#include "fp-testing.h"
#include "testing.h"
#include "flang/Evaluate/type.h"
#include "llvm/Support/raw_ostream.h"
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <type_traits>
using namespace Fortran::evaluate;
using namespace Fortran::common;
using Real2 = Scalar<Type<TypeCategory::Real, 2>>;
using Real3 = Scalar<Type<TypeCategory::Real, 3>>;
using Real4 = Scalar<Type<TypeCategory::Real, 4>>;
using Real8 = Scalar<Type<TypeCategory::Real, 8>>;
#ifdef __x86_64__
using Real10 = Scalar<Type<TypeCategory::Real, 10>>;
#endif
using Real16 = Scalar<Type<TypeCategory::Real, 16>>;
using Integer4 = Scalar<Type<TypeCategory::Integer, 4>>;
using Integer8 = Scalar<Type<TypeCategory::Integer, 8>>;
void dumpTest() {
struct {
std::uint64_t raw;
const char *expected;
} table[] = {
{0x7f876543, "NaN0x7f876543"},
{0x7f800000, "Inf"},
{0xff800000, "-Inf"},
{0x00000000, "0.0"},
{0x80000000, "-0.0"},
{0x3f800000, "0x1.0p0"},
{0xbf800000, "-0x1.0p0"},
{0x40000000, "0x1.0p1"},
{0x3f000000, "0x1.0p-1"},
{0x7f7fffff, "0x1.fffffep127"},
{0x00800000, "0x1.0p-126"},
{0x00400000, "0x0.8p-126"},
{0x00000001, "0x0.000002p-126"},
{0, nullptr},
};
for (int j{0}; table[j].expected != nullptr; ++j) {
TEST(Real4{Integer4{table[j].raw}}.DumpHexadecimal() == table[j].expected)
("%d", j);
}
}
template <typename R> void basicTests(int rm, Rounding rounding) {
static constexpr int kind{R::bits / 8};
char desc[64];
using Word = typename R::Word;
std::snprintf(desc, sizeof desc, "bits=%d, le=%d, kind=%d", R::bits,
Word::littleEndian, kind);
R zero;
TEST(!zero.IsNegative())(desc);
TEST(!zero.IsNotANumber())(desc);
TEST(!zero.IsInfinite())(desc);
TEST(zero.IsZero())(desc);
MATCH(0, zero.Exponent())(desc);
TEST(zero.RawBits().IsZero())(desc);
MATCH(0, zero.RawBits().ToUInt64())(desc);
TEST(zero.ABS().RawBits().IsZero())(desc);
TEST(zero.Negate().RawBits().IEOR(Word::MASKL(1)).IsZero())(desc);
TEST(zero.Compare(zero) == Relation::Equal)(desc);
R minusZero{Word{std::uint64_t{1}}.SHIFTL(R::bits - 1)};
TEST(minusZero.IsNegative())(desc);
TEST(!minusZero.IsNotANumber())(desc);
TEST(!minusZero.IsInfinite())(desc);
TEST(minusZero.IsZero())(desc);
TEST(minusZero.ABS().RawBits().IsZero())(desc);
TEST(minusZero.Negate().RawBits().IsZero())(desc);
MATCH(0, minusZero.Exponent())(desc);
MATCH(0, minusZero.RawBits().LEADZ())(desc);
MATCH(1, minusZero.RawBits().POPCNT())(desc);
TEST(minusZero.Compare(minusZero) == Relation::Equal)(desc);
TEST(zero.Compare(minusZero) == Relation::Equal)(desc);
ValueWithRealFlags<R> vr;
MATCH(0, vr.value.RawBits().ToUInt64())(desc);
TEST(vr.flags.empty())(desc);
R nan{Word{std::uint64_t{1}}
.SHIFTL(R::bits)
.SubtractSigned(Word{std::uint64_t{1}})
.value};
MATCH(R::bits, nan.RawBits().POPCNT())(desc);
TEST(!nan.IsNegative())(desc);
TEST(nan.IsNotANumber())(desc);
TEST(!nan.IsInfinite())(desc);
TEST(!nan.IsZero())(desc);
TEST(zero.Compare(nan) == Relation::Unordered)(desc);
TEST(minusZero.Compare(nan) == Relation::Unordered)(desc);
TEST(nan.Compare(zero) == Relation::Unordered)(desc);
TEST(nan.Compare(minusZero) == Relation::Unordered)(desc);
TEST(nan.Compare(nan) == Relation::Unordered)(desc);
int significandBits{R::binaryPrecision - R::isImplicitMSB};
int exponentBits{R::bits - significandBits - 1};
std::uint64_t maxExponent{(std::uint64_t{1} << exponentBits) - 1};
MATCH(nan.Exponent(), maxExponent)(desc);
Word infWord{Word{maxExponent}.SHIFTL(significandBits)};
Word negInfWord{
Word{maxExponent}.SHIFTL(significandBits).IOR(Word::MASKL(1))};
if constexpr (kind == 10) { // x87
infWord = infWord.IBSET(63);
negInfWord = negInfWord.IBSET(63);
}
R inf{infWord};
R negInf{negInfWord};
TEST(!inf.IsNegative())(desc);
TEST(!inf.IsNotANumber())(desc);
TEST(inf.IsInfinite())(desc);
TEST(!inf.IsZero())(desc);
TEST(inf.RawBits().CompareUnsigned(inf.ABS().RawBits()) == Ordering::Equal)
(desc);
TEST(zero.Compare(inf) == Relation::Less)(desc);
TEST(minusZero.Compare(inf) == Relation::Less)(desc);
TEST(nan.Compare(inf) == Relation::Unordered)(desc);
TEST(inf.Compare(inf) == Relation::Equal)(desc);
TEST(negInf.IsNegative())(desc);
TEST(!negInf.IsNotANumber())(desc);
TEST(negInf.IsInfinite())(desc);
TEST(!negInf.IsZero())(desc);
TEST(inf.RawBits().CompareUnsigned(negInf.ABS().RawBits()) == Ordering::Equal)
(desc);
TEST(inf.RawBits().CompareUnsigned(negInf.Negate().RawBits()) ==
Ordering::Equal)
(desc);
TEST(inf.Negate().RawBits().CompareUnsigned(negInf.RawBits()) ==
Ordering::Equal)
(desc);
TEST(zero.Compare(negInf) == Relation::Greater)(desc);
TEST(minusZero.Compare(negInf) == Relation::Greater)(desc);
TEST(nan.Compare(negInf) == Relation::Unordered)(desc);
TEST(inf.Compare(negInf) == Relation::Greater)(desc);
TEST(negInf.Compare(negInf) == Relation::Equal)(desc);
for (std::uint64_t j{0}; j < 63; ++j) {
char ldesc[128];
std::uint64_t x{1};
x <<= j;
std::snprintf(ldesc, sizeof ldesc, "%s j=%d x=0x%jx rm=%d", desc,
static_cast<int>(j), static_cast<std::intmax_t>(x), rm);
Integer8 ix{x};
TEST(!ix.IsNegative())(ldesc);
MATCH(x, ix.ToUInt64())(ldesc);
vr = R::FromInteger(ix, rounding);
TEST(!vr.value.IsNegative())(ldesc);
TEST(!vr.value.IsNotANumber())(ldesc);
TEST(!vr.value.IsZero())(ldesc);
auto ivf = vr.value.template ToInteger<Integer8>();
if (j > (maxExponent / 2)) {
TEST(vr.flags.test(RealFlag::Overflow))(ldesc);
TEST(vr.value.IsInfinite())(ldesc);
TEST(ivf.flags.test(RealFlag::Overflow))(ldesc);
MATCH(0x7fffffffffffffff, ivf.value.ToUInt64())(ldesc);
} else {
TEST(vr.flags.empty())(ldesc);
TEST(!vr.value.IsInfinite())(ldesc);
TEST(ivf.flags.empty())(ldesc);
MATCH(x, ivf.value.ToUInt64())(ldesc);
if (rounding.mode == RoundingMode::TiesToEven) { // to match stold()
std::string decimal;
llvm::raw_string_ostream ss{decimal};
vr.value.AsFortran(ss, kind, false /*exact*/);
const char *p{decimal.data()};
MATCH(x, static_cast<std::uint64_t>(std::stold(decimal)))
("%s %s", ldesc, p);
auto check{R::Read(p, rounding)};
auto icheck{check.value.template ToInteger<Integer8>()};
MATCH(x, icheck.value.ToUInt64())(ldesc);
TEST(vr.value.Compare(check.value) == Relation::Equal)(ldesc);
}
}
TEST(vr.value.ToWholeNumber().value.Compare(vr.value) == Relation::Equal)
(ldesc);
ix = ix.Negate().value;
TEST(ix.IsNegative())(ldesc);
x = -x;
std::int64_t nx = x;
MATCH(x, ix.ToUInt64())(ldesc);
MATCH(nx, ix.ToInt64())(ldesc);
vr = R::FromInteger(ix);
TEST(vr.value.IsNegative())(ldesc);
TEST(!vr.value.IsNotANumber())(ldesc);
TEST(!vr.value.IsZero())(ldesc);
ivf = vr.value.template ToInteger<Integer8>();
if (j > (maxExponent / 2)) {
TEST(vr.flags.test(RealFlag::Overflow))(ldesc);
TEST(vr.value.IsInfinite())(ldesc);
TEST(ivf.flags.test(RealFlag::Overflow))(ldesc);
MATCH(0x8000000000000000, ivf.value.ToUInt64())(ldesc);
} else {
TEST(vr.flags.empty())(ldesc);
TEST(!vr.value.IsInfinite())(ldesc);
TEST(ivf.flags.empty())(ldesc);
MATCH(x, ivf.value.ToUInt64())(ldesc);
MATCH(nx, ivf.value.ToInt64())(ldesc);
}
TEST(vr.value.ToWholeNumber().value.Compare(vr.value) == Relation::Equal)
(ldesc);
}
}
// Takes an integer and distributes its bits across a floating
// point value. The LSB is used to complement the result.
std::uint32_t MakeReal(std::uint32_t n) {
int shifts[] = {-1, 31, 23, 30, 22, 0, 24, 29, 25, 28, 26, 1, 16, 21, 2, -1};
std::uint32_t x{0};
for (int j{1}; shifts[j] >= 0; ++j) {
x |= ((n >> j) & 1) << shifts[j];
}
x ^= -(n & 1);
return x;
}
std::uint64_t MakeReal(std::uint64_t n) {
int shifts[] = {
-1, 63, 52, 62, 51, 0, 53, 61, 54, 60, 55, 59, 1, 16, 50, 2, -1};
std::uint64_t x{0};
for (int j{1}; shifts[j] >= 0; ++j) {
x |= ((n >> j) & 1) << shifts[j];
}
x ^= -(n & 1);
return x;
}
inline bool IsNaN(std::uint32_t x) {
return (x & 0x7f800000) == 0x7f800000 && (x & 0x007fffff) != 0;
}
inline bool IsNaN(std::uint64_t x) {
return (x & 0x7ff0000000000000) == 0x7ff0000000000000 &&
(x & 0x000fffffffffffff) != 0;
}
inline bool IsInfinite(std::uint32_t x) {
return (x & 0x7fffffff) == 0x7f800000;
}
inline bool IsInfinite(std::uint64_t x) {
return (x & 0x7fffffffffffffff) == 0x7ff0000000000000;
}
inline bool IsNegative(std::uint32_t x) { return (x & 0x80000000) != 0; }
inline bool IsNegative(std::uint64_t x) {
return (x & 0x8000000000000000) != 0;
}
inline std::uint32_t NormalizeNaN(std::uint32_t x) {
if (IsNaN(x)) {
x = 0x7fe00000;
}
return x;
}
inline std::uint64_t NormalizeNaN(std::uint64_t x) {
if (IsNaN(x)) {
x = 0x7ffc000000000000;
}
return x;
}
enum FlagBits {
Overflow = 1,
DivideByZero = 2,
InvalidArgument = 4,
Underflow = 8,
Inexact = 16,
};
#ifdef __clang__
// clang support for fenv.h is broken, so tests of flag settings
// are disabled.
inline std::uint32_t FlagsToBits(const RealFlags &) { return 0; }
#else
inline std::uint32_t FlagsToBits(const RealFlags &flags) {
std::uint32_t bits{0};
if (flags.test(RealFlag::Overflow)) {
bits |= Overflow;
}
if (flags.test(RealFlag::DivideByZero)) {
bits |= DivideByZero;
}
if (flags.test(RealFlag::InvalidArgument)) {
bits |= InvalidArgument;
}
if (flags.test(RealFlag::Underflow)) {
bits |= Underflow;
}
if (flags.test(RealFlag::Inexact)) {
bits |= Inexact;
}
return bits;
}
#endif // __clang__
template <typename UINT = std::uint32_t, typename FLT = float, typename REAL>
void inttest(std::int64_t x, int pass, Rounding rounding) {
union {
UINT ui;
FLT f;
} u;
ScopedHostFloatingPointEnvironment fpenv;
Integer8 ix{x};
ValueWithRealFlags<REAL> real;
real = real.value.FromInteger(ix, rounding);
#ifndef __clang__ // broken and also slow
fpenv.ClearFlags();
#endif
FLT fcheck = x; // TODO unsigned too
auto actualFlags{FlagsToBits(fpenv.CurrentFlags())};
u.f = fcheck;
UINT rcheck{NormalizeNaN(u.ui)};
UINT check = real.value.RawBits().ToUInt64();
MATCH(rcheck, check)("%d 0x%llx", pass, x);
MATCH(actualFlags, FlagsToBits(real.flags))("%d 0x%llx", pass, x);
}
template <typename FLT = float> FLT ToIntPower(FLT x, int power) {
if (power == 0) {
return x / x;
}
bool negative{power < 0};
if (negative) {
power = -power;
}
FLT result{1};
while (power > 0) {
if (power & 1) {
result *= x;
}
x *= x;
power >>= 1;
}
if (negative) {
result = 1.0 / result;
}
return result;
}
template <typename FLT, int decimalDigits>
FLT TimesIntPowerOfTen(FLT x, int power) {
if (power > decimalDigits || power < -decimalDigits) {
auto maxExactPowerOfTen{
TimesIntPowerOfTen<FLT, decimalDigits>(1, decimalDigits)};
auto big{ToIntPower<FLT>(maxExactPowerOfTen, power / decimalDigits)};
auto small{
TimesIntPowerOfTen<FLT, decimalDigits>(1, power % decimalDigits)};
return (x * big) * small;
}
return x * ToIntPower<FLT>(10.0, power);
}
template <typename UINT = std::uint32_t, typename FLT = float,
typename REAL = Real4>
void subsetTests(int pass, Rounding rounding, std::uint32_t opds) {
for (int j{0}; j < 63; ++j) {
std::int64_t x{1};
x <<= j;
inttest<UINT, FLT, REAL>(x, pass, rounding);
inttest<UINT, FLT, REAL>(-x, pass, rounding);
}
inttest<UINT, FLT, REAL>(0, pass, rounding);
inttest<UINT, FLT, REAL>(
static_cast<std::int64_t>(0x8000000000000000), pass, rounding);
union {
UINT ui;
FLT f;
} u;
ScopedHostFloatingPointEnvironment fpenv;
for (UINT j{0}; j < opds; ++j) {
UINT rj{MakeReal(j)};
u.ui = rj;
FLT fj{u.f};
REAL x{typename REAL::Word{std::uint64_t{rj}}};
// unary operations
{
ValueWithRealFlags<REAL> aint{x.ToWholeNumber()};
#ifndef __clang__ // broken and also slow
fpenv.ClearFlags();
#endif
FLT fcheck{std::trunc(fj)};
auto actualFlags{FlagsToBits(fpenv.CurrentFlags())};
actualFlags &= ~Inexact; // x86 std::trunc can set Inexact; AINT ain't
u.f = fcheck;
#ifndef __clang__
if (IsNaN(u.ui)) {
actualFlags |= InvalidArgument; // x86 std::trunc(NaN) workaround
}
#endif
UINT rcheck{NormalizeNaN(u.ui)};
UINT check = aint.value.RawBits().ToUInt64();
MATCH(rcheck, check)
("%d AINT(0x%jx)", pass, static_cast<std::intmax_t>(rj));
MATCH(actualFlags, FlagsToBits(aint.flags))
("%d AINT(0x%jx)", pass, static_cast<std::intmax_t>(rj));
}
{
ValueWithRealFlags<REAL> root{x.SQRT(rounding)};
#ifndef __clang__ // broken and also slow
fpenv.ClearFlags();
#endif
FLT fcheck{std::sqrt(fj)};
auto actualFlags{FlagsToBits(fpenv.CurrentFlags())};
u.f = fcheck;
UINT rcheck{NormalizeNaN(u.ui)};
UINT check = root.value.RawBits().ToUInt64();
MATCH(rcheck, check)
("%d SQRT(0x%jx)", pass, static_cast<std::intmax_t>(rj));
MATCH(actualFlags, FlagsToBits(root.flags))
("%d SQRT(0x%jx)", pass, static_cast<std::intmax_t>(rj));
}
{
MATCH(IsNaN(rj), x.IsNotANumber())
("%d IsNaN(0x%jx)", pass, static_cast<std::intmax_t>(rj));
MATCH(IsInfinite(rj), x.IsInfinite())
("%d IsInfinite(0x%jx)", pass, static_cast<std::intmax_t>(rj));
static constexpr int kind{REAL::bits / 8};
std::string s, cssBuf;
llvm::raw_string_ostream ss{s};
llvm::raw_string_ostream css{cssBuf};
x.AsFortran(ss, kind, false /*exact*/);
if (IsNaN(rj)) {
css << "(0._" << kind << "/0.)";
MATCH(cssBuf, s)
("%d invalid(0x%jx)", pass, static_cast<std::intmax_t>(rj));
} else if (IsInfinite(rj)) {
css << '(';
if (IsNegative(rj)) {
css << '-';
}
css << "1._" << kind << "/0.)";
MATCH(cssBuf, s)
("%d overflow(0x%jx)", pass, static_cast<std::intmax_t>(rj));
} else {
const char *p = s.data();
if (*p == '(') {
++p;
}
auto readBack{REAL::Read(p, rounding)};
MATCH(rj, readBack.value.RawBits().ToUInt64())
("%d Read(AsFortran()) 0x%jx %s %g", pass,
static_cast<std::intmax_t>(rj), s.data(), static_cast<double>(fj));
MATCH('_', *p)
("%d Read(AsFortran()) 0x%jx %s %d", pass,
static_cast<std::intmax_t>(rj), s.data(),
static_cast<int>(p - s.data()));
}
}
// dyadic operations
for (UINT k{0}; k < opds; ++k) {
UINT rk{MakeReal(k)};
u.ui = rk;
FLT fk{u.f};
REAL y{typename REAL::Word{std::uint64_t{rk}}};
{
ValueWithRealFlags<REAL> sum{x.Add(y, rounding)};
#ifndef __clang__ // broken and also slow
fpenv.ClearFlags();
#endif
FLT fcheck{fj + fk};
auto actualFlags{FlagsToBits(fpenv.CurrentFlags())};
u.f = fcheck;
UINT rcheck{NormalizeNaN(u.ui)};
UINT check = sum.value.RawBits().ToUInt64();
MATCH(rcheck, check)
("%d 0x%jx + 0x%jx", pass, static_cast<std::intmax_t>(rj),
static_cast<std::intmax_t>(rk));
MATCH(actualFlags, FlagsToBits(sum.flags))
("%d 0x%jx + 0x%jx", pass, static_cast<std::intmax_t>(rj),
static_cast<std::intmax_t>(rk));
}
{
ValueWithRealFlags<REAL> diff{x.Subtract(y, rounding)};
#ifndef __clang__ // broken and also slow
fpenv.ClearFlags();
#endif
FLT fcheck{fj - fk};
auto actualFlags{FlagsToBits(fpenv.CurrentFlags())};
u.f = fcheck;
UINT rcheck{NormalizeNaN(u.ui)};
UINT check = diff.value.RawBits().ToUInt64();
MATCH(rcheck, check)
("%d 0x%jx - 0x%jx", pass, static_cast<std::intmax_t>(rj),
static_cast<std::intmax_t>(rk));
MATCH(actualFlags, FlagsToBits(diff.flags))
("%d 0x%jx - 0x%jx", pass, static_cast<std::intmax_t>(rj),
static_cast<std::intmax_t>(rk));
}
{
ValueWithRealFlags<REAL> prod{x.Multiply(y, rounding)};
#ifndef __clang__ // broken and also slow
fpenv.ClearFlags();
#endif
FLT fcheck{fj * fk};
auto actualFlags{FlagsToBits(fpenv.CurrentFlags())};
u.f = fcheck;
UINT rcheck{NormalizeNaN(u.ui)};
UINT check = prod.value.RawBits().ToUInt64();
MATCH(rcheck, check)
("%d 0x%jx * 0x%jx", pass, static_cast<std::intmax_t>(rj),
static_cast<std::intmax_t>(rk));
MATCH(actualFlags, FlagsToBits(prod.flags))
("%d 0x%jx * 0x%jx", pass, static_cast<std::intmax_t>(rj),
static_cast<std::intmax_t>(rk));
}
{
ValueWithRealFlags<REAL> quot{x.Divide(y, rounding)};
#ifndef __clang__ // broken and also slow
fpenv.ClearFlags();
#endif
FLT fcheck{fj / fk};
auto actualFlags{FlagsToBits(fpenv.CurrentFlags())};
u.f = fcheck;
UINT rcheck{NormalizeNaN(u.ui)};
UINT check = quot.value.RawBits().ToUInt64();
MATCH(rcheck, check)
("%d 0x%jx / 0x%jx", pass, static_cast<std::intmax_t>(rj),
static_cast<std::intmax_t>(rk));
MATCH(actualFlags, FlagsToBits(quot.flags))
("%d 0x%jx / 0x%jx", pass, static_cast<std::intmax_t>(rj),
static_cast<std::intmax_t>(rk));
}
}
}
}
void roundTest(int rm, Rounding rounding, std::uint32_t opds) {
basicTests<Real2>(rm, rounding);
basicTests<Real3>(rm, rounding);
basicTests<Real4>(rm, rounding);
basicTests<Real8>(rm, rounding);
#ifdef __x86_64__
basicTests<Real10>(rm, rounding);
#endif
basicTests<Real16>(rm, rounding);
ScopedHostFloatingPointEnvironment::SetRounding(rounding);
subsetTests<std::uint32_t, float, Real4>(rm, rounding, opds);
subsetTests<std::uint64_t, double, Real8>(rm, rounding, opds);
}
int main() {
dumpTest();
std::uint32_t opds{512}; // for quick testing by default
if (const char *p{std::getenv("REAL_TEST_OPERANDS")}) {
// Use 8192 or 16384 for more exhaustive testing.
opds = std::atol(p);
}
roundTest(0, Rounding{RoundingMode::TiesToEven}, opds);
roundTest(1, Rounding{RoundingMode::ToZero}, opds);
roundTest(2, Rounding{RoundingMode::Up}, opds);
roundTest(3, Rounding{RoundingMode::Down}, opds);
// TODO: how to test Rounding::TiesAwayFromZero on x86?
return testing::Complete();
}