
// stride = step*input_stride
mlir::Value stride =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, step, inputStride);
slicedStrides.emplace_back(stride);
}
}
return finalizeRebox(rebox, destBoxTy, dest, base, /*lbounds*/ std::nullopt,
slicedExtents, slicedStrides, rewriter);
}
/// Apply a new shape to the data described by a box given the base address,
/// extents and strides of the box.
llvm::LogicalResult
reshapeBox(fir::cg::XReboxOp rebox, mlir::Type destBoxTy, mlir::Value dest,
mlir::Value base, mlir::ValueRange inputExtents,
mlir::ValueRange inputStrides, mlir::ValueRange operands,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::ValueRange reboxShifts{
operands.begin() + rebox.getShiftOperandIndex(),
operands.begin() + rebox.getShiftOperandIndex() +
rebox.getShift().size()};
if (rebox.getShape().empty()) {
// Only setting new lower bounds.
return finalizeRebox(rebox, destBoxTy, dest, base, reboxShifts,
inputExtents, inputStrides, rewriter);
}
mlir::Location loc = rebox.getLoc();
llvm::SmallVector<mlir::Value> newStrides;
llvm::SmallVector<mlir::Value> newExtents;
mlir::Type idxTy = lowerTy().indexType();
// First stride from input box is kept. The rest is assumed contiguous
// (it is not possible to reshape otherwise). If the input is scalar,
// which may be OK if all new extents are ones, the stride does not
// matter, use one.
mlir::Value stride = inputStrides.empty()
? genConstantIndex(loc, idxTy, rewriter, 1)
: inputStrides[0];
for (unsigned i = 0; i < rebox.getShape().size(); ++i) {
mlir::Value rawExtent = operands[rebox.getShapeOperandIndex() + i];
mlir::Value extent = integerCast(loc, rewriter, idxTy, rawExtent);
newExtents.emplace_back(extent);
newStrides.emplace_back(stride);
// nextStride = extent * stride;
stride = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, extent, stride);
}
return finalizeRebox(rebox, destBoxTy, dest, base, reboxShifts, newExtents,
newStrides, rewriter);
}
/// Return scalar element type of the input box.
static mlir::Type getInputEleTy(fir::cg::XReboxOp rebox) {
auto ty = fir::dyn_cast_ptrOrBoxEleTy(rebox.getBox().getType());
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty))
return seqTy.getEleTy();
return ty;
}
};
/// Lower `fir.emboxproc` operation. Creates a procedure box.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct EmboxProcOpConversion : public fir::FIROpConversion<fir::EmboxProcOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::EmboxProcOp emboxproc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(emboxproc.getLoc(), "fir.emboxproc codegen");
return mlir::failure();
}
};
// Code shared between insert_value and extract_value Ops.
struct ValueOpCommon {
// Translate the arguments pertaining to any multidimensional array to
// row-major order for LLVM-IR.
static void toRowMajor(llvm::SmallVectorImpl<int64_t> &indices,
mlir::Type ty) {
assert(ty && "type is null");
const auto end = indices.size();
for (std::remove_const_t<decltype(end)> i = 0; i < end; ++i) {
if (auto seq = mlir::dyn_cast<mlir::LLVM::LLVMArrayType>(ty)) {
const auto dim = getDimension(seq);
if (dim > 1) {
auto ub = std::min(i + dim, end);
std::reverse(indices.begin() + i, indices.begin() + ub);
i += dim - 1;
}
ty = getArrayElementType(seq);
} else if (auto st = mlir::dyn_cast<mlir::LLVM::LLVMStructType>(ty)) {
ty = st.getBody()[indices[i]];
} else {
llvm_unreachable("index into invalid type");
}
}
}
static llvm::SmallVector<int64_t>
collectIndices(mlir::ConversionPatternRewriter &rewriter,
mlir::ArrayAttr arrAttr) {
llvm::SmallVector<int64_t> indices;
for (auto i = arrAttr.begin(), e = arrAttr.end(); i != e; ++i) {
if (auto intAttr = mlir::dyn_cast<mlir::IntegerAttr>(*i)) {
indices.push_back(intAttr.getInt());
} else {
auto fieldName = mlir::cast<mlir::StringAttr>(*i).getValue();
++i;
auto ty = mlir::cast<mlir::TypeAttr>(*i).getValue();
auto index = mlir::cast<fir::RecordType>(ty).getFieldIndex(fieldName);
indices.push_back(index);
}
}
return indices;
}
private:
static mlir::Type getArrayElementType(mlir::LLVM::LLVMArrayType ty) {
auto eleTy = ty.getElementType();
while (auto arrTy = mlir::dyn_cast<mlir::LLVM::LLVMArrayType>(eleTy))
eleTy = arrTy.getElementType();
return eleTy;
}
};
namespace {
/// Extract a subobject value from an ssa-value of aggregate type
struct ExtractValueOpConversion
: public fir::FIROpAndTypeConversion<fir::ExtractValueOp>,
public ValueOpCommon {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
llvm::LogicalResult
doRewrite(fir::ExtractValueOp extractVal, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
auto indices = collectIndices(rewriter, extractVal.getCoor());
toRowMajor(indices, operands[0].getType());
rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(
extractVal, operands[0], indices);
return mlir::success();
}
};
/// InsertValue is the generalized instruction for the composition of new
/// aggregate type values.
struct InsertValueOpConversion
: public mlir::OpConversionPattern<fir::InsertValueOp>,
public ValueOpCommon {
using OpConversionPattern::OpConversionPattern;
llvm::LogicalResult
matchAndRewrite(fir::InsertValueOp insertVal, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
auto indices = collectIndices(rewriter, insertVal.getCoor());
toRowMajor(indices, operands[0].getType());
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
insertVal, operands[0], operands[1], indices);
return mlir::success();
}
};
/// InsertOnRange inserts a value into a sequence over a range of offsets.
struct InsertOnRangeOpConversion
: public fir::FIROpAndTypeConversion<fir::InsertOnRangeOp> {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
// Increments an array of subscripts in a row major fasion.
void incrementSubscripts(llvm::ArrayRef<int64_t> dims,
llvm::SmallVectorImpl<int64_t> &subscripts) const {
for (size_t i = dims.size(); i > 0; --i) {
if (++subscripts[i - 1] < dims[i - 1]) {
return;
}
subscripts[i - 1] = 0;
}
}
llvm::LogicalResult
doRewrite(fir::InsertOnRangeOp range, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<std::int64_t> dims;
auto type = adaptor.getOperands()[0].getType();
// Iteratively extract the array dimensions from the type.
while (auto t = mlir::dyn_cast<mlir::LLVM::LLVMArrayType>(type)) {
dims.push_back(t.getNumElements());
type = t.getElementType();
}
llvm::SmallVector<std::int64_t> lBounds;
llvm::SmallVector<std::int64_t> uBounds;
// Unzip the upper and lower bound and convert to a row major format.
mlir::DenseIntElementsAttr coor = range.getCoor();
auto reversedCoor = llvm::reverse(coor.getValues<int64_t>());
for (auto i = reversedCoor.begin(), e = reversedCoor.end(); i != e; ++i) {
uBounds.push_back(*i++);
lBounds.push_back(*i);
}
auto &subscripts = lBounds;
auto loc = range.getLoc();
mlir::Value lastOp = adaptor.getOperands()[0];
mlir::Value insertVal = adaptor.getOperands()[1];
while (subscripts != uBounds) {
lastOp = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, lastOp, insertVal, subscripts);
incrementSubscripts(dims, subscripts);
}
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
range, lastOp, insertVal, subscripts);
return mlir::success();
}
};
} // namespace
namespace {
/// XArrayCoor is the address arithmetic on a dynamically shaped, sliced,
/// shifted etc. array.
/// (See the static restriction on coordinate_of.) array_coor determines the
/// coordinate (location) of a specific element.
struct XArrayCoorOpConversion
: public fir::FIROpAndTypeConversion<fir::cg::XArrayCoorOp> {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
llvm::LogicalResult
doRewrite(fir::cg::XArrayCoorOp coor, mlir::Type llvmPtrTy, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto loc = coor.getLoc();
mlir::ValueRange operands = adaptor.getOperands();
unsigned rank = coor.getRank();
assert(coor.getIndices().size() == rank);
assert(coor.getShape().empty() || coor.getShape().size() == rank);
assert(coor.getShift().empty() || coor.getShift().size() == rank);
assert(coor.getSlice().empty() || coor.getSlice().size() == 3 * rank);
mlir::Type idxTy = lowerTy().indexType();
unsigned indexOffset = coor.getIndicesOperandIndex();
unsigned shapeOffset = coor.getShapeOperandIndex();
unsigned shiftOffset = coor.getShiftOperandIndex();
unsigned sliceOffset = coor.getSliceOperandIndex();
auto sliceOps = coor.getSlice().begin();
mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
mlir::Value prevExt = one;
mlir::Value offset = genConstantIndex(loc, idxTy, rewriter, 0);
const bool isShifted = !coor.getShift().empty();
const bool isSliced = !coor.getSlice().empty();
const bool baseIsBoxed =
mlir::isa<fir::BaseBoxType>(coor.getMemref().getType());
TypePair baseBoxTyPair =
baseIsBoxed ? getBoxTypePair(coor.getMemref().getType()) : TypePair{};
mlir::LLVM::IntegerOverflowFlags nsw =
mlir::LLVM::IntegerOverflowFlags::nsw;
// For each dimension of the array, generate the offset calculation.
for (unsigned i = 0; i < rank; ++i, ++indexOffset, ++shapeOffset,
++shiftOffset, sliceOffset += 3, sliceOps += 3) {
mlir::Value index =
integerCast(loc, rewriter, idxTy, operands[indexOffset]);
mlir::Value lb =
isShifted ? integerCast(loc, rewriter, idxTy, operands[shiftOffset])
: one;
mlir::Value step = one;
bool normalSlice = isSliced;
// Compute zero based index in dimension i of the element, applying
// potential triplets and lower bounds.
if (isSliced) {
mlir::Value originalUb = *(sliceOps + 1);
normalSlice =
!mlir::isa_and_nonnull<fir::UndefOp>(originalUb.getDefiningOp());
if (normalSlice)
step = integerCast(loc, rewriter, idxTy, operands[sliceOffset + 2]);
}
auto idx = rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, index, lb, nsw);
mlir::Value diff =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, idx, step, nsw);
if (normalSlice) {
mlir::Value sliceLb =
integerCast(loc, rewriter, idxTy, operands[sliceOffset]);
auto adj =
rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, sliceLb, lb, nsw);
diff = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, diff, adj, nsw);
}
// Update the offset given the stride and the zero based index `diff`
// that was just computed.
if (baseIsBoxed) {
// Use stride in bytes from the descriptor.
mlir::Value stride =
getStrideFromBox(loc, baseBoxTyPair, operands[0], i, rewriter);
auto sc =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, stride, nsw);
offset =
rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, offset, nsw);
} else {
// Use stride computed at last iteration.
auto sc =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, prevExt, nsw);
offset =
rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, offset, nsw);
// Compute next stride assuming contiguity of the base array
// (in element number).
auto nextExt = integerCast(loc, rewriter, idxTy, operands[shapeOffset]);
prevExt = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, prevExt,
nextExt, nsw);
}
}
// Add computed offset to the base address.
if (baseIsBoxed) {
// Working with byte offsets. The base address is read from the fir.box.
// and used in i8* GEP to do the pointer arithmetic.
mlir::Type byteTy = ::getI8Type(coor.getContext());
mlir::Value base =
getBaseAddrFromBox(loc, baseBoxTyPair, operands[0], rewriter);
llvm::SmallVector<mlir::LLVM::GEPArg> args{offset};
auto addr = rewriter.create<mlir::LLVM::GEPOp>(loc, llvmPtrTy, byteTy,
base, args);
if (coor.getSubcomponent().empty()) {
rewriter.replaceOp(coor, addr);
return mlir::success();
}
// Cast the element address from void* to the derived type so that the
// derived type members can be addresses via a GEP using the index of
// components.
mlir::Type elementType =
getLlvmObjectTypeFromBoxType(coor.getMemref().getType());
while (auto arrayTy =
mlir::dyn_cast<mlir::LLVM::LLVMArrayType>(elementType))
elementType = arrayTy.getElementType();
args.clear();
args.push_back(0);
if (!coor.getLenParams().empty()) {
// If type parameters are present, then we don't want to use a GEPOp
// as below, as the LLVM struct type cannot be statically defined.
TODO(loc, "derived type with type parameters");
}
llvm::SmallVector<mlir::Value> indices = convertSubcomponentIndices(
loc, elementType,
operands.slice(coor.getSubcomponentOperandIndex(),
coor.getSubcomponent().size()));
args.append(indices.begin(), indices.end());
rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(coor, llvmPtrTy,
elementType, addr, args);
return mlir::success();
}
// The array was not boxed, so it must be contiguous. offset is therefore an
// element offset and the base type is kept in the GEP unless the element
// type size is itself dynamic.
mlir::Type objectTy = fir::unwrapRefType(coor.getMemref().getType());
mlir::Type eleType = fir::unwrapSequenceType(objectTy);
mlir::Type gepObjectType = convertType(eleType);
llvm::SmallVector<mlir::LLVM::GEPArg> args;
if (coor.getSubcomponent().empty()) {
// No subcomponent.
if (!coor.getLenParams().empty()) {
// Type parameters. Adjust element size explicitly.
auto eleTy = fir::dyn_cast_ptrEleTy(coor.getType());
assert(eleTy && "result must be a reference-like type");
if (fir::characterWithDynamicLen(eleTy)) {
assert(coor.getLenParams().size() == 1);
auto length = integerCast(loc, rewriter, idxTy,
operands[coor.getLenParamsOperandIndex()]);
offset = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, offset,
length, nsw);
} else {
TODO(loc, "compute size of derived type with type parameters");
}
}
args.push_back(offset);
} else {
// There are subcomponents.
args.push_back(offset);
llvm::SmallVector<mlir::Value> indices = convertSubcomponentIndices(
loc, gepObjectType,
operands.slice(coor.getSubcomponentOperandIndex(),
coor.getSubcomponent().size()));
args.append(indices.begin(), indices.end());
}
rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(
coor, llvmPtrTy, gepObjectType, adaptor.getMemref(), args);
return mlir::success();
}
};
} // namespace
/// Convert to (memory) reference to a reference to a subobject.
/// The coordinate_of op is a Swiss army knife operation that can be used on
/// (memory) references to records, arrays, complex, etc. as well as boxes.
/// With unboxed arrays, there is the restriction that the array have a static
/// shape in all but the last column.
struct CoordinateOpConversion
: public fir::FIROpAndTypeConversion<fir::CoordinateOp> {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
llvm::LogicalResult
doRewrite(fir::CoordinateOp coor, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
mlir::Location loc = coor.getLoc();
mlir::Value base = operands[0];
mlir::Type baseObjectTy = coor.getBaseType();
mlir::Type objectTy = fir::dyn_cast_ptrOrBoxEleTy(baseObjectTy);
assert(objectTy && "fir.coordinate_of expects a reference type");
mlir::Type llvmObjectTy = convertType(objectTy);
// Complex type - basically, extract the real or imaginary part
// FIXME: double check why this is done before the fir.box case below.
if (fir::isa_complex(objectTy)) {
mlir::Value gep =
genGEP(loc, llvmObjectTy, rewriter, base, 0, operands[1]);
rewriter.replaceOp(coor, gep);
return mlir::success();
}
// Boxed type - get the base pointer from the box
if (mlir::dyn_cast<fir::BaseBoxType>(baseObjectTy))
return doRewriteBox(coor, operands, loc, rewriter);
// Reference, pointer or a heap type
if (mlir::isa<fir::ReferenceType, fir::PointerType, fir::HeapType>(
baseObjectTy))
return doRewriteRefOrPtr(coor, llvmObjectTy, operands, loc, rewriter);
return rewriter.notifyMatchFailure(
coor, "fir.coordinate_of base operand has unsupported type");
}
static unsigned getFieldNumber(fir::RecordType ty, mlir::Value op) {
return fir::hasDynamicSize(ty)
? op.getDefiningOp()
->getAttrOfType<mlir::IntegerAttr>("field")
.getInt()
: getConstantIntValue(op);
}
static bool hasSubDimensions(mlir::Type type) {
return mlir::isa<fir::SequenceType, fir::RecordType, mlir::TupleType>(type);
}
/// Check whether this form of `!fir.coordinate_of` is supported. These
/// additional checks are required, because we are not yet able to convert
/// all valid forms of `!fir.coordinate_of`.
/// TODO: Either implement the unsupported cases or extend the verifier
/// in FIROps.cpp instead.
static bool supportedCoordinate(mlir::Type type, mlir::ValueRange coors) {
const std::size_t numOfCoors = coors.size();
std::size_t i = 0;
bool subEle = false;
bool ptrEle = false;
for (; i < numOfCoors; ++i) {
mlir::Value nxtOpnd = coors[i];
if (auto arrTy = mlir::dyn_cast<fir::SequenceType>(type)) {
subEle = true;
i += arrTy.getDimension() - 1;
type = arrTy.getEleTy();
} else if (auto recTy = mlir::dyn_cast<fir::RecordType>(type)) {
subEle = true;
type = recTy.getType(getFieldNumber(recTy, nxtOpnd));
} else if (auto tupTy = mlir::dyn_cast<mlir::TupleType>(type)) {
subEle = true;
type = tupTy.getType(getConstantIntValue(nxtOpnd));
} else {
ptrEle = true;
}
}
if (ptrEle)
return (!subEle) && (numOfCoors == 1);
return subEle && (i >= numOfCoors);
}
/// Walk the abstract memory layout and determine if the path traverses any
/// array types with unknown shape. Return true iff all the array types have a
/// constant shape along the path.
static bool arraysHaveKnownShape(mlir::Type type, mlir::ValueRange coors) {
for (std::size_t i = 0, sz = coors.size(); i < sz; ++i) {
mlir::Value nxtOpnd = coors[i];
if (auto arrTy = mlir::dyn_cast<fir::SequenceType>(type)) {
if (fir::sequenceWithNonConstantShape(arrTy))
return false;
i += arrTy.getDimension() - 1;
type = arrTy.getEleTy();
} else if (auto strTy = mlir::dyn_cast<fir::RecordType>(type)) {
type = strTy.getType(getFieldNumber(strTy, nxtOpnd));
} else if (auto strTy = mlir::dyn_cast<mlir::TupleType>(type)) {
type = strTy.getType(getConstantIntValue(nxtOpnd));
} else {
return true;
}
}
return true;
}
private:
llvm::LogicalResult
doRewriteBox(fir::CoordinateOp coor, mlir::ValueRange operands,
mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Type boxObjTy = coor.getBaseType();
assert(mlir::dyn_cast<fir::BaseBoxType>(boxObjTy) &&
"This is not a `fir.box`");
TypePair boxTyPair = getBoxTypePair(boxObjTy);
mlir::Value boxBaseAddr = operands[0];
// 1. SPECIAL CASE (uses `fir.len_param_index`):
// %box = ... : !fir.box<!fir.type<derived{len1:i32}>>
// %lenp = fir.len_param_index len1, !fir.type<derived{len1:i32}>
// %addr = coordinate_of %box, %lenp
if (coor.getNumOperands() == 2) {
mlir::Operation *coordinateDef =
(*coor.getCoor().begin()).getDefiningOp();
if (mlir::isa_and_nonnull<fir::LenParamIndexOp>(coordinateDef))
TODO(loc,
"fir.coordinate_of - fir.len_param_index is not supported yet");
}
// 2. GENERAL CASE:
// 2.1. (`fir.array`)
// %box = ... : !fix.box<!fir.array<?xU>>
// %idx = ... : index
// %resultAddr = coordinate_of %box, %idx : !fir.ref<U>
// 2.2 (`fir.derived`)
// %box = ... : !fix.box<!fir.type<derived_type{field_1:i32}>>
// %idx = ... : i32
// %resultAddr = coordinate_of %box, %idx : !fir.ref<i32>
// 2.3 (`fir.derived` inside `fir.array`)
// %box = ... : !fir.box<!fir.array<10 x !fir.type<derived_1{field_1:f32,
// field_2:f32}>>> %idx1 = ... : index %idx2 = ... : i32 %resultAddr =
// coordinate_of %box, %idx1, %idx2 : !fir.ref<f32>
// 2.4. TODO: Either document or disable any other case that the following
// implementation might convert.
mlir::Value resultAddr =
getBaseAddrFromBox(loc, boxTyPair, boxBaseAddr, rewriter);
// Component Type
auto cpnTy = fir::dyn_cast_ptrOrBoxEleTy(boxObjTy);
mlir::Type llvmPtrTy = ::getLlvmPtrType(coor.getContext());
mlir::Type byteTy = ::getI8Type(coor.getContext());
mlir::LLVM::IntegerOverflowFlags nsw =
mlir::LLVM::IntegerOverflowFlags::nsw;
for (unsigned i = 1, last = operands.size(); i < last; ++i) {
if (auto arrTy = mlir::dyn_cast<fir::SequenceType>(cpnTy)) {
if (i != 1)
TODO(loc, "fir.array nested inside other array and/or derived type");
// Applies byte strides from the box. Ignore lower bound from box
// since fir.coordinate_of indexes are zero based. Lowering takes care
// of lower bound aspects. This both accounts for dynamically sized
// types and non contiguous arrays.
auto idxTy = lowerTy().indexType();
mlir::Value off = genConstantIndex(loc, idxTy, rewriter, 0);
for (unsigned index = i, lastIndex = i + arrTy.getDimension();
index < lastIndex; ++index) {
mlir::Value stride = getStrideFromBox(loc, boxTyPair, operands[0],
index - i, rewriter);
auto sc = rewriter.create<mlir::LLVM::MulOp>(
loc, idxTy, operands[index], stride, nsw);
off = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, off, nsw);
}
resultAddr = rewriter.create<mlir::LLVM::GEPOp>(
loc, llvmPtrTy, byteTy, resultAddr,
llvm::ArrayRef<mlir::LLVM::GEPArg>{off});
i += arrTy.getDimension() - 1;
cpnTy = arrTy.getEleTy();
} else if (auto recTy = mlir::dyn_cast<fir::RecordType>(cpnTy)) {
mlir::Value nxtOpnd = operands[i];
cpnTy = recTy.getType(getFieldNumber(recTy, nxtOpnd));
auto llvmRecTy = lowerTy().convertType(recTy);
resultAddr = rewriter.create<mlir::LLVM::GEPOp>(
loc, llvmPtrTy, llvmRecTy, resultAddr,
llvm::ArrayRef<mlir::LLVM::GEPArg>{0, nxtOpnd});
} else {
fir::emitFatalError(loc, "unexpected type in coordinate_of");
}
}
rewriter.replaceOp(coor, resultAddr);
return mlir::success();
}
llvm::LogicalResult
doRewriteRefOrPtr(fir::CoordinateOp coor, mlir::Type llvmObjectTy,
mlir::ValueRange operands, mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Type baseObjectTy = coor.getBaseType();
// Component Type
mlir::Type cpnTy = fir::dyn_cast_ptrOrBoxEleTy(baseObjectTy);
bool hasSubdimension = hasSubDimensions(cpnTy);
bool columnIsDeferred = !hasSubdimension;
if (!supportedCoordinate(cpnTy, operands.drop_front(1)))
TODO(loc, "unsupported combination of coordinate operands");
const bool hasKnownShape =
arraysHaveKnownShape(cpnTy, operands.drop_front(1));
// If only the column is `?`, then we can simply place the column value in
// the 0-th GEP position.
if (auto arrTy = mlir::dyn_cast<fir::SequenceType>(cpnTy)) {
if (!hasKnownShape) {
const unsigned sz = arrTy.getDimension();
if (arraysHaveKnownShape(arrTy.getEleTy(),
operands.drop_front(1 + sz))) {
fir::SequenceType::ShapeRef shape = arrTy.getShape();
bool allConst = true;
for (unsigned i = 0; i < sz - 1; ++i) {
if (shape[i] < 0) {
allConst = false;
break;
}
}
if (allConst)
columnIsDeferred = true;
}
}
}
if (fir::hasDynamicSize(fir::unwrapSequenceType(cpnTy)))
return mlir::emitError(
loc, "fir.coordinate_of with a dynamic element size is unsupported");
if (hasKnownShape || columnIsDeferred) {
llvm::SmallVector<mlir::LLVM::GEPArg> offs;
if (hasKnownShape && hasSubdimension) {
offs.push_back(0);
}
std::optional<int> dims;
llvm::SmallVector<mlir::Value> arrIdx;
for (std::size_t i = 1, sz = operands.size(); i < sz; ++i) {
mlir::Value nxtOpnd = operands[i];
if (!cpnTy)
return mlir::emitError(loc, "invalid coordinate/check failed");
// check if the i-th coordinate relates to an array
if (dims) {
arrIdx.push_back(nxtOpnd);
int dimsLeft = *dims;
if (dimsLeft > 1) {
dims = dimsLeft - 1;
continue;
}
cpnTy = mlir::cast<fir::SequenceType>(cpnTy).getEleTy();
// append array range in reverse (FIR arrays are column-major)
offs.append(arrIdx.rbegin(), arrIdx.rend());
arrIdx.clear();
dims.reset();
continue;
}
if (auto arrTy = mlir::dyn_cast<fir::SequenceType>(cpnTy)) {
int d = arrTy.getDimension() - 1;
if (d > 0) {
dims = d;
arrIdx.push_back(nxtOpnd);
continue;
}
cpnTy = mlir::cast<fir::SequenceType>(cpnTy).getEleTy();
offs.push_back(nxtOpnd);
continue;
}
// check if the i-th coordinate relates to a field
if (auto recTy = mlir::dyn_cast<fir::RecordType>(cpnTy))
cpnTy = recTy.getType(getFieldNumber(recTy, nxtOpnd));
else if (auto tupTy = mlir::dyn_cast<mlir::TupleType>(cpnTy))
cpnTy = tupTy.getType(getConstantIntValue(nxtOpnd));
else
cpnTy = nullptr;
offs.push_back(nxtOpnd);
}
if (dims)
offs.append(arrIdx.rbegin(), arrIdx.rend());
mlir::Value base = operands[0];
mlir::Value retval = genGEP(loc, llvmObjectTy, rewriter, base, offs);
rewriter.replaceOp(coor, retval);
return mlir::success();
}
return mlir::emitError(
loc, "fir.coordinate_of base operand has unsupported type");
}
};
/// Convert `fir.field_index`. The conversion depends on whether the size of
/// the record is static or dynamic.
struct FieldIndexOpConversion : public fir::FIROpConversion<fir::FieldIndexOp> {
using FIROpConversion::FIROpConversion;
// NB: most field references should be resolved by this point
llvm::LogicalResult
matchAndRewrite(fir::FieldIndexOp field, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto recTy = mlir::cast<fir::RecordType>(field.getOnType());
unsigned index = recTy.getFieldIndex(field.getFieldId());
if (!fir::hasDynamicSize(recTy)) {
// Derived type has compile-time constant layout. Return index of the
// component type in the parent type (to be used in GEP).
rewriter.replaceOp(field, mlir::ValueRange{genConstantOffset(
field.getLoc(), rewriter, index)});
return mlir::success();
}
// Derived type has compile-time constant layout. Call the compiler
// generated function to determine the byte offset of the field at runtime.
// This returns a non-constant.
mlir::FlatSymbolRefAttr symAttr = mlir::SymbolRefAttr::get(
field.getContext(), getOffsetMethodName(recTy, field.getFieldId()));
mlir::NamedAttribute callAttr = rewriter.getNamedAttr("callee", symAttr);
mlir::NamedAttribute fieldAttr = rewriter.getNamedAttr(
"field", mlir::IntegerAttr::get(lowerTy().indexType(), index));
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
field, lowerTy().offsetType(), adaptor.getOperands(),
addLLVMOpBundleAttrs(rewriter, {callAttr, fieldAttr},
adaptor.getOperands().size()));
return mlir::success();
}
// Re-Construct the name of the compiler generated method that calculates the
// offset
inline static std::string getOffsetMethodName(fir::RecordType recTy,
llvm::StringRef field) {
return recTy.getName().str() + "P." + field.str() + ".offset";
}
};
/// Convert `fir.end`
struct FirEndOpConversion : public fir::FIROpConversion<fir::FirEndOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::FirEndOp firEnd, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(firEnd.getLoc(), "fir.end codegen");
return mlir::failure();
}
};
/// Lower `fir.type_desc` to a global addr.
struct TypeDescOpConversion : public fir::FIROpConversion<fir::TypeDescOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::TypeDescOp typeDescOp, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type inTy = typeDescOp.getInType();
assert(mlir::isa<fir::RecordType>(inTy) && "expecting fir.type");
auto recordType = mlir::dyn_cast<fir::RecordType>(inTy);
auto module = typeDescOp.getOperation()->getParentOfType<mlir::ModuleOp>();
std::string typeDescName =
this->options.typeDescriptorsRenamedForAssembly
? fir::NameUniquer::getTypeDescriptorAssemblyName(
recordType.getName())
: fir::NameUniquer::getTypeDescriptorName(recordType.getName());
auto llvmPtrTy = ::getLlvmPtrType(typeDescOp.getContext());
if (auto global = module.lookupSymbol<mlir::LLVM::GlobalOp>(typeDescName)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::AddressOfOp>(
typeDescOp, llvmPtrTy, global.getSymName());
return mlir::success();
} else if (auto global = module.lookupSymbol<fir::GlobalOp>(typeDescName)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::AddressOfOp>(
typeDescOp, llvmPtrTy, global.getSymName());
return mlir::success();
}
return mlir::failure();
}
};
/// Lower `fir.has_value` operation to `llvm.return` operation.
struct HasValueOpConversion
: public mlir::OpConversionPattern<fir::HasValueOp> {
using OpConversionPattern::OpConversionPattern;
llvm::LogicalResult
matchAndRewrite(fir::HasValueOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::ReturnOp>(op,
adaptor.getOperands());
return mlir::success();
}
};
#ifndef NDEBUG
// Check if attr's type is compatible with ty.
//
// This is done by comparing attr's element type, converted to LLVM type,
// with ty's element type.
//
// Only integer and floating point (including complex) attributes are
// supported. Also, attr is expected to have a TensorType and ty is expected
// to be of LLVMArrayType. If any of the previous conditions is false, then
// the specified attr and ty are not supported by this function and are
// assumed to be compatible.
static inline bool attributeTypeIsCompatible(mlir::MLIRContext *ctx,
mlir::Attribute attr,
mlir::Type ty) {
// Get attr's LLVM element type.
if (!attr)
return true;
auto intOrFpEleAttr = mlir::dyn_cast<mlir::DenseIntOrFPElementsAttr>(attr);
if (!intOrFpEleAttr)
return true;
auto tensorTy = mlir::dyn_cast<mlir::TensorType>(intOrFpEleAttr.getType());
if (!tensorTy)
return true;
mlir::Type attrEleTy =
mlir::LLVMTypeConverter(ctx).convertType(tensorTy.getElementType());
// Get ty's element type.
auto arrTy = mlir::dyn_cast<mlir::LLVM::LLVMArrayType>(ty);
if (!arrTy)
return true;
mlir::Type eleTy = arrTy.getElementType();
while ((arrTy = mlir::dyn_cast<mlir::LLVM::LLVMArrayType>(eleTy)))
eleTy = arrTy.getElementType();
return attrEleTy == eleTy;
}
#endif
/// Lower `fir.global` operation to `llvm.global` operation.
/// `fir.insert_on_range` operations are replaced with constant dense attribute
/// if they are applied on the full range.
struct GlobalOpConversion : public fir::FIROpConversion<fir::GlobalOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::GlobalOp global, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::LLVM::DIGlobalVariableExpressionAttr dbgExpr;
if (auto fusedLoc = mlir::dyn_cast<mlir::FusedLoc>(global.getLoc())) {
if (auto gvAttr =
mlir::dyn_cast_or_null<mlir::LLVM::DIGlobalVariableAttr>(
fusedLoc.getMetadata())) {
dbgExpr = mlir::LLVM::DIGlobalVariableExpressionAttr::get(
global.getContext(), gvAttr, mlir::LLVM::DIExpressionAttr());
}
}
auto tyAttr = convertType(global.getType());
if (auto boxType = mlir::dyn_cast<fir::BaseBoxType>(global.getType()))
tyAttr = this->lowerTy().convertBoxTypeAsStruct(boxType);
auto loc = global.getLoc();
mlir::Attribute initAttr = global.getInitVal().value_or(mlir::Attribute());
assert(attributeTypeIsCompatible(global.getContext(), initAttr, tyAttr));
auto linkage = convertLinkage(global.getLinkName());
auto isConst = global.getConstant().has_value();
mlir::SymbolRefAttr comdat;
llvm::ArrayRef<mlir::NamedAttribute> attrs;
auto g = rewriter.create<mlir::LLVM::GlobalOp>(
loc, tyAttr, isConst, linkage, global.getSymName(), initAttr, 0, 0,
false, false, comdat, attrs, dbgExpr);
if (global.getAlignment() && *global.getAlignment() > 0)
g.setAlignment(*global.getAlignment());
auto module = global->getParentOfType<mlir::ModuleOp>();
// Add comdat if necessary
if (fir::getTargetTriple(module).supportsCOMDAT() &&
(linkage == mlir::LLVM::Linkage::Linkonce ||
linkage == mlir::LLVM::Linkage::LinkonceODR)) {
addComdat(g, rewriter, module);
}
// Apply all non-Fir::GlobalOp attributes to the LLVM::GlobalOp, preserving
// them; whilst taking care not to apply attributes that are lowered in
// other ways.
llvm::SmallDenseSet<llvm::StringRef> elidedAttrsSet(
global.getAttributeNames().begin(), global.getAttributeNames().end());
for (auto &attr : global->getAttrs())
if (!elidedAttrsSet.contains(attr.getName().strref()))
g->setAttr(attr.getName(), attr.getValue());
auto &gr = g.getInitializerRegion();
rewriter.inlineRegionBefore(global.getRegion(), gr, gr.end());
if (!gr.empty()) {
// Replace insert_on_range with a constant dense attribute if the
// initialization is on the full range.
auto insertOnRangeOps = gr.front().getOps<fir::InsertOnRangeOp>();
for (auto insertOp : insertOnRangeOps) {
if (isFullRange(insertOp.getCoor(), insertOp.getType())) {
auto seqTyAttr = convertType(insertOp.getType());
auto *op = insertOp.getVal().getDefiningOp();
auto constant = mlir::dyn_cast<mlir::arith::ConstantOp>(op);
if (!constant) {
auto convertOp = mlir::dyn_cast<fir::ConvertOp>(op);
if (!convertOp)
continue;
constant = mlir::cast<mlir::arith::ConstantOp>(
convertOp.getValue().getDefiningOp());
}
mlir::Type vecType = mlir::VectorType::get(
insertOp.getType().getShape(), constant.getType());
auto denseAttr = mlir::DenseElementsAttr::get(
mlir::cast<mlir::ShapedType>(vecType), constant.getValue());
rewriter.setInsertionPointAfter(insertOp);
rewriter.replaceOpWithNewOp<mlir::arith::ConstantOp>(
insertOp, seqTyAttr, denseAttr);
}
}
}
rewriter.eraseOp(global);
return mlir::success();
}
bool isFullRange(mlir::DenseIntElementsAttr indexes,
fir::SequenceType seqTy) const {
auto extents = seqTy.getShape();
if (indexes.size() / 2 != static_cast<int64_t>(extents.size()))
return false;
auto cur_index = indexes.value_begin<int64_t>();
for (unsigned i = 0; i < indexes.size(); i += 2) {
if (*(cur_index++) != 0)
return false;
if (*(cur_index++) != extents[i / 2] - 1)
return false;
}
return true;
}
// TODO: String comparaison should be avoided. Replace linkName with an
// enumeration.
mlir::LLVM::Linkage
convertLinkage(std::optional<llvm::StringRef> optLinkage) const {
if (optLinkage) {
auto name = *optLinkage;
if (name == "internal")
return mlir::LLVM::Linkage::Internal;
if (name == "linkonce")
return mlir::LLVM::Linkage::Linkonce;
if (name == "linkonce_odr")
return mlir::LLVM::Linkage::LinkonceODR;
if (name == "common")
return mlir::LLVM::Linkage::Common;
if (name == "weak")
return mlir::LLVM::Linkage::Weak;
}
return mlir::LLVM::Linkage::External;
}
private:
static void addComdat(mlir::LLVM::GlobalOp &global,
mlir::ConversionPatternRewriter &rewriter,
mlir::ModuleOp &module) {
const char *comdatName = "__llvm_comdat";
mlir::LLVM::ComdatOp comdatOp =
module.lookupSymbol<mlir::LLVM::ComdatOp>(comdatName);
if (!comdatOp) {
comdatOp =
rewriter.create<mlir::LLVM::ComdatOp>(module.getLoc(), comdatName);
}
mlir::OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToEnd(&comdatOp.getBody().back());
auto selectorOp = rewriter.create<mlir::LLVM::ComdatSelectorOp>(
comdatOp.getLoc(), global.getSymName(),
mlir::LLVM::comdat::Comdat::Any);
global.setComdatAttr(mlir::SymbolRefAttr::get(
rewriter.getContext(), comdatName,
mlir::FlatSymbolRefAttr::get(selectorOp.getSymNameAttr())));
}
};
/// `fir.load` --> `llvm.load`
struct LoadOpConversion : public fir::FIROpConversion<fir::LoadOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::LoadOp load, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type llvmLoadTy = convertObjectType(load.getType());
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(load.getType())) {
// fir.box is a special case because it is considered as an ssa values in
// fir, but it is lowered as a pointer to a descriptor. So
// fir.ref<fir.box> and fir.box end up being the same llvm types and
// loading a fir.ref<fir.box> is implemented as taking a snapshot of the
// descriptor value into a new descriptor temp.
auto inputBoxStorage = adaptor.getOperands()[0];
mlir::Location loc = load.getLoc();
auto newBoxStorage =
genAllocaAndAddrCastWithType(loc, llvmLoadTy, defaultAlign, rewriter);
// TODO: always generate llvm.memcpy, LLVM is better at optimizing it than
// aggregate loads + stores.
if (boxTy.isAssumedRank()) {
TypePair boxTypePair{boxTy, llvmLoadTy};
mlir::Value boxSize =
computeBoxSize(loc, boxTypePair, inputBoxStorage, rewriter);
auto memcpy = rewriter.create<mlir::LLVM::MemcpyOp>(
loc, newBoxStorage, inputBoxStorage, boxSize, /*isVolatile=*/false);
if (std::optional<mlir::ArrayAttr> optionalTag = load.getTbaa())
memcpy.setTBAATags(*optionalTag);
else
attachTBAATag(memcpy, boxTy, boxTy, nullptr);
} else {
auto boxValue = rewriter.create<mlir::LLVM::LoadOp>(loc, llvmLoadTy,
inputBoxStorage);
if (std::optional<mlir::ArrayAttr> optionalTag = load.getTbaa())
boxValue.setTBAATags(*optionalTag);
else
attachTBAATag(boxValue, boxTy, boxTy, nullptr);
auto storeOp =
rewriter.create<mlir::LLVM::StoreOp>(loc, boxValue, newBoxStorage);
attachTBAATag(storeOp, boxTy, boxTy, nullptr);
}
rewriter.replaceOp(load, newBoxStorage);
} else {
auto loadOp = rewriter.create<mlir::LLVM::LoadOp>(
load.getLoc(), llvmLoadTy, adaptor.getOperands(), load->getAttrs());
if (std::optional<mlir::ArrayAttr> optionalTag = load.getTbaa())
loadOp.setTBAATags(*optionalTag);
else
attachTBAATag(loadOp, load.getType(), load.getType(), nullptr);
rewriter.replaceOp(load, loadOp.getResult());
}
return mlir::success();
}
};
/// Lower `fir.no_reassoc` to LLVM IR dialect.
/// TODO: how do we want to enforce this in LLVM-IR? Can we manipulate the fast
/// math flags?
struct NoReassocOpConversion : public fir::FIROpConversion<fir::NoReassocOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::NoReassocOp noreassoc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOp(noreassoc, adaptor.getOperands()[0]);
return mlir::success();
}
};
static void genCondBrOp(mlir::Location loc, mlir::Value cmp, mlir::Block *dest,
std::optional<mlir::ValueRange> destOps,
mlir::ConversionPatternRewriter &rewriter,
mlir::Block *newBlock) {
if (destOps)
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, *destOps, newBlock,
mlir::ValueRange());
else
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, newBlock);
}
template <typename A, typename B>
static void genBrOp(A caseOp, mlir::Block *dest, std::optional<B> destOps,
mlir::ConversionPatternRewriter &rewriter) {
if (destOps)
rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, *destOps, dest);
else
rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, std::nullopt, dest);
}
static void genCaseLadderStep(mlir::Location loc, mlir::Value cmp,
mlir::Block *dest,
std::optional<mlir::ValueRange> destOps,
mlir::ConversionPatternRewriter &rewriter) {
auto *thisBlock = rewriter.getInsertionBlock();
auto *newBlock = createBlock(rewriter, dest);
rewriter.setInsertionPointToEnd(thisBlock);
genCondBrOp(loc, cmp, dest, destOps, rewriter, newBlock);
rewriter.setInsertionPointToEnd(newBlock);
}
/// Conversion of `fir.select_case`
///
/// The `fir.select_case` operation is converted to a if-then-else ladder.
/// Depending on the case condition type, one or several comparison and
/// conditional branching can be generated.
///
/// A point value case such as `case(4)`, a lower bound case such as
/// `case(5:)` or an upper bound case such as `case(:3)` are converted to a
/// simple comparison between the selector value and the constant value in the
/// case. The block associated with the case condition is then executed if
/// the comparison succeed otherwise it branch to the next block with the
/// comparison for the next case conditon.
///
/// A closed interval case condition such as `case(7:10)` is converted with a
/// first comparison and conditional branching for the lower bound. If
/// successful, it branch to a second block with the comparison for the
/// upper bound in the same case condition.
///
/// TODO: lowering of CHARACTER type cases is not handled yet.
struct SelectCaseOpConversion : public fir::FIROpConversion<fir::SelectCaseOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::SelectCaseOp caseOp, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
unsigned conds = caseOp.getNumConditions();
llvm::ArrayRef<mlir::Attribute> cases = caseOp.getCases().getValue();
// Type can be CHARACTER, INTEGER, or LOGICAL (C1145)
auto ty = caseOp.getSelector().getType();
if (mlir::isa<fir::CharacterType>(ty)) {
TODO(caseOp.getLoc(), "fir.select_case codegen with character type");
return mlir::failure();
}
mlir::Value selector = caseOp.getSelector(adaptor.getOperands());
auto loc = caseOp.getLoc();
for (unsigned t = 0; t != conds; ++t) {
mlir::Block *dest = caseOp.getSuccessor(t);
std::optional<mlir::ValueRange> destOps =
caseOp.getSuccessorOperands(adaptor.getOperands(), t);
std::optional<mlir::ValueRange> cmpOps =
*caseOp.getCompareOperands(adaptor.getOperands(), t);
mlir::Attribute attr = cases[t];
assert(mlir::isa<mlir::UnitAttr>(attr) || cmpOps.has_value());
if (mlir::isa<fir::PointIntervalAttr>(attr)) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, selector, cmpOps->front());
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (mlir::isa<fir::LowerBoundAttr>(attr)) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, cmpOps->front(), selector);
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (mlir::isa<fir::UpperBoundAttr>(attr)) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, selector, cmpOps->front());
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (mlir::isa<fir::ClosedIntervalAttr>(attr)) {
mlir::Value caseArg0 = *cmpOps->begin();
auto cmp0 = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, caseArg0, selector);
auto *thisBlock = rewriter.getInsertionBlock();
auto *newBlock1 = createBlock(rewriter, dest);
auto *newBlock2 = createBlock(rewriter, dest);
rewriter.setInsertionPointToEnd(thisBlock);
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp0, newBlock1, newBlock2);
rewriter.setInsertionPointToEnd(newBlock1);
mlir::Value caseArg1 = *(cmpOps->begin() + 1);
auto cmp1 = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg1);
genCondBrOp(loc, cmp1, dest, destOps, rewriter, newBlock2);
rewriter.setInsertionPointToEnd(newBlock2);
continue;
}
assert(mlir::isa<mlir::UnitAttr>(attr));
assert((t + 1 == conds) && "unit must be last");
genBrOp(caseOp, dest, destOps, rewriter);
}
return mlir::success();
}
};
template <typename OP>
static void selectMatchAndRewrite(const fir::LLVMTypeConverter &lowering,
OP select, typename OP::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) {
unsigned conds = select.getNumConditions();
auto cases = select.getCases().getValue();
mlir::Value selector = adaptor.getSelector();
auto loc = select.getLoc();
assert(conds > 0 && "select must have cases");
llvm::SmallVector<mlir::Block *> destinations;
llvm::SmallVector<mlir::ValueRange> destinationsOperands;
mlir::Block *defaultDestination;
mlir::ValueRange defaultOperands;
llvm::SmallVector<int32_t> caseValues;
for (unsigned t = 0; t != conds; ++t) {
mlir::Block *dest = select.getSuccessor(t);
auto destOps = select.getSuccessorOperands(adaptor.getOperands(), t);
const mlir::Attribute &attr = cases[t];
if (auto intAttr = mlir::dyn_cast<mlir::IntegerAttr>(attr)) {
destinations.push_back(dest);
destinationsOperands.push_back(destOps ? *destOps : mlir::ValueRange{});
caseValues.push_back(intAttr.getInt());
continue;
}
assert(mlir::dyn_cast_or_null<mlir::UnitAttr>(attr));
assert((t + 1 == conds) && "unit must be last");
defaultDestination = dest;
defaultOperands = destOps ? *destOps : mlir::ValueRange{};
}
// LLVM::SwitchOp takes a i32 type for the selector.
if (select.getSelector().getType() != rewriter.getI32Type())
selector = rewriter.create<mlir::LLVM::TruncOp>(loc, rewriter.getI32Type(),
selector);
rewriter.replaceOpWithNewOp<mlir::LLVM::SwitchOp>(
select, selector,
/*defaultDestination=*/defaultDestination,
/*defaultOperands=*/defaultOperands,
/*caseValues=*/caseValues,
/*caseDestinations=*/destinations,
/*caseOperands=*/destinationsOperands,
/*branchWeights=*/llvm::ArrayRef<std::int32_t>());
}
/// conversion of fir::SelectOp to an if-then-else ladder
struct SelectOpConversion : public fir::FIROpConversion<fir::SelectOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::SelectOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
selectMatchAndRewrite<fir::SelectOp>(lowerTy(), op, adaptor, rewriter);
return mlir::success();
}
};
/// conversion of fir::SelectRankOp to an if-then-else ladder
struct SelectRankOpConversion : public fir::FIROpConversion<fir::SelectRankOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::SelectRankOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
selectMatchAndRewrite<fir::SelectRankOp>(lowerTy(), op, adaptor, rewriter);
return mlir::success();
}
};
/// Lower `fir.select_type` to LLVM IR dialect.
struct SelectTypeOpConversion : public fir::FIROpConversion<fir::SelectTypeOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::SelectTypeOp select, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::emitError(select.getLoc(),
"fir.select_type should have already been converted");
return mlir::failure();
}
};
/// `fir.store` --> `llvm.store`
struct StoreOpConversion : public fir::FIROpConversion<fir::StoreOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::StoreOp store, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = store.getLoc();
mlir::Type storeTy = store.getValue().getType();
mlir::Value llvmValue = adaptor.getValue();
mlir::Value llvmMemref = adaptor.getMemref();
mlir::LLVM::AliasAnalysisOpInterface newOp;
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(storeTy)) {
mlir::Type llvmBoxTy = lowerTy().convertBoxTypeAsStruct(boxTy);
// fir.box value is actually in memory, load it first before storing it,
// or do a memcopy for assumed-rank descriptors.
if (boxTy.isAssumedRank()) {
TypePair boxTypePair{boxTy, llvmBoxTy};
mlir::Value boxSize =
computeBoxSize(loc, boxTypePair, llvmValue, rewriter);
newOp = rewriter.create<mlir::LLVM::MemcpyOp>(
loc, llvmMemref, llvmValue, boxSize, /*isVolatile=*/false);
} else {
auto val =
rewriter.create<mlir::LLVM::LoadOp>(loc, llvmBoxTy, llvmValue);
attachTBAATag(val, boxTy, boxTy, nullptr);
newOp = rewriter.create<mlir::LLVM::StoreOp>(loc, val, llvmMemref);
}
} else {
newOp = rewriter.create<mlir::LLVM::StoreOp>(loc, llvmValue, llvmMemref);
}
if (std::optional<mlir::ArrayAttr> optionalTag = store.getTbaa())
newOp.setTBAATags(*optionalTag);
else
attachTBAATag(newOp, storeTy, storeTy, nullptr);
rewriter.eraseOp(store);
return mlir::success();
}
};
namespace {
/// Convert `fir.unboxchar` into two `llvm.extractvalue` instructions. One for
/// the character buffer and one for the buffer length.
struct UnboxCharOpConversion : public fir::FIROpConversion<fir::UnboxCharOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::UnboxCharOp unboxchar, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type lenTy = convertType(unboxchar.getType(1));
mlir::Value tuple = adaptor.getOperands()[0];
mlir::Location loc = unboxchar.getLoc();
mlir::Value ptrToBuffer =
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, tuple, 0);
auto len = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, tuple, 1);
mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, len);
rewriter.replaceOp(unboxchar,
llvm::ArrayRef<mlir::Value>{ptrToBuffer, lenAfterCast});
return mlir::success();
}
};
/// Lower `fir.unboxproc` operation. Unbox a procedure box value, yielding its
/// components.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct UnboxProcOpConversion : public fir::FIROpConversion<fir::UnboxProcOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::UnboxProcOp unboxproc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(unboxproc.getLoc(), "fir.unboxproc codegen");
return mlir::failure();
}
};
/// convert to LLVM IR dialect `undef`
struct UndefOpConversion : public fir::FIROpConversion<fir::UndefOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::UndefOp undef, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::UndefOp>(
undef, convertType(undef.getType()));
return mlir::success();
}
};
struct ZeroOpConversion : public fir::FIROpConversion<fir::ZeroOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::ZeroOp zero, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type ty = convertType(zero.getType());
rewriter.replaceOpWithNewOp<mlir::LLVM::ZeroOp>(zero, ty);
return mlir::success();
}
};
/// `fir.unreachable` --> `llvm.unreachable`
struct UnreachableOpConversion
: public fir::FIROpConversion<fir::UnreachableOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::UnreachableOp unreach, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::UnreachableOp>(unreach);
return mlir::success();
}
};
/// `fir.is_present` -->
/// ```
/// %0 = llvm.mlir.constant(0 : i64)
/// %1 = llvm.ptrtoint %0
/// %2 = llvm.icmp "ne" %1, %0 : i64
/// ```
struct IsPresentOpConversion : public fir::FIROpConversion<fir::IsPresentOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::IsPresentOp isPresent, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type idxTy = lowerTy().indexType();
mlir::Location loc = isPresent.getLoc();
auto ptr = adaptor.getOperands()[0];
if (mlir::isa<fir::BoxCharType>(isPresent.getVal().getType())) {
[[maybe_unused]] auto structTy =
mlir::cast<mlir::LLVM::LLVMStructType>(ptr.getType());
assert(!structTy.isOpaque() && !structTy.getBody().empty());
ptr = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ptr, 0);
}
mlir::LLVM::ConstantOp c0 =
genConstantIndex(isPresent.getLoc(), idxTy, rewriter, 0);
auto addr = rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, ptr);
rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
isPresent, mlir::LLVM::ICmpPredicate::ne, addr, c0);
return mlir::success();
}
};
/// Create value signaling an absent optional argument in a call, e.g.
/// `fir.absent !fir.ref<i64>` --> `llvm.mlir.zero : !llvm.ptr<i64>`
struct AbsentOpConversion : public fir::FIROpConversion<fir::AbsentOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::AbsentOp absent, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type ty = convertType(absent.getType());
mlir::Location loc = absent.getLoc();
if (mlir::isa<fir::BoxCharType>(absent.getType())) {
auto structTy = mlir::cast<mlir::LLVM::LLVMStructType>(ty);
assert(!structTy.isOpaque() && !structTy.getBody().empty());
auto undefStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto nullField =
rewriter.create<mlir::LLVM::ZeroOp>(loc, structTy.getBody()[0]);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
absent, undefStruct, nullField, 0);
} else {
rewriter.replaceOpWithNewOp<mlir::LLVM::ZeroOp>(absent, ty);
}
return mlir::success();
}
};
//
// Primitive operations on Complex types
//
template <typename OPTY>
static inline mlir::LLVM::FastmathFlagsAttr getLLVMFMFAttr(OPTY op) {
return mlir::LLVM::FastmathFlagsAttr::get(
op.getContext(),
mlir::arith::convertArithFastMathFlagsToLLVM(op.getFastmath()));
}
/// Generate inline code for complex addition/subtraction
template <typename LLVMOP, typename OPTY>
static mlir::LLVM::InsertValueOp
complexSum(OPTY sumop, mlir::ValueRange opnds,
mlir::ConversionPatternRewriter &rewriter,
const fir::LLVMTypeConverter &lowering) {
mlir::LLVM::FastmathFlagsAttr fmf = getLLVMFMFAttr(sumop);
mlir::Value a = opnds[0];
mlir::Value b = opnds[1];
auto loc = sumop.getLoc();
mlir::Type eleTy = lowering.convertType(getComplexEleTy(sumop.getType()));
mlir::Type ty = lowering.convertType(sumop.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, a, 0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, a, 1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, b, 0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, b, 1);
auto rx = rewriter.create<LLVMOP>(loc, eleTy, x0, x1, fmf);
auto ry = rewriter.create<LLVMOP>(loc, eleTy, y0, y1, fmf);
auto r0 = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, r0, rx, 0);
return rewriter.create<mlir::LLVM::InsertValueOp>(loc, r1, ry, 1);
}
} // namespace
namespace {
struct AddcOpConversion : public fir::FIROpConversion<fir::AddcOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::AddcOp addc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) + (x' + iy')
// result: (x + x') + i(y + y')
auto r = complexSum<mlir::LLVM::FAddOp>(addc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(addc, r.getResult());
return mlir::success();
}
};
struct SubcOpConversion : public fir::FIROpConversion<fir::SubcOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::SubcOp subc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) - (x' + iy')
// result: (x - x') + i(y - y')
auto r = complexSum<mlir::LLVM::FSubOp>(subc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(subc, r.getResult());
return mlir::success();
}
};
/// Inlined complex multiply
struct MulcOpConversion : public fir::FIROpConversion<fir::MulcOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::MulcOp mulc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __muldc3 ?
// given: (x + iy) * (x' + iy')
// result: (xx'-yy')+i(xy'+yx')
mlir::LLVM::FastmathFlagsAttr fmf = getLLVMFMFAttr(mulc);
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = mulc.getLoc();
mlir::Type eleTy = convertType(getComplexEleTy(mulc.getType()));
mlir::Type ty = convertType(mulc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, a, 0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, a, 1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, b, 0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, b, 1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1, fmf);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1, fmf);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1, fmf);
auto ri = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xy, yx, fmf);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1, fmf);
auto rr = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, xx, yy, fmf);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ra, rr, 0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, r1, ri, 1);
rewriter.replaceOp(mulc, r0.getResult());
return mlir::success();
}
};
/// Inlined complex division
struct DivcOpConversion : public fir::FIROpConversion<fir::DivcOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::DivcOp divc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __divdc3 instead?
// Just generate inline code for now.
// given: (x + iy) / (x' + iy')
// result: ((xx'+yy')/d) + i((yx'-xy')/d) where d = x'x' + y'y'
mlir::LLVM::FastmathFlagsAttr fmf = getLLVMFMFAttr(divc);
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = divc.getLoc();
mlir::Type eleTy = convertType(getComplexEleTy(divc.getType()));
mlir::Type ty = convertType(divc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, a, 0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, a, 1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, b, 0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, b, 1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1, fmf);
auto x1x1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x1, x1, fmf);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1, fmf);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1, fmf);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1, fmf);
auto y1y1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y1, y1, fmf);
auto d = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, x1x1, y1y1, fmf);
auto rrn = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xx, yy, fmf);
auto rin = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, yx, xy, fmf);
auto rr = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rrn, d, fmf);
auto ri = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rin, d, fmf);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ra, rr, 0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, r1, ri, 1);
rewriter.replaceOp(divc, r0.getResult());
return mlir::success();
}
};
/// Inlined complex negation
struct NegcOpConversion : public fir::FIROpConversion<fir::NegcOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::NegcOp neg, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: -(x + iy)
// result: -x - iy
auto eleTy = convertType(getComplexEleTy(neg.getType()));
auto loc = neg.getLoc();
mlir::Value o0 = adaptor.getOperands()[0];
auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, o0, 0);
auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, o0, 1);
auto nrp = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, rp);
auto nip = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, ip);
auto r = rewriter.create<mlir::LLVM::InsertValueOp>(loc, o0, nrp, 0);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(neg, r, nip, 1);
return mlir::success();
}
};
struct BoxOffsetOpConversion : public fir::FIROpConversion<fir::BoxOffsetOp> {
using FIROpConversion::FIROpConversion;
llvm::LogicalResult
matchAndRewrite(fir::BoxOffsetOp boxOffset, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type pty = ::getLlvmPtrType(boxOffset.getContext());
mlir::Type boxType = fir::unwrapRefType(boxOffset.getBoxRef().getType());
mlir::Type llvmBoxTy =
lowerTy().convertBoxTypeAsStruct(mlir::cast<fir::BaseBoxType>(boxType));
int fieldId = boxOffset.getField() == fir::BoxFieldAttr::derived_type
? getTypeDescFieldId(boxType)
: kAddrPosInBox;
rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(
boxOffset, pty, llvmBoxTy, adaptor.getBoxRef(),
llvm::ArrayRef<mlir::LLVM::GEPArg>{0, fieldId});
return mlir::success();
}
};
/// Conversion pattern for operation that must be dead. The information in these
/// operations is used by other operation. At this point they should not have
/// anymore uses.
/// These operations are normally dead after the pre-codegen pass.
template <typename FromOp>
struct MustBeDeadConversion : public fir::FIROpConversion<FromOp> {
explicit MustBeDeadConversion(const fir::LLVMTypeConverter &lowering,
const fir::FIRToLLVMPassOptions &options)
: fir::FIROpConversion<FromOp>(lowering, options) {}
using OpAdaptor = typename FromOp::Adaptor;
llvm::LogicalResult
matchAndRewrite(FromOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const final {
if (!op->getUses().empty())
return rewriter.notifyMatchFailure(op, "op must be dead");
rewriter.eraseOp(op);
return mlir::success();
}
};
struct ShapeOpConversion : public MustBeDeadConversion<fir::ShapeOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct ShapeShiftOpConversion : public MustBeDeadConversion<fir::ShapeShiftOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct ShiftOpConversion : public MustBeDeadConversion<fir::ShiftOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct SliceOpConversion : public MustBeDeadConversion<fir::SliceOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
} // namespace
namespace {
class RenameMSVCLibmCallees
: public mlir::OpRewritePattern<mlir::LLVM::CallOp> {
public:
using OpRewritePattern::OpRewritePattern;
llvm::LogicalResult
matchAndRewrite(mlir::LLVM::CallOp op,
mlir::PatternRewriter &rewriter) const override {
rewriter.startOpModification(op);
auto callee = op.getCallee();
if (callee)
if (*callee == "hypotf")
op.setCalleeAttr(mlir::SymbolRefAttr::get(op.getContext(), "_hypotf"));
rewriter.finalizeOpModification(op);
return mlir::success();
}
};
class RenameMSVCLibmFuncs
: public mlir::OpRewritePattern<mlir::LLVM::LLVMFuncOp> {
public:
using OpRewritePattern::OpRewritePattern;
llvm::LogicalResult
matchAndRewrite(mlir::LLVM::LLVMFuncOp op,
mlir::PatternRewriter &rewriter) const override {
rewriter.startOpModification(op);
if (op.getSymName() == "hypotf")
op.setSymNameAttr(rewriter.getStringAttr("_hypotf"));
rewriter.finalizeOpModification(op);
return mlir::success();
}
};
} // namespace
namespace {
/// Convert FIR dialect to LLVM dialect
///
/// This pass lowers all FIR dialect operations to LLVM IR dialect. An
/// MLIR pass is used to lower residual Std dialect to LLVM IR dialect.
class FIRToLLVMLowering
: public fir::impl::FIRToLLVMLoweringBase<FIRToLLVMLowering> {
public:
FIRToLLVMLowering() = default;
FIRToLLVMLowering(fir::FIRToLLVMPassOptions options) : options{options} {}
mlir::ModuleOp getModule() { return getOperation(); }
void runOnOperation() override final {
auto mod = getModule();
if (!forcedTargetTriple.empty())
fir::setTargetTriple(mod, forcedTargetTriple);
if (!forcedDataLayout.empty()) {
llvm::DataLayout dl(forcedDataLayout);
fir::support::setMLIRDataLayout(mod, dl);
}
if (!forcedTargetCPU.empty())
fir::setTargetCPU(mod, forcedTargetCPU);
if (!forcedTuneCPU.empty())
fir::setTuneCPU(mod, forcedTuneCPU);
if (!forcedTargetFeatures.empty())
fir::setTargetFeatures(mod, forcedTargetFeatures);
if (typeDescriptorsRenamedForAssembly)
options.typeDescriptorsRenamedForAssembly =
typeDescriptorsRenamedForAssembly;
// Run dynamic pass pipeline for converting Math dialect
// operations into other dialects (llvm, func, etc.).
// Some conversions of Math operations cannot be done
// by just using conversion patterns. This is true for
// conversions that affect the ModuleOp, e.g. create new
// function operations in it. We have to run such conversions
// as passes here.
mlir::OpPassManager mathConvertionPM("builtin.module");
bool isAMDGCN = fir::getTargetTriple(mod).isAMDGCN();
// If compiling for AMD target some math operations must be lowered to AMD
// GPU library calls, the rest can be converted to LLVM intrinsics, which
// is handled in the mathToLLVM conversion. The lowering to libm calls is
// not needed since all math operations are handled this way.
if (isAMDGCN)
mathConvertionPM.addPass(mlir::createConvertMathToROCDL());
// Convert math::FPowI operations to inline implementation
// only if the exponent's width is greater than 32, otherwise,
// it will be lowered to LLVM intrinsic operation by a later conversion.
mlir::ConvertMathToFuncsOptions mathToFuncsOptions{};
mathToFuncsOptions.minWidthOfFPowIExponent = 33;
mathConvertionPM.addPass(
mlir::createConvertMathToFuncs(mathToFuncsOptions));
mathConvertionPM.addPass(mlir::createConvertComplexToStandardPass());
// Convert Math dialect operations into LLVM dialect operations.
// There is no way to prefer MathToLLVM patterns over MathToLibm
// patterns (applied below), so we have to run MathToLLVM conversion here.
mathConvertionPM.addNestedPass<mlir::func::FuncOp>(
mlir::createConvertMathToLLVMPass());
if (mlir::failed(runPipeline(mathConvertionPM, mod)))
return signalPassFailure();
std::optional<mlir::DataLayout> dl =
fir::support::getOrSetDataLayout(mod, /*allowDefaultLayout=*/true);
if (!dl) {
mlir::emitError(mod.getLoc(),
"module operation must carry a data layout attribute "
"to generate llvm IR from FIR");
signalPassFailure();
return;
}
auto *context = getModule().getContext();
fir::LLVMTypeConverter typeConverter{getModule(),
options.applyTBAA || applyTBAA,
options.forceUnifiedTBAATree, *dl};
mlir::RewritePatternSet pattern(context);
fir::populateFIRToLLVMConversionPatterns(typeConverter, pattern, options);
mlir::populateFuncToLLVMConversionPatterns(typeConverter, pattern);
mlir::populateOpenMPToLLVMConversionPatterns(typeConverter, pattern);
mlir::arith::populateArithToLLVMConversionPatterns(typeConverter, pattern);
mlir::cf::populateControlFlowToLLVMConversionPatterns(typeConverter,
pattern);
// Math operations that have not been converted yet must be converted
// to Libm.
if (!isAMDGCN)
mlir::populateMathToLibmConversionPatterns(pattern);
mlir::populateComplexToLLVMConversionPatterns(typeConverter, pattern);
mlir::populateVectorToLLVMConversionPatterns(typeConverter, pattern);
// Flang specific overloads for OpenMP operations, to allow for special
// handling of things like Box types.
fir::populateOpenMPFIRToLLVMConversionPatterns(typeConverter, pattern);
mlir::ConversionTarget target{*context};
target.addLegalDialect<mlir::LLVM::LLVMDialect>();
// The OpenMP dialect is legal for Operations without regions, for those
// which contains regions it is legal if the region contains only the
// LLVM dialect. Add OpenMP dialect as a legal dialect for conversion and
// legalize conversion of OpenMP operations without regions.
mlir::configureOpenMPToLLVMConversionLegality(target, typeConverter);
target.addLegalDialect<mlir::omp::OpenMPDialect>();
target.addLegalDialect<mlir::acc::OpenACCDialect>();
// required NOPs for applying a full conversion
target.addLegalOp<mlir::ModuleOp>();
// If we're on Windows, we might need to rename some libm calls.
bool isMSVC = fir::getTargetTriple(mod).isOSMSVCRT();
if (isMSVC) {
pattern.insert<RenameMSVCLibmCallees, RenameMSVCLibmFuncs>(context);
target.addDynamicallyLegalOp<mlir::LLVM::CallOp>(
[](mlir::LLVM::CallOp op) {
auto callee = op.getCallee();
if (!callee)
return true;
return *callee != "hypotf";
});
target.addDynamicallyLegalOp<mlir::LLVM::LLVMFuncOp>(
[](mlir::LLVM::LLVMFuncOp op) {
return op.getSymName() != "hypotf";
});
}
// apply the patterns
if (mlir::failed(mlir::applyFullConversion(getModule(), target,
std::move(pattern)))) {
signalPassFailure();
}
// Run pass to add comdats to functions that have weak linkage on relevant
// platforms
if (fir::getTargetTriple(mod).supportsCOMDAT()) {
mlir::OpPassManager comdatPM("builtin.module");
comdatPM.addPass(mlir::LLVM::createLLVMAddComdats());
if (mlir::failed(runPipeline(comdatPM, mod)))
return signalPassFailure();
}
}
private:
fir::FIRToLLVMPassOptions options;
};
/// Lower from LLVM IR dialect to proper LLVM-IR and dump the module
struct LLVMIRLoweringPass
: public mlir::PassWrapper<LLVMIRLoweringPass,
mlir::OperationPass<mlir::ModuleOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(LLVMIRLoweringPass)
LLVMIRLoweringPass(llvm::raw_ostream &output, fir::LLVMIRLoweringPrinter p)
: output{output}, printer{p} {}
mlir::ModuleOp getModule() { return getOperation(); }
void runOnOperation() override final {
auto *ctx = getModule().getContext();
auto optName = getModule().getName();
llvm::LLVMContext llvmCtx;
if (auto llvmModule = mlir::translateModuleToLLVMIR(
getModule(), llvmCtx, optName ? *optName : "FIRModule")) {
printer(*llvmModule, output);
return;
}
mlir::emitError(mlir::UnknownLoc::get(ctx), "could not emit LLVM-IR\n");
signalPassFailure();
}
private:
llvm::raw_ostream &output;
fir::LLVMIRLoweringPrinter printer;
};
} // namespace
std::unique_ptr<mlir::Pass> fir::createFIRToLLVMPass() {
return std::make_unique<FIRToLLVMLowering>();
}
std::unique_ptr<mlir::Pass>
fir::createFIRToLLVMPass(fir::FIRToLLVMPassOptions options) {
return std::make_unique<FIRToLLVMLowering>(options);
}
std::unique_ptr<mlir::Pass>
fir::createLLVMDialectToLLVMPass(llvm::raw_ostream &output,
fir::LLVMIRLoweringPrinter printer) {
return std::make_unique<LLVMIRLoweringPass>(output, printer);
}
void fir::populateFIRToLLVMConversionPatterns(
fir::LLVMTypeConverter &converter, mlir::RewritePatternSet &patterns,
fir::FIRToLLVMPassOptions &options) {
patterns.insert<
AbsentOpConversion, AddcOpConversion, AddrOfOpConversion,
AllocaOpConversion, AllocMemOpConversion, BoxAddrOpConversion,
BoxCharLenOpConversion, BoxDimsOpConversion, BoxEleSizeOpConversion,
BoxIsAllocOpConversion, BoxIsArrayOpConversion, BoxIsPtrOpConversion,
BoxOffsetOpConversion, BoxProcHostOpConversion, BoxRankOpConversion,
BoxTypeCodeOpConversion, BoxTypeDescOpConversion, CallOpConversion,
CmpcOpConversion, ConvertOpConversion, CoordinateOpConversion,
DTEntryOpConversion, DeclareOpConversion, DivcOpConversion,
EmboxOpConversion, EmboxCharOpConversion, EmboxProcOpConversion,
ExtractValueOpConversion, FieldIndexOpConversion, FirEndOpConversion,
FreeMemOpConversion, GlobalLenOpConversion, GlobalOpConversion,
InsertOnRangeOpConversion, IsPresentOpConversion,
LenParamIndexOpConversion, LoadOpConversion, MulcOpConversion,
NegcOpConversion, NoReassocOpConversion, SelectCaseOpConversion,
SelectOpConversion, SelectRankOpConversion, SelectTypeOpConversion,
ShapeOpConversion, ShapeShiftOpConversion, ShiftOpConversion,
SliceOpConversion, StoreOpConversion, StringLitOpConversion,
SubcOpConversion, TypeDescOpConversion, TypeInfoOpConversion,
UnboxCharOpConversion, UnboxProcOpConversion, UndefOpConversion,
UnreachableOpConversion, XArrayCoorOpConversion, XEmboxOpConversion,
XReboxOpConversion, ZeroOpConversion>(converter, options);
// Patterns that are populated without a type converter do not trigger
// target materializations for the operands of the root op.
patterns.insert<HasValueOpConversion, InsertValueOpConversion>(
patterns.getContext());
}