//===-- Reduction.cpp -- generate reduction intrinsics runtime calls- -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/Runtime/Reduction.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
#include "flang/Optimizer/Support/Utils.h"
#include "flang/Runtime/reduce.h"
#include "flang/Runtime/reduction.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
using namespace Fortran::runtime;
#define STRINGIFY(S) #S
#define JOIN2(A, B) A##B
#define JOIN3(A, B, C) A##B##C
/// Placeholder for real*10 version of Maxval Intrinsic
struct ForcedMaxvalReal10 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(MaxvalReal10));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF80(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for real*16 version of Maxval Intrinsic
struct ForcedMaxvalReal16 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(MaxvalReal16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF128(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for integer*16 version of Maxval Intrinsic
struct ForcedMaxvalInteger16 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(MaxvalInteger16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for real*10 version of Minval Intrinsic
struct ForcedMinvalReal10 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(MinvalReal10));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF80(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for real*16 version of Minval Intrinsic
struct ForcedMinvalReal16 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(MinvalReal16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF128(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for integer*16 version of Minval Intrinsic
struct ForcedMinvalInteger16 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(MinvalInteger16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
// Maxloc/Minloc take descriptor, so these runtime signature are not ifdef
// and the mkRTKey can safely be used here. Define alias so that the
// REAL_INTRINSIC_INSTANCES macro works with them too
using ForcedMaxlocReal10 = mkRTKey(MaxlocReal10);
using ForcedMaxlocReal16 = mkRTKey(MaxlocReal16);
using ForcedMaxlocInteger16 = mkRTKey(MaxlocInteger16);
using ForcedMinlocReal10 = mkRTKey(MinlocReal10);
using ForcedMinlocReal16 = mkRTKey(MinlocReal16);
using ForcedMinlocInteger16 = mkRTKey(MinlocInteger16);
/// Placeholder for real*10 version of Norm2 Intrinsic
struct ForcedNorm2Real10 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(Norm2_10));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF80(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy}, {ty});
};
}
};
/// Placeholder for real*16 version of Norm2 Intrinsic
struct ForcedNorm2Real16 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(Norm2_16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF128(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy}, {ty});
};
}
};
/// Placeholder for real*16 version of Norm2Dim Intrinsic
struct ForcedNorm2DimReal16 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(Norm2DimReal16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(
ctx, {fir::ReferenceType::get(boxTy), boxTy, intTy, strTy, intTy},
mlir::NoneType::get(ctx));
};
}
};
/// Placeholder for real*10 version of Product Intrinsic
struct ForcedProductReal10 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(ProductReal10));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF80(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for real*16 version of Product Intrinsic
struct ForcedProductReal16 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(ProductReal16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF128(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for integer*16 version of Product Intrinsic
struct ForcedProductInteger16 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ProductInteger16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for complex(10) version of Product Intrinsic
struct ForcedProductComplex10 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppProductComplex10));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF80(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto resTy = fir::ReferenceType::get(ty);
return mlir::FunctionType::get(
ctx, {resTy, boxTy, strTy, intTy, intTy, boxTy}, {});
};
}
};
/// Placeholder for complex(16) version of Product Intrinsic
struct ForcedProductComplex16 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppProductComplex16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF128(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto resTy = fir::ReferenceType::get(ty);
return mlir::FunctionType::get(
ctx, {resTy, boxTy, strTy, intTy, intTy, boxTy}, {});
};
}
};
/// Placeholder for real*10 version of DotProduct Intrinsic
struct ForcedDotProductReal10 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(DotProductReal10));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF80(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, boxTy, strTy, intTy}, {ty});
};
}
};
/// Placeholder for real*16 version of DotProduct Intrinsic
struct ForcedDotProductReal16 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(DotProductReal16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF128(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, boxTy, strTy, intTy}, {ty});
};
}
};
/// Placeholder for complex(10) version of DotProduct Intrinsic
struct ForcedDotProductComplex10 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppDotProductComplex10));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF80(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto resTy = fir::ReferenceType::get(ty);
return mlir::FunctionType::get(ctx, {resTy, boxTy, boxTy, strTy, intTy},
{});
};
}
};
/// Placeholder for complex(16) version of DotProduct Intrinsic
struct ForcedDotProductComplex16 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppDotProductComplex16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF128(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto resTy = fir::ReferenceType::get(ty);
return mlir::FunctionType::get(ctx, {resTy, boxTy, boxTy, strTy, intTy},
{});
};
}
};
/// Placeholder for integer*16 version of DotProduct Intrinsic
struct ForcedDotProductInteger16 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(DotProductInteger16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, boxTy, strTy, intTy}, {ty});
};
}
};
/// Placeholder for real*10 version of Sum Intrinsic
struct ForcedSumReal10 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(SumReal10));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF80(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for real*16 version of Sum Intrinsic
struct ForcedSumReal16 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(SumReal16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF128(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for integer*16 version of Sum Intrinsic
struct ForcedSumInteger16 {
static constexpr const char *name = ExpandAndQuoteKey(RTNAME(SumInteger16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for complex(10) version of Sum Intrinsic
struct ForcedSumComplex10 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppSumComplex10));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF80(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto resTy = fir::ReferenceType::get(ty);
return mlir::FunctionType::get(
ctx, {resTy, boxTy, strTy, intTy, intTy, boxTy}, {});
};
}
};
/// Placeholder for complex(16) version of Sum Intrinsic
struct ForcedSumComplex16 {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppSumComplex16));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF128(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto resTy = fir::ReferenceType::get(ty);
return mlir::FunctionType::get(
ctx, {resTy, boxTy, strTy, intTy, intTy, boxTy}, {});
};
}
};
/// Placeholder for integer(16) version of IAll Intrinsic
struct ForcedIAll16 {
static constexpr const char *name = EXPAND_AND_QUOTE_KEY(IAll16);
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for integer(16) version of IAny Intrinsic
struct ForcedIAny16 {
static constexpr const char *name = EXPAND_AND_QUOTE_KEY(IAny16);
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for integer(16) version of IParity Intrinsic
struct ForcedIParity16 {
static constexpr const char *name = EXPAND_AND_QUOTE_KEY(IParity16);
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
return mlir::FunctionType::get(ctx, {boxTy, strTy, intTy, intTy, boxTy},
{ty});
};
}
};
/// Placeholder for real*10 version of Reduce Intrinsic
struct ForcedReduceReal10Ref {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceReal10Ref));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF80(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {refTy, refTy}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty}, {ty});
};
}
};
/// Placeholder for real*10 version of Reduce Intrinsic
struct ForcedReduceReal10Value {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceReal10Value));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF80(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {ty, ty}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty}, {ty});
};
}
};
/// Placeholder for real*16 version of Reduce Intrinsic
struct ForcedReduceReal16Ref {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceReal16Ref));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF128(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {refTy, refTy}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty}, {ty});
};
}
};
/// Placeholder for real*16 version of Reduce Intrinsic
struct ForcedReduceReal16Value {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceReal16Value));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF128(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {ty, ty}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty}, {ty});
};
}
};
/// Placeholder for DIM real*10 version of Reduce Intrinsic
struct ForcedReduceReal10DimRef {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceReal10DimRef));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF80(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {refTy, refTy}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto refBoxTy = fir::ReferenceType::get(boxTy);
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refBoxTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for DIM real*10 with value version of Reduce Intrinsic
struct ForcedReduceReal10DimValue {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceReal10DimValue));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF80(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {ty, ty}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto refBoxTy = fir::ReferenceType::get(boxTy);
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refBoxTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for DIM real*16 version of Reduce Intrinsic
struct ForcedReduceReal16DimRef {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceReal16DimRef));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF128(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {refTy, refTy}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto refBoxTy = fir::ReferenceType::get(boxTy);
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refBoxTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for DIM real*16 with value version of Reduce Intrinsic
struct ForcedReduceReal16DimValue {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceReal16DimValue));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::FloatType::getF128(ctx);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {ty, ty}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto refBoxTy = fir::ReferenceType::get(boxTy);
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refBoxTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for integer*16 version of Reduce Intrinsic
struct ForcedReduceInteger16Ref {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceInteger16Ref));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {refTy, refTy}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty}, {ty});
};
}
};
/// Placeholder for integer*16 with value version of Reduce Intrinsic
struct ForcedReduceInteger16Value {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceInteger16Value));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {ty, ty}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty}, {ty});
};
}
};
/// Placeholder for DIM integer*16 version of Reduce Intrinsic
struct ForcedReduceInteger16DimRef {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceInteger16DimRef));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {refTy, refTy}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto refBoxTy = fir::ReferenceType::get(boxTy);
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refBoxTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for DIM integer*16 with value version of Reduce Intrinsic
struct ForcedReduceInteger16DimValue {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(ReduceInteger16DimValue));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::IntegerType::get(ctx, 128);
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {ty, ty}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto refBoxTy = fir::ReferenceType::get(boxTy);
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refBoxTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for complex(10) version of Reduce Intrinsic
struct ForcedReduceComplex10Ref {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppReduceComplex10Ref));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF80(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {refTy, refTy}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for complex(10) with value version of Reduce Intrinsic
struct ForcedReduceComplex10Value {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppReduceComplex10Value));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF80(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {ty, ty}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for Dim complex(10) version of Reduce Intrinsic
struct ForcedReduceComplex10DimRef {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppReduceComplex10DimRef));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF80(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {refTy, refTy}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto refBoxTy = fir::ReferenceType::get(boxTy);
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refBoxTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for Dim complex(10) with value version of Reduce Intrinsic
struct ForcedReduceComplex10DimValue {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppReduceComplex10DimValue));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF80(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {ty, ty}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto refBoxTy = fir::ReferenceType::get(boxTy);
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refBoxTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for complex(16) version of Reduce Intrinsic
struct ForcedReduceComplex16Ref {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppReduceComplex16Ref));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF128(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {refTy, refTy}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for complex(16) with value version of Reduce Intrinsic
struct ForcedReduceComplex16Value {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppReduceComplex16Value));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF128(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {ty, ty}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for Dim complex(16) version of Reduce Intrinsic
struct ForcedReduceComplex16DimRef {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppReduceComplex16DimRef));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF128(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {refTy, refTy}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto refBoxTy = fir::ReferenceType::get(boxTy);
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refBoxTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
/// Placeholder for Dim complex(16) with value version of Reduce Intrinsic
struct ForcedReduceComplex16DimValue {
static constexpr const char *name =
ExpandAndQuoteKey(RTNAME(CppReduceComplex16DimValue));
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctx) {
auto ty = mlir::ComplexType::get(mlir::FloatType::getF128(ctx));
auto boxTy =
fir::runtime::getModel<const Fortran::runtime::Descriptor &>()(ctx);
auto refTy = fir::ReferenceType::get(ty);
auto opTy = mlir::FunctionType::get(ctx, {ty, ty}, refTy);
auto strTy = fir::ReferenceType::get(mlir::IntegerType::get(ctx, 8));
auto intTy = mlir::IntegerType::get(ctx, 8 * sizeof(int));
auto refBoxTy = fir::ReferenceType::get(boxTy);
auto i1Ty = mlir::IntegerType::get(ctx, 1);
return mlir::FunctionType::get(
ctx, {refBoxTy, boxTy, opTy, strTy, intTy, intTy, boxTy, refTy, i1Ty},
{});
};
}
};
#define INTRINSIC_INSTANCE(NAME, CAT, KIND, SUFFIX) \
if (!func && cat == TypeCategory::CAT && kind == KIND) { \
func = fir::runtime::getRuntimeFunc<mkRTKey(NAME##CAT##KIND##SUFFIX)>( \
loc, builder); \
}
#define FORCED_INTRINSIC_INSTANCE(NAME, CAT, KIND, SUFFIX) \
if (!func && cat == TypeCategory::CAT && kind == KIND) { \
func = fir::runtime::getRuntimeFunc<Forced##NAME##CAT##KIND##SUFFIX>( \
loc, builder); \
}
#define INTEGER_INTRINSIC_INSTANCES(NAME, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Integer, 1, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Integer, 2, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Integer, 4, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Integer, 8, SUFFIX) \
FORCED_INTRINSIC_INSTANCE(NAME, Integer, 16, SUFFIX)
#define REAL_INTRINSIC_INSTANCES(NAME, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Real, 4, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Real, 8, SUFFIX) \
FORCED_INTRINSIC_INSTANCE(NAME, Real, 10, SUFFIX) \
FORCED_INTRINSIC_INSTANCE(NAME, Real, 16, SUFFIX)
#define COMPLEX_INTRINSIC_INSTANCES(NAME, SUFFIX) \
INTRINSIC_INSTANCE(Cpp##NAME, Complex, 4, SUFFIX) \
INTRINSIC_INSTANCE(Cpp##NAME, Complex, 8, SUFFIX) \
FORCED_INTRINSIC_INSTANCE(NAME, Complex, 10, SUFFIX) \
FORCED_INTRINSIC_INSTANCE(NAME, Complex, 16, SUFFIX)
#define NUMERICAL_INTRINSIC_INSTANCES(NAME) \
INTEGER_INTRINSIC_INSTANCES(NAME, ) \
REAL_INTRINSIC_INSTANCES(NAME, ) \
COMPLEX_INTRINSIC_INSTANCES(NAME, )
#define LOGICAL_INTRINSIC_INSTANCES(NAME, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Logical, 1, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Logical, 2, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Logical, 4, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Logical, 8, SUFFIX)
#define NUMERICAL_AND_LOGICAL_INSTANCES(NAME, SUFFIX) \
INTEGER_INTRINSIC_INSTANCES(NAME, SUFFIX) \
REAL_INTRINSIC_INSTANCES(NAME, SUFFIX) \
COMPLEX_INTRINSIC_INSTANCES(NAME, SUFFIX) \
LOGICAL_INTRINSIC_INSTANCES(NAME, SUFFIX)
// REAL/COMPLEX 2 and 3 usually have no runtime implementation, so they have
// special macros.
#define REAL_2_3_INTRINSIC_INSTANCES(NAME, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Real, 2, SUFFIX) \
INTRINSIC_INSTANCE(NAME, Real, 3, SUFFIX)
#define COMPLEX_2_3_INTRINSIC_INSTANCES(NAME, SUFFIX) \
INTRINSIC_INSTANCE(Cpp##NAME, Complex, 2, SUFFIX) \
INTRINSIC_INSTANCE(Cpp##NAME, Complex, 3, SUFFIX)
/// Generate call to specialized runtime function that takes a mask and
/// dim argument. The All, Any, and Count intrinsics use this pattern.
template <typename FN>
mlir::Value genSpecial2Args(FN func, fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value maskBox,
mlir::Value dim) {
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(2));
auto args = fir::runtime::createArguments(builder, loc, fTy, maskBox,
sourceFile, sourceLine, dim);
return builder.create<fir::CallOp>(loc, func, args).getResult(0);
}
/// Generate calls to reduction intrinsics such as All and Any.
/// These are the descriptor based implementations that take two
/// arguments (mask, dim).
template <typename FN>
static void genReduction2Args(FN func, fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value resultBox,
mlir::Value maskBox, mlir::Value dim) {
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(4));
auto args = fir::runtime::createArguments(
builder, loc, fTy, resultBox, maskBox, dim, sourceFile, sourceLine);
builder.create<fir::CallOp>(loc, func, args);
}
/// Generate calls to reduction intrinsics such as Maxval and Minval.
/// These take arguments such as (array, dim, mask).
template <typename FN>
static void genReduction3Args(FN func, fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value resultBox,
mlir::Value arrayBox, mlir::Value dim,
mlir::Value maskBox) {
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(4));
auto args =
fir::runtime::createArguments(builder, loc, fTy, resultBox, arrayBox, dim,
sourceFile, sourceLine, maskBox);
builder.create<fir::CallOp>(loc, func, args);
}
/// Generate calls to reduction intrinsics such as Maxloc and Minloc.
/// These take arguments such as (array, mask, kind, back).
template <typename FN>
static void genReduction4Args(FN func, fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value resultBox,
mlir::Value arrayBox, mlir::Value maskBox,
mlir::Value kind, mlir::Value back) {
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(4));
auto args = fir::runtime::createArguments(builder, loc, fTy, resultBox,
arrayBox, kind, sourceFile,
sourceLine, maskBox, back);
builder.create<fir::CallOp>(loc, func, args);
}
/// Generate calls to reduction intrinsics such as Maxloc and Minloc.
/// These take arguments such as (array, dim, mask, kind, back).
template <typename FN>
static void
genReduction5Args(FN func, fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox, mlir::Value dim,
mlir::Value maskBox, mlir::Value kind, mlir::Value back) {
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(5));
auto args = fir::runtime::createArguments(builder, loc, fTy, resultBox,
arrayBox, kind, dim, sourceFile,
sourceLine, maskBox, back);
builder.create<fir::CallOp>(loc, func, args);
}
/// Generate call to `AllDim` runtime routine.
/// This calls the descriptor based runtime call implementation of the `all`
/// intrinsic.
void fir::runtime::genAllDescriptor(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value resultBox,
mlir::Value maskBox, mlir::Value dim) {
auto allFunc = fir::runtime::getRuntimeFunc<mkRTKey(AllDim)>(loc, builder);
genReduction2Args(allFunc, builder, loc, resultBox, maskBox, dim);
}
/// Generate call to `AnyDim` runtime routine.
/// This calls the descriptor based runtime call implementation of the `any`
/// intrinsic.
void fir::runtime::genAnyDescriptor(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value resultBox,
mlir::Value maskBox, mlir::Value dim) {
auto anyFunc = fir::runtime::getRuntimeFunc<mkRTKey(AnyDim)>(loc, builder);
genReduction2Args(anyFunc, builder, loc, resultBox, maskBox, dim);
}
/// Generate call to `ParityDim` runtime routine.
/// This calls the descriptor based runtime call implementation of the `parity`
/// intrinsic.
void fir::runtime::genParityDescriptor(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Value resultBox,
mlir::Value maskBox, mlir::Value dim) {
auto parityFunc =
fir::runtime::getRuntimeFunc<mkRTKey(ParityDim)>(loc, builder);
genReduction2Args(parityFunc, builder, loc, resultBox, maskBox, dim);
}
/// Generate call to `All` intrinsic runtime routine. This routine is
/// specialized for mask arguments with rank == 1.
mlir::Value fir::runtime::genAll(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value maskBox, mlir::Value dim) {
auto allFunc = fir::runtime::getRuntimeFunc<mkRTKey(All)>(loc, builder);
return genSpecial2Args(allFunc, builder, loc, maskBox, dim);
}
/// Generate call to `Any` intrinsic runtime routine. This routine is
/// specialized for mask arguments with rank == 1.
mlir::Value fir::runtime::genAny(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value maskBox, mlir::Value dim) {
auto anyFunc = fir::runtime::getRuntimeFunc<mkRTKey(Any)>(loc, builder);
return genSpecial2Args(anyFunc, builder, loc, maskBox, dim);
}
/// Generate call to `Count` runtime routine. This routine is a specialized
/// version when mask is a rank one array or the dim argument is not
/// specified by the user.
mlir::Value fir::runtime::genCount(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value maskBox,
mlir::Value dim) {
auto countFunc = fir::runtime::getRuntimeFunc<mkRTKey(Count)>(loc, builder);
return genSpecial2Args(countFunc, builder, loc, maskBox, dim);
}
/// Generate call to general `CountDim` runtime routine. This routine has a
/// descriptor result.
void fir::runtime::genCountDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value maskBox,
mlir::Value dim, mlir::Value kind) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(CountDim)>(loc, builder);
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(5));
auto args = fir::runtime::createArguments(
builder, loc, fTy, resultBox, maskBox, dim, kind, sourceFile, sourceLine);
builder.create<fir::CallOp>(loc, func, args);
}
/// Generate call to `Findloc` intrinsic runtime routine. This is the version
/// that does not take a dim argument.
void fir::runtime::genFindloc(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value valBox, mlir::Value maskBox,
mlir::Value kind, mlir::Value back) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(Findloc)>(loc, builder);
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(5));
auto args = fir::runtime::createArguments(builder, loc, fTy, resultBox,
arrayBox, valBox, kind, sourceFile,
sourceLine, maskBox, back);
builder.create<fir::CallOp>(loc, func, args);
}
/// Generate call to `FindlocDim` intrinsic runtime routine. This is the version
/// that takes a dim argument.
void fir::runtime::genFindlocDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value valBox, mlir::Value dim,
mlir::Value maskBox, mlir::Value kind,
mlir::Value back) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(FindlocDim)>(loc, builder);
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(6));
auto args = fir::runtime::createArguments(
builder, loc, fTy, resultBox, arrayBox, valBox, kind, dim, sourceFile,
sourceLine, maskBox, back);
builder.create<fir::CallOp>(loc, func, args);
}
/// Generate call to `Maxloc` intrinsic runtime routine. This is the version
/// that does not take a dim argument.
void fir::runtime::genMaxloc(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value maskBox, mlir::Value kindVal,
mlir::Value back) {
auto ty = arrayBox.getType();
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy();
fir::factory::CharacterExprHelper charHelper{builder, loc};
auto [cat, kind] = fir::mlirTypeToCategoryKind(loc, eleTy);
mlir::func::FuncOp func;
REAL_INTRINSIC_INSTANCES(Maxloc, )
INTEGER_INTRINSIC_INSTANCES(Maxloc, )
if (charHelper.isCharacterScalar(eleTy))
func = fir::runtime::getRuntimeFunc<mkRTKey(MaxlocCharacter)>(loc, builder);
if (!func)
fir::intrinsicTypeTODO(builder, eleTy, loc, "MAXLOC");
genReduction4Args(func, builder, loc, resultBox, arrayBox, maskBox, kindVal,
back);
}
/// Generate call to `MaxlocDim` intrinsic runtime routine. This is the version
/// that takes a dim argument.
void fir::runtime::genMaxlocDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value dim, mlir::Value maskBox,
mlir::Value kind, mlir::Value back) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(MaxlocDim)>(loc, builder);
genReduction5Args(func, builder, loc, resultBox, arrayBox, dim, maskBox, kind,
back);
}
/// Generate call to `Maxval` intrinsic runtime routine. This is the version
/// that does not take a dim argument.
mlir::Value fir::runtime::genMaxval(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value arrayBox,
mlir::Value maskBox) {
auto ty = arrayBox.getType();
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy();
auto dim = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
auto [cat, kind] = fir::mlirTypeToCategoryKind(loc, eleTy);
mlir::func::FuncOp func;
REAL_INTRINSIC_INSTANCES(Maxval, )
INTEGER_INTRINSIC_INSTANCES(Maxval, )
if (!func)
fir::intrinsicTypeTODO(builder, eleTy, loc, "MAXVAL");
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(2));
auto args = fir::runtime::createArguments(
builder, loc, fTy, arrayBox, sourceFile, sourceLine, dim, maskBox);
return builder.create<fir::CallOp>(loc, func, args).getResult(0);
}
/// Generate call to `MaxvalDim` intrinsic runtime routine. This is the version
/// that handles any rank array with the dim argument specified.
void fir::runtime::genMaxvalDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value dim, mlir::Value maskBox) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(MaxvalDim)>(loc, builder);
genReduction3Args(func, builder, loc, resultBox, arrayBox, dim, maskBox);
}
/// Generate call to `MaxvalCharacter` intrinsic runtime routine. This is the
/// version that handles character arrays of rank 1 and without a DIM argument.
void fir::runtime::genMaxvalChar(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value maskBox) {
auto func =
fir::runtime::getRuntimeFunc<mkRTKey(MaxvalCharacter)>(loc, builder);
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(3));
auto args = fir::runtime::createArguments(
builder, loc, fTy, resultBox, arrayBox, sourceFile, sourceLine, maskBox);
builder.create<fir::CallOp>(loc, func, args);
}
/// Generate call to `Minloc` intrinsic runtime routine. This is the version
/// that does not take a dim argument.
void fir::runtime::genMinloc(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value maskBox, mlir::Value kindVal,
mlir::Value back) {
auto ty = arrayBox.getType();
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy();
auto [cat, kind] = fir::mlirTypeToCategoryKind(loc, eleTy);
mlir::func::FuncOp func;
REAL_INTRINSIC_INSTANCES(Minloc, )
INTEGER_INTRINSIC_INSTANCES(Minloc, )
fir::factory::CharacterExprHelper charHelper{builder, loc};
if (charHelper.isCharacterScalar(eleTy))
func = fir::runtime::getRuntimeFunc<mkRTKey(MinlocCharacter)>(loc, builder);
if (!func)
fir::intrinsicTypeTODO(builder, eleTy, loc, "MINLOC");
genReduction4Args(func, builder, loc, resultBox, arrayBox, maskBox, kindVal,
back);
}
/// Generate call to `MinlocDim` intrinsic runtime routine. This is the version
/// that takes a dim argument.
void fir::runtime::genMinlocDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value dim, mlir::Value maskBox,
mlir::Value kind, mlir::Value back) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(MinlocDim)>(loc, builder);
genReduction5Args(func, builder, loc, resultBox, arrayBox, dim, maskBox, kind,
back);
}
/// Generate call to `MinvalDim` intrinsic runtime routine. This is the version
/// that handles any rank array with the dim argument specified.
void fir::runtime::genMinvalDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value dim, mlir::Value maskBox) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(MinvalDim)>(loc, builder);
genReduction3Args(func, builder, loc, resultBox, arrayBox, dim, maskBox);
}
/// Generate call to `MinvalCharacter` intrinsic runtime routine. This is the
/// version that handles character arrays of rank 1 and without a DIM argument.
void fir::runtime::genMinvalChar(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value maskBox) {
auto func =
fir::runtime::getRuntimeFunc<mkRTKey(MinvalCharacter)>(loc, builder);
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(3));
auto args = fir::runtime::createArguments(
builder, loc, fTy, resultBox, arrayBox, sourceFile, sourceLine, maskBox);
builder.create<fir::CallOp>(loc, func, args);
}
/// Generate call to `Minval` intrinsic runtime routine. This is the version
/// that does not take a dim argument.
mlir::Value fir::runtime::genMinval(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value arrayBox,
mlir::Value maskBox) {
auto ty = arrayBox.getType();
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy();
auto dim = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
auto [cat, kind] = fir::mlirTypeToCategoryKind(loc, eleTy);
mlir::func::FuncOp func;
REAL_INTRINSIC_INSTANCES(Minval, )
INTEGER_INTRINSIC_INSTANCES(Minval, )
if (!func)
fir::intrinsicTypeTODO(builder, eleTy, loc, "MINVAL");
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(2));
auto args = fir::runtime::createArguments(
builder, loc, fTy, arrayBox, sourceFile, sourceLine, dim, maskBox);
return builder.create<fir::CallOp>(loc, func, args).getResult(0);
}
/// Generate call to `Norm2Dim` intrinsic runtime routine. This is the version
/// that takes a dim argument.
void fir::runtime::genNorm2Dim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value dim) {
mlir::func::FuncOp func;
auto ty = arrayBox.getType();
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy();
if (eleTy.isF128())
func = fir::runtime::getRuntimeFunc<ForcedNorm2DimReal16>(loc, builder);
else
func = fir::runtime::getRuntimeFunc<mkRTKey(Norm2Dim)>(loc, builder);
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(4));
auto args = fir::runtime::createArguments(
builder, loc, fTy, resultBox, arrayBox, dim, sourceFile, sourceLine);
builder.create<fir::CallOp>(loc, func, args);
}
/// Generate call to `Norm2` intrinsic runtime routine. This is the version
/// that does not take a dim argument.
mlir::Value fir::runtime::genNorm2(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value arrayBox) {
mlir::func::FuncOp func;
auto ty = arrayBox.getType();
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy();
auto dim = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
if (eleTy.isF32())
func = fir::runtime::getRuntimeFunc<mkRTKey(Norm2_4)>(loc, builder);
else if (eleTy.isF64())
func = fir::runtime::getRuntimeFunc<mkRTKey(Norm2_8)>(loc, builder);
else if (eleTy.isF80())
func = fir::runtime::getRuntimeFunc<ForcedNorm2Real10>(loc, builder);
else if (eleTy.isF128())
func = fir::runtime::getRuntimeFunc<ForcedNorm2Real16>(loc, builder);
else
fir::intrinsicTypeTODO(builder, eleTy, loc, "NORM2");
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(2));
auto args = fir::runtime::createArguments(builder, loc, fTy, arrayBox,
sourceFile, sourceLine, dim);
return builder.create<fir::CallOp>(loc, func, args).getResult(0);
}
/// Generate call to `Parity` intrinsic runtime routine. This routine is
/// specialized for mask arguments with rank == 1.
mlir::Value fir::runtime::genParity(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value maskBox,
mlir::Value dim) {
auto parityFunc = fir::runtime::getRuntimeFunc<mkRTKey(Parity)>(loc, builder);
return genSpecial2Args(parityFunc, builder, loc, maskBox, dim);
}
/// Generate call to `ProductDim` intrinsic runtime routine. This is the version
/// that handles any rank array with the dim argument specified.
void fir::runtime::genProductDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value dim, mlir::Value maskBox) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(ProductDim)>(loc, builder);
genReduction3Args(func, builder, loc, resultBox, arrayBox, dim, maskBox);
}
/// Generate call to `Product` intrinsic runtime routine. This is the version
/// that does not take a dim argument.
mlir::Value fir::runtime::genProduct(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value arrayBox,
mlir::Value maskBox,
mlir::Value resultBox) {
auto ty = arrayBox.getType();
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy();
auto dim = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
auto [cat, kind] = fir::mlirTypeToCategoryKind(loc, eleTy);
mlir::func::FuncOp func;
NUMERICAL_INTRINSIC_INSTANCES(Product)
if (!func)
fir::intrinsicTypeTODO(builder, eleTy, loc, "PRODUCT");
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
if (fir::isa_complex(eleTy)) {
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(3));
auto args =
fir::runtime::createArguments(builder, loc, fTy, resultBox, arrayBox,
sourceFile, sourceLine, dim, maskBox);
builder.create<fir::CallOp>(loc, func, args);
return resultBox;
}
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(2));
auto args = fir::runtime::createArguments(
builder, loc, fTy, arrayBox, sourceFile, sourceLine, dim, maskBox);
return builder.create<fir::CallOp>(loc, func, args).getResult(0);
}
/// Generate call to `DotProduct` intrinsic runtime routine.
mlir::Value fir::runtime::genDotProduct(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Value vectorABox,
mlir::Value vectorBBox,
mlir::Value resultBox) {
// For complex data types, resultBox is !fir.ref<!fir.complex<N>>,
// otherwise it is !fir.box<T>.
auto ty = resultBox.getType();
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto [cat, kind] = fir::mlirTypeToCategoryKind(loc, eleTy);
mlir::func::FuncOp func;
NUMERICAL_INTRINSIC_INSTANCES(DotProduct)
if (cat == Fortran::common::TypeCategory::Logical)
func =
fir::runtime::getRuntimeFunc<mkRTKey(DotProductLogical)>(loc, builder);
if (!func)
fir::intrinsicTypeTODO(builder, eleTy, loc, "DOTPRODUCT");
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
if (fir::isa_complex(eleTy)) {
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(4));
auto args =
fir::runtime::createArguments(builder, loc, fTy, resultBox, vectorABox,
vectorBBox, sourceFile, sourceLine);
builder.create<fir::CallOp>(loc, func, args);
return resultBox;
}
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(3));
auto args = fir::runtime::createArguments(builder, loc, fTy, vectorABox,
vectorBBox, sourceFile, sourceLine);
return builder.create<fir::CallOp>(loc, func, args).getResult(0);
}
/// Generate call to `SumDim` intrinsic runtime routine. This is the version
/// that handles any rank array with the dim argument specified.
void fir::runtime::genSumDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value dim, mlir::Value maskBox) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(SumDim)>(loc, builder);
genReduction3Args(func, builder, loc, resultBox, arrayBox, dim, maskBox);
}
/// Generate call to `Sum` intrinsic runtime routine. This is the version
/// that does not take a dim argument.
mlir::Value fir::runtime::genSum(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value arrayBox, mlir::Value maskBox,
mlir::Value resultBox) {
auto ty = arrayBox.getType();
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy();
auto dim = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
auto [cat, kind] = fir::mlirTypeToCategoryKind(loc, eleTy);
mlir::func::FuncOp func;
NUMERICAL_INTRINSIC_INSTANCES(Sum)
if (!func)
fir::intrinsicTypeTODO(builder, eleTy, loc, "SUM");
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
if (fir::isa_complex(eleTy)) {
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(3));
auto args =
fir::runtime::createArguments(builder, loc, fTy, resultBox, arrayBox,
sourceFile, sourceLine, dim, maskBox);
builder.create<fir::CallOp>(loc, func, args);
return resultBox;
}
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(2));
auto args = fir::runtime::createArguments(
builder, loc, fTy, arrayBox, sourceFile, sourceLine, dim, maskBox);
return builder.create<fir::CallOp>(loc, func, args).getResult(0);
}
// The IAll, IAny and IParity intrinsics have essentially the same
// implementation. This macro will generate the function body given the
// instrinsic name.
#define GEN_IALL_IANY_IPARITY(F) \
mlir::Value fir::runtime::JOIN2(gen, F)( \
fir::FirOpBuilder & builder, mlir::Location loc, mlir::Value arrayBox, \
mlir::Value maskBox, mlir::Value resultBox) { \
mlir::func::FuncOp func; \
auto ty = arrayBox.getType(); \
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty); \
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy(); \
auto dim = builder.createIntegerConstant(loc, builder.getIndexType(), 0); \
\
if (eleTy.isInteger(builder.getKindMap().getIntegerBitsize(1))) \
func = fir::runtime::getRuntimeFunc<mkRTKey(JOIN2(F, 1))>(loc, builder); \
else if (eleTy.isInteger(builder.getKindMap().getIntegerBitsize(2))) \
func = fir::runtime::getRuntimeFunc<mkRTKey(JOIN2(F, 2))>(loc, builder); \
else if (eleTy.isInteger(builder.getKindMap().getIntegerBitsize(4))) \
func = fir::runtime::getRuntimeFunc<mkRTKey(JOIN2(F, 4))>(loc, builder); \
else if (eleTy.isInteger(builder.getKindMap().getIntegerBitsize(8))) \
func = fir::runtime::getRuntimeFunc<mkRTKey(JOIN2(F, 8))>(loc, builder); \
else if (eleTy.isInteger(builder.getKindMap().getIntegerBitsize(16))) \
func = fir::runtime::getRuntimeFunc<JOIN3(Forced, F, 16)>(loc, builder); \
else \
fir::emitFatalError(loc, "invalid type in " STRINGIFY(F)); \
\
auto fTy = func.getFunctionType(); \
auto sourceFile = fir::factory::locationToFilename(builder, loc); \
auto sourceLine = \
fir::factory::locationToLineNo(builder, loc, fTy.getInput(2)); \
auto args = fir::runtime::createArguments( \
builder, loc, fTy, arrayBox, sourceFile, sourceLine, dim, maskBox); \
\
return builder.create<fir::CallOp>(loc, func, args).getResult(0); \
}
/// Generate call to `IAllDim` intrinsic runtime routine. This is the version
/// that handles any rank array with the dim argument specified.
void fir::runtime::genIAllDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value dim, mlir::Value maskBox) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(IAllDim)>(loc, builder);
genReduction3Args(func, builder, loc, resultBox, arrayBox, dim, maskBox);
}
/// Generate call to `IAll` intrinsic runtime routine. This is the version
/// that does not take a dim argument.
GEN_IALL_IANY_IPARITY(IAll)
/// Generate call to `IAnyDim` intrinsic runtime routine. This is the version
/// that handles any rank array with the dim argument specified.
void fir::runtime::genIAnyDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value dim, mlir::Value maskBox) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(IAnyDim)>(loc, builder);
genReduction3Args(func, builder, loc, resultBox, arrayBox, dim, maskBox);
}
/// Generate call to `IAny` intrinsic runtime routine. This is the version
/// that does not take a dim argument.
GEN_IALL_IANY_IPARITY(IAny)
/// Generate call to `IParityDim` intrinsic runtime routine. This is the version
/// that handles any rank array with the dim argument specified.
void fir::runtime::genIParityDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value resultBox, mlir::Value arrayBox,
mlir::Value dim, mlir::Value maskBox) {
auto func = fir::runtime::getRuntimeFunc<mkRTKey(IParityDim)>(loc, builder);
genReduction3Args(func, builder, loc, resultBox, arrayBox, dim, maskBox);
}
/// Generate call to `IParity` intrinsic runtime routine. This is the version
/// that does not take a dim argument.
GEN_IALL_IANY_IPARITY(IParity)
/// Generate call to `Reduce` intrinsic runtime routine. This is the version
/// that does not take a DIM argument and store result in the passed result
/// value.
void fir::runtime::genReduce(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value arrayBox, mlir::Value operation,
mlir::Value maskBox, mlir::Value identity,
mlir::Value ordered, mlir::Value resultBox,
bool argByRef) {
auto ty = arrayBox.getType();
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy();
auto dim = builder.createIntegerConstant(loc, builder.getI32Type(), 1);
assert(resultBox && "expect non null value for the result");
assert((fir::isa_char(eleTy) || fir::isa_complex(eleTy) ||
fir::isa_derived(eleTy)) &&
"expect character, complex or derived-type");
auto [cat, kind] = fir::mlirTypeToCategoryKind(loc, eleTy);
mlir::func::FuncOp func;
if (argByRef) {
COMPLEX_2_3_INTRINSIC_INSTANCES(Reduce, Ref)
COMPLEX_INTRINSIC_INSTANCES(Reduce, Ref)
} else {
COMPLEX_2_3_INTRINSIC_INSTANCES(Reduce, Value)
COMPLEX_INTRINSIC_INSTANCES(Reduce, Value)
}
fir::factory::CharacterExprHelper charHelper{builder, loc};
if (fir::isa_char(eleTy) && charHelper.getCharacterKind(eleTy) == 1)
func = fir::runtime::getRuntimeFunc<mkRTKey(ReduceChar1)>(loc, builder);
else if (fir::isa_char(eleTy) && charHelper.getCharacterKind(eleTy) == 2)
func = fir::runtime::getRuntimeFunc<mkRTKey(ReduceChar2)>(loc, builder);
else if (fir::isa_char(eleTy) && charHelper.getCharacterKind(eleTy) == 4)
func = fir::runtime::getRuntimeFunc<mkRTKey(ReduceChar4)>(loc, builder);
else if (fir::isa_derived(eleTy))
func =
fir::runtime::getRuntimeFunc<mkRTKey(ReduceDerivedType)>(loc, builder);
if (!func)
fir::intrinsicTypeTODO(builder, eleTy, loc, "REDUCE");
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(4));
auto opAddr = builder.create<fir::BoxAddrOp>(loc, fTy.getInput(2), operation);
auto args = fir::runtime::createArguments(
builder, loc, fTy, resultBox, arrayBox, opAddr, sourceFile, sourceLine,
dim, maskBox, identity, ordered);
builder.create<fir::CallOp>(loc, func, args);
}
/// Generate call to `Reduce` intrinsic runtime routine. This is the version
/// that does not take DIM argument and return a scalar result.
mlir::Value fir::runtime::genReduce(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value arrayBox,
mlir::Value operation, mlir::Value maskBox,
mlir::Value identity, mlir::Value ordered,
bool argByRef) {
auto ty = arrayBox.getType();
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy();
auto dim = builder.createIntegerConstant(loc, builder.getI32Type(), 1);
assert((fir::isa_real(eleTy) || fir::isa_integer(eleTy) ||
mlir::isa<fir::LogicalType>(eleTy)) &&
"expect real, interger or logical");
auto [cat, kind] = fir::mlirTypeToCategoryKind(loc, eleTy);
mlir::func::FuncOp func;
if (argByRef) {
REAL_2_3_INTRINSIC_INSTANCES(Reduce, Ref)
REAL_INTRINSIC_INSTANCES(Reduce, Ref)
INTEGER_INTRINSIC_INSTANCES(Reduce, Ref)
LOGICAL_INTRINSIC_INSTANCES(Reduce, Ref)
} else {
REAL_2_3_INTRINSIC_INSTANCES(Reduce, Value)
REAL_INTRINSIC_INSTANCES(Reduce, Value)
INTEGER_INTRINSIC_INSTANCES(Reduce, Value)
LOGICAL_INTRINSIC_INSTANCES(Reduce, Value)
}
if (!func)
fir::intrinsicTypeTODO(builder, eleTy, loc, "REDUCE");
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(3));
auto opAddr = builder.create<fir::BoxAddrOp>(loc, fTy.getInput(1), operation);
auto args = fir::runtime::createArguments(builder, loc, fTy, arrayBox, opAddr,
sourceFile, sourceLine, dim,
maskBox, identity, ordered);
return builder.create<fir::CallOp>(loc, func, args).getResult(0);
}
void fir::runtime::genReduceDim(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value arrayBox, mlir::Value operation,
mlir::Value dim, mlir::Value maskBox,
mlir::Value identity, mlir::Value ordered,
mlir::Value resultBox, bool argByRef) {
auto ty = arrayBox.getType();
auto arrTy = fir::dyn_cast_ptrOrBoxEleTy(ty);
auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getEleTy();
auto [cat, kind] = fir::mlirTypeToCategoryKind(loc, eleTy);
mlir::func::FuncOp func;
if (argByRef) {
REAL_2_3_INTRINSIC_INSTANCES(Reduce, DimRef)
COMPLEX_2_3_INTRINSIC_INSTANCES(Reduce, DimRef)
NUMERICAL_AND_LOGICAL_INSTANCES(Reduce, DimRef)
} else {
REAL_2_3_INTRINSIC_INSTANCES(Reduce, DimValue)
COMPLEX_2_3_INTRINSIC_INSTANCES(Reduce, DimValue)
NUMERICAL_AND_LOGICAL_INSTANCES(Reduce, DimValue)
}
fir::factory::CharacterExprHelper charHelper{builder, loc};
if (fir::isa_char(eleTy) && charHelper.getCharacterKind(eleTy) == 1)
func = fir::runtime::getRuntimeFunc<mkRTKey(ReduceCharacter1Dim)>(loc,
builder);
else if (fir::isa_char(eleTy) && charHelper.getCharacterKind(eleTy) == 2)
func = fir::runtime::getRuntimeFunc<mkRTKey(ReduceCharacter2Dim)>(loc,
builder);
else if (fir::isa_char(eleTy) && charHelper.getCharacterKind(eleTy) == 4)
func = fir::runtime::getRuntimeFunc<mkRTKey(ReduceCharacter4Dim)>(loc,
builder);
else if (fir::isa_derived(eleTy))
func = fir::runtime::getRuntimeFunc<mkRTKey(ReduceDerivedTypeDim)>(loc,
builder);
if (!func)
fir::intrinsicTypeTODO(builder, eleTy, loc, "REDUCE");
auto fTy = func.getFunctionType();
auto sourceFile = fir::factory::locationToFilename(builder, loc);
auto sourceLine =
fir::factory::locationToLineNo(builder, loc, fTy.getInput(4));
auto opAddr = builder.create<fir::BoxAddrOp>(loc, fTy.getInput(2), operation);
auto args = fir::runtime::createArguments(
builder, loc, fTy, resultBox, arrayBox, opAddr, sourceFile, sourceLine,
dim, maskBox, identity, ordered);
builder.create<fir::CallOp>(loc, func, args);
}