// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Avoid ODR violations (LibFuzzer is built without ASan and this test is built
// with ASan) involving C++ standard library types when using libcxx.
#define _LIBCPP_HAS_NO_ASAN
// Do not attempt to use LLVM ostream etc from gtest.
#define GTEST_NO_LLVM_SUPPORT 1
#include "FuzzerCorpus.h"
#include "FuzzerDictionary.h"
#include "FuzzerInternal.h"
#include "FuzzerMerge.h"
#include "FuzzerMutate.h"
#include "FuzzerRandom.h"
#include "FuzzerTracePC.h"
#include "gtest/gtest.h"
#include <memory>
#include <set>
#include <sstream>
using namespace fuzzer;
// For now, have LLVMFuzzerTestOneInput just to make it link.
// Later we may want to make unittests that actually call
// LLVMFuzzerTestOneInput.
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
abort();
}
TEST(Fuzzer, Basename) {
EXPECT_EQ(Basename("foo/bar"), "bar");
EXPECT_EQ(Basename("bar"), "bar");
EXPECT_EQ(Basename("/bar"), "bar");
EXPECT_EQ(Basename("foo/x"), "x");
EXPECT_EQ(Basename("foo/"), "");
#if LIBFUZZER_WINDOWS
EXPECT_EQ(Basename("foo\\bar"), "bar");
EXPECT_EQ(Basename("foo\\bar/baz"), "baz");
EXPECT_EQ(Basename("\\bar"), "bar");
EXPECT_EQ(Basename("foo\\x"), "x");
EXPECT_EQ(Basename("foo\\"), "");
#endif
}
TEST(Fuzzer, CrossOver) {
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
Unit A({0, 1, 2}), B({5, 6, 7});
Unit C;
Unit Expected[] = {
{ 0 },
{ 0, 1 },
{ 0, 5 },
{ 0, 1, 2 },
{ 0, 1, 5 },
{ 0, 5, 1 },
{ 0, 5, 6 },
{ 0, 1, 2, 5 },
{ 0, 1, 5, 2 },
{ 0, 1, 5, 6 },
{ 0, 5, 1, 2 },
{ 0, 5, 1, 6 },
{ 0, 5, 6, 1 },
{ 0, 5, 6, 7 },
{ 0, 1, 2, 5, 6 },
{ 0, 1, 5, 2, 6 },
{ 0, 1, 5, 6, 2 },
{ 0, 1, 5, 6, 7 },
{ 0, 5, 1, 2, 6 },
{ 0, 5, 1, 6, 2 },
{ 0, 5, 1, 6, 7 },
{ 0, 5, 6, 1, 2 },
{ 0, 5, 6, 1, 7 },
{ 0, 5, 6, 7, 1 },
{ 0, 1, 2, 5, 6, 7 },
{ 0, 1, 5, 2, 6, 7 },
{ 0, 1, 5, 6, 2, 7 },
{ 0, 1, 5, 6, 7, 2 },
{ 0, 5, 1, 2, 6, 7 },
{ 0, 5, 1, 6, 2, 7 },
{ 0, 5, 1, 6, 7, 2 },
{ 0, 5, 6, 1, 2, 7 },
{ 0, 5, 6, 1, 7, 2 },
{ 0, 5, 6, 7, 1, 2 }
};
for (size_t Len = 1; Len < 8; Len++) {
std::set<Unit> FoundUnits, ExpectedUnitsWitThisLength;
for (int Iter = 0; Iter < 3000; Iter++) {
C.resize(Len);
size_t NewSize = MD->CrossOver(A.data(), A.size(), B.data(), B.size(),
C.data(), C.size());
C.resize(NewSize);
FoundUnits.insert(C);
}
for (const Unit &U : Expected)
if (U.size() <= Len)
ExpectedUnitsWitThisLength.insert(U);
EXPECT_EQ(ExpectedUnitsWitThisLength, FoundUnits);
}
}
TEST(Fuzzer, Hash) {
uint8_t A[] = {'a', 'b', 'c'};
fuzzer::Unit U(A, A + sizeof(A));
EXPECT_EQ("a9993e364706816aba3e25717850c26c9cd0d89d", fuzzer::Hash(U));
U.push_back('d');
EXPECT_EQ("81fe8bfe87576c3ecb22426f8e57847382917acf", fuzzer::Hash(U));
}
typedef size_t (MutationDispatcher::*Mutator)(uint8_t *Data, size_t Size,
size_t MaxSize);
void TestEraseBytes(Mutator M, int NumIter) {
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
uint8_t REM0[8] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t REM1[8] = {0x00, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t REM2[8] = {0x00, 0x11, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t REM3[8] = {0x00, 0x11, 0x22, 0x44, 0x55, 0x66, 0x77};
uint8_t REM4[8] = {0x00, 0x11, 0x22, 0x33, 0x55, 0x66, 0x77};
uint8_t REM5[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x66, 0x77};
uint8_t REM6[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x77};
uint8_t REM7[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66};
uint8_t REM8[6] = {0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t REM9[6] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55};
uint8_t REM10[6] = {0x00, 0x11, 0x22, 0x55, 0x66, 0x77};
uint8_t REM11[5] = {0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t REM12[5] = {0x00, 0x11, 0x22, 0x33, 0x44};
uint8_t REM13[5] = {0x00, 0x44, 0x55, 0x66, 0x77};
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
int FoundMask = 0;
for (int i = 0; i < NumIter; i++) {
uint8_t T[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
size_t NewSize = (*MD.*M)(T, sizeof(T), sizeof(T));
if (NewSize == 7 && !memcmp(REM0, T, 7)) FoundMask |= 1 << 0;
if (NewSize == 7 && !memcmp(REM1, T, 7)) FoundMask |= 1 << 1;
if (NewSize == 7 && !memcmp(REM2, T, 7)) FoundMask |= 1 << 2;
if (NewSize == 7 && !memcmp(REM3, T, 7)) FoundMask |= 1 << 3;
if (NewSize == 7 && !memcmp(REM4, T, 7)) FoundMask |= 1 << 4;
if (NewSize == 7 && !memcmp(REM5, T, 7)) FoundMask |= 1 << 5;
if (NewSize == 7 && !memcmp(REM6, T, 7)) FoundMask |= 1 << 6;
if (NewSize == 7 && !memcmp(REM7, T, 7)) FoundMask |= 1 << 7;
if (NewSize == 6 && !memcmp(REM8, T, 6)) FoundMask |= 1 << 8;
if (NewSize == 6 && !memcmp(REM9, T, 6)) FoundMask |= 1 << 9;
if (NewSize == 6 && !memcmp(REM10, T, 6)) FoundMask |= 1 << 10;
if (NewSize == 5 && !memcmp(REM11, T, 5)) FoundMask |= 1 << 11;
if (NewSize == 5 && !memcmp(REM12, T, 5)) FoundMask |= 1 << 12;
if (NewSize == 5 && !memcmp(REM13, T, 5)) FoundMask |= 1 << 13;
}
EXPECT_EQ(FoundMask, (1 << 14) - 1);
}
TEST(FuzzerMutate, EraseBytes1) {
TestEraseBytes(&MutationDispatcher::Mutate_EraseBytes, 200);
}
TEST(FuzzerMutate, EraseBytes2) {
TestEraseBytes(&MutationDispatcher::Mutate, 2000);
}
void TestInsertByte(Mutator M, int NumIter) {
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
int FoundMask = 0;
uint8_t INS0[8] = {0xF1, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66};
uint8_t INS1[8] = {0x00, 0xF2, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66};
uint8_t INS2[8] = {0x00, 0x11, 0xF3, 0x22, 0x33, 0x44, 0x55, 0x66};
uint8_t INS3[8] = {0x00, 0x11, 0x22, 0xF4, 0x33, 0x44, 0x55, 0x66};
uint8_t INS4[8] = {0x00, 0x11, 0x22, 0x33, 0xF5, 0x44, 0x55, 0x66};
uint8_t INS5[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0xF6, 0x55, 0x66};
uint8_t INS6[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0xF7, 0x66};
uint8_t INS7[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0xF8};
for (int i = 0; i < NumIter; i++) {
uint8_t T[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66};
size_t NewSize = (*MD.*M)(T, 7, 8);
if (NewSize == 8 && !memcmp(INS0, T, 8)) FoundMask |= 1 << 0;
if (NewSize == 8 && !memcmp(INS1, T, 8)) FoundMask |= 1 << 1;
if (NewSize == 8 && !memcmp(INS2, T, 8)) FoundMask |= 1 << 2;
if (NewSize == 8 && !memcmp(INS3, T, 8)) FoundMask |= 1 << 3;
if (NewSize == 8 && !memcmp(INS4, T, 8)) FoundMask |= 1 << 4;
if (NewSize == 8 && !memcmp(INS5, T, 8)) FoundMask |= 1 << 5;
if (NewSize == 8 && !memcmp(INS6, T, 8)) FoundMask |= 1 << 6;
if (NewSize == 8 && !memcmp(INS7, T, 8)) FoundMask |= 1 << 7;
}
EXPECT_EQ(FoundMask, 255);
}
TEST(FuzzerMutate, InsertByte1) {
TestInsertByte(&MutationDispatcher::Mutate_InsertByte, 1 << 15);
}
TEST(FuzzerMutate, InsertByte2) {
TestInsertByte(&MutationDispatcher::Mutate, 1 << 17);
}
void TestInsertRepeatedBytes(Mutator M, int NumIter) {
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
int FoundMask = 0;
uint8_t INS0[7] = {0x00, 0x11, 0x22, 0x33, 'a', 'a', 'a'};
uint8_t INS1[7] = {0x00, 0x11, 0x22, 'a', 'a', 'a', 0x33};
uint8_t INS2[7] = {0x00, 0x11, 'a', 'a', 'a', 0x22, 0x33};
uint8_t INS3[7] = {0x00, 'a', 'a', 'a', 0x11, 0x22, 0x33};
uint8_t INS4[7] = {'a', 'a', 'a', 0x00, 0x11, 0x22, 0x33};
uint8_t INS5[8] = {0x00, 0x11, 0x22, 0x33, 'b', 'b', 'b', 'b'};
uint8_t INS6[8] = {0x00, 0x11, 0x22, 'b', 'b', 'b', 'b', 0x33};
uint8_t INS7[8] = {0x00, 0x11, 'b', 'b', 'b', 'b', 0x22, 0x33};
uint8_t INS8[8] = {0x00, 'b', 'b', 'b', 'b', 0x11, 0x22, 0x33};
uint8_t INS9[8] = {'b', 'b', 'b', 'b', 0x00, 0x11, 0x22, 0x33};
for (int i = 0; i < NumIter; i++) {
uint8_t T[8] = {0x00, 0x11, 0x22, 0x33};
size_t NewSize = (*MD.*M)(T, 4, 8);
if (NewSize == 7 && !memcmp(INS0, T, 7)) FoundMask |= 1 << 0;
if (NewSize == 7 && !memcmp(INS1, T, 7)) FoundMask |= 1 << 1;
if (NewSize == 7 && !memcmp(INS2, T, 7)) FoundMask |= 1 << 2;
if (NewSize == 7 && !memcmp(INS3, T, 7)) FoundMask |= 1 << 3;
if (NewSize == 7 && !memcmp(INS4, T, 7)) FoundMask |= 1 << 4;
if (NewSize == 8 && !memcmp(INS5, T, 8)) FoundMask |= 1 << 5;
if (NewSize == 8 && !memcmp(INS6, T, 8)) FoundMask |= 1 << 6;
if (NewSize == 8 && !memcmp(INS7, T, 8)) FoundMask |= 1 << 7;
if (NewSize == 8 && !memcmp(INS8, T, 8)) FoundMask |= 1 << 8;
if (NewSize == 8 && !memcmp(INS9, T, 8)) FoundMask |= 1 << 9;
}
EXPECT_EQ(FoundMask, (1 << 10) - 1);
}
TEST(FuzzerMutate, InsertRepeatedBytes1) {
TestInsertRepeatedBytes(&MutationDispatcher::Mutate_InsertRepeatedBytes,
10000);
}
TEST(FuzzerMutate, InsertRepeatedBytes2) {
TestInsertRepeatedBytes(&MutationDispatcher::Mutate, 300000);
}
void TestChangeByte(Mutator M, int NumIter) {
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
int FoundMask = 0;
uint8_t CH0[8] = {0xF0, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t CH1[8] = {0x00, 0xF1, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t CH2[8] = {0x00, 0x11, 0xF2, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t CH3[8] = {0x00, 0x11, 0x22, 0xF3, 0x44, 0x55, 0x66, 0x77};
uint8_t CH4[8] = {0x00, 0x11, 0x22, 0x33, 0xF4, 0x55, 0x66, 0x77};
uint8_t CH5[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0xF5, 0x66, 0x77};
uint8_t CH6[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0xF5, 0x77};
uint8_t CH7[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0xF7};
for (int i = 0; i < NumIter; i++) {
uint8_t T[9] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
size_t NewSize = (*MD.*M)(T, 8, 9);
if (NewSize == 8 && !memcmp(CH0, T, 8)) FoundMask |= 1 << 0;
if (NewSize == 8 && !memcmp(CH1, T, 8)) FoundMask |= 1 << 1;
if (NewSize == 8 && !memcmp(CH2, T, 8)) FoundMask |= 1 << 2;
if (NewSize == 8 && !memcmp(CH3, T, 8)) FoundMask |= 1 << 3;
if (NewSize == 8 && !memcmp(CH4, T, 8)) FoundMask |= 1 << 4;
if (NewSize == 8 && !memcmp(CH5, T, 8)) FoundMask |= 1 << 5;
if (NewSize == 8 && !memcmp(CH6, T, 8)) FoundMask |= 1 << 6;
if (NewSize == 8 && !memcmp(CH7, T, 8)) FoundMask |= 1 << 7;
}
EXPECT_EQ(FoundMask, 255);
}
TEST(FuzzerMutate, ChangeByte1) {
TestChangeByte(&MutationDispatcher::Mutate_ChangeByte, 1 << 15);
}
TEST(FuzzerMutate, ChangeByte2) {
TestChangeByte(&MutationDispatcher::Mutate, 1 << 17);
}
void TestChangeBit(Mutator M, int NumIter) {
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
int FoundMask = 0;
uint8_t CH0[8] = {0x01, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t CH1[8] = {0x00, 0x13, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t CH2[8] = {0x00, 0x11, 0x02, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t CH3[8] = {0x00, 0x11, 0x22, 0x37, 0x44, 0x55, 0x66, 0x77};
uint8_t CH4[8] = {0x00, 0x11, 0x22, 0x33, 0x54, 0x55, 0x66, 0x77};
uint8_t CH5[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x54, 0x66, 0x77};
uint8_t CH6[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x76, 0x77};
uint8_t CH7[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0xF7};
for (int i = 0; i < NumIter; i++) {
uint8_t T[9] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
size_t NewSize = (*MD.*M)(T, 8, 9);
if (NewSize == 8 && !memcmp(CH0, T, 8)) FoundMask |= 1 << 0;
if (NewSize == 8 && !memcmp(CH1, T, 8)) FoundMask |= 1 << 1;
if (NewSize == 8 && !memcmp(CH2, T, 8)) FoundMask |= 1 << 2;
if (NewSize == 8 && !memcmp(CH3, T, 8)) FoundMask |= 1 << 3;
if (NewSize == 8 && !memcmp(CH4, T, 8)) FoundMask |= 1 << 4;
if (NewSize == 8 && !memcmp(CH5, T, 8)) FoundMask |= 1 << 5;
if (NewSize == 8 && !memcmp(CH6, T, 8)) FoundMask |= 1 << 6;
if (NewSize == 8 && !memcmp(CH7, T, 8)) FoundMask |= 1 << 7;
}
EXPECT_EQ(FoundMask, 255);
}
TEST(FuzzerMutate, ChangeBit1) {
TestChangeBit(&MutationDispatcher::Mutate_ChangeBit, 1 << 16);
}
TEST(FuzzerMutate, ChangeBit2) {
TestChangeBit(&MutationDispatcher::Mutate, 1 << 18);
}
void TestShuffleBytes(Mutator M, int NumIter) {
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
int FoundMask = 0;
uint8_t CH0[7] = {0x00, 0x22, 0x11, 0x33, 0x44, 0x55, 0x66};
uint8_t CH1[7] = {0x11, 0x00, 0x33, 0x22, 0x44, 0x55, 0x66};
uint8_t CH2[7] = {0x00, 0x33, 0x11, 0x22, 0x44, 0x55, 0x66};
uint8_t CH3[7] = {0x00, 0x11, 0x22, 0x44, 0x55, 0x66, 0x33};
uint8_t CH4[7] = {0x00, 0x11, 0x22, 0x33, 0x55, 0x44, 0x66};
for (int i = 0; i < NumIter; i++) {
uint8_t T[7] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66};
size_t NewSize = (*MD.*M)(T, 7, 7);
if (NewSize == 7 && !memcmp(CH0, T, 7)) FoundMask |= 1 << 0;
if (NewSize == 7 && !memcmp(CH1, T, 7)) FoundMask |= 1 << 1;
if (NewSize == 7 && !memcmp(CH2, T, 7)) FoundMask |= 1 << 2;
if (NewSize == 7 && !memcmp(CH3, T, 7)) FoundMask |= 1 << 3;
if (NewSize == 7 && !memcmp(CH4, T, 7)) FoundMask |= 1 << 4;
}
EXPECT_EQ(FoundMask, 31);
}
TEST(FuzzerMutate, ShuffleBytes1) {
TestShuffleBytes(&MutationDispatcher::Mutate_ShuffleBytes, 1 << 17);
}
TEST(FuzzerMutate, ShuffleBytes2) {
TestShuffleBytes(&MutationDispatcher::Mutate, 1 << 20);
}
void TestCopyPart(Mutator M, int NumIter) {
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
int FoundMask = 0;
uint8_t CH0[7] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x00, 0x11};
uint8_t CH1[7] = {0x55, 0x66, 0x22, 0x33, 0x44, 0x55, 0x66};
uint8_t CH2[7] = {0x00, 0x55, 0x66, 0x33, 0x44, 0x55, 0x66};
uint8_t CH3[7] = {0x00, 0x11, 0x22, 0x00, 0x11, 0x22, 0x66};
uint8_t CH4[7] = {0x00, 0x11, 0x11, 0x22, 0x33, 0x55, 0x66};
for (int i = 0; i < NumIter; i++) {
uint8_t T[7] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66};
size_t NewSize = (*MD.*M)(T, 7, 7);
if (NewSize == 7 && !memcmp(CH0, T, 7)) FoundMask |= 1 << 0;
if (NewSize == 7 && !memcmp(CH1, T, 7)) FoundMask |= 1 << 1;
if (NewSize == 7 && !memcmp(CH2, T, 7)) FoundMask |= 1 << 2;
if (NewSize == 7 && !memcmp(CH3, T, 7)) FoundMask |= 1 << 3;
if (NewSize == 7 && !memcmp(CH4, T, 7)) FoundMask |= 1 << 4;
}
uint8_t CH5[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x00, 0x11, 0x22};
uint8_t CH6[8] = {0x22, 0x33, 0x44, 0x00, 0x11, 0x22, 0x33, 0x44};
uint8_t CH7[8] = {0x00, 0x11, 0x22, 0x00, 0x11, 0x22, 0x33, 0x44};
uint8_t CH8[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x22, 0x33, 0x44};
uint8_t CH9[8] = {0x00, 0x11, 0x22, 0x22, 0x33, 0x44, 0x33, 0x44};
for (int i = 0; i < NumIter; i++) {
uint8_t T[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
size_t NewSize = (*MD.*M)(T, 5, 8);
if (NewSize == 8 && !memcmp(CH5, T, 8)) FoundMask |= 1 << 5;
if (NewSize == 8 && !memcmp(CH6, T, 8)) FoundMask |= 1 << 6;
if (NewSize == 8 && !memcmp(CH7, T, 8)) FoundMask |= 1 << 7;
if (NewSize == 8 && !memcmp(CH8, T, 8)) FoundMask |= 1 << 8;
if (NewSize == 8 && !memcmp(CH9, T, 8)) FoundMask |= 1 << 9;
}
EXPECT_EQ(FoundMask, 1023);
}
TEST(FuzzerMutate, CopyPart1) {
TestCopyPart(&MutationDispatcher::Mutate_CopyPart, 1 << 10);
}
TEST(FuzzerMutate, CopyPart2) {
TestCopyPart(&MutationDispatcher::Mutate, 1 << 13);
}
TEST(FuzzerMutate, CopyPartNoInsertAtMaxSize) {
// This (non exhaustively) tests if `Mutate_CopyPart` tries to perform an
// insert on an input of size `MaxSize`. Performing an insert in this case
// will lead to the mutation failing.
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
uint8_t Data[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x00, 0x11, 0x22};
size_t MaxSize = sizeof(Data);
for (int count = 0; count < (1 << 18); ++count) {
size_t NewSize = MD->Mutate_CopyPart(Data, MaxSize, MaxSize);
ASSERT_EQ(NewSize, MaxSize);
}
}
void TestAddWordFromDictionary(Mutator M, int NumIter) {
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
uint8_t Word1[4] = {0xAA, 0xBB, 0xCC, 0xDD};
uint8_t Word2[3] = {0xFF, 0xEE, 0xEF};
MD->AddWordToManualDictionary(Word(Word1, sizeof(Word1)));
MD->AddWordToManualDictionary(Word(Word2, sizeof(Word2)));
int FoundMask = 0;
uint8_t CH0[7] = {0x00, 0x11, 0x22, 0xAA, 0xBB, 0xCC, 0xDD};
uint8_t CH1[7] = {0x00, 0x11, 0xAA, 0xBB, 0xCC, 0xDD, 0x22};
uint8_t CH2[7] = {0x00, 0xAA, 0xBB, 0xCC, 0xDD, 0x11, 0x22};
uint8_t CH3[7] = {0xAA, 0xBB, 0xCC, 0xDD, 0x00, 0x11, 0x22};
uint8_t CH4[6] = {0x00, 0x11, 0x22, 0xFF, 0xEE, 0xEF};
uint8_t CH5[6] = {0x00, 0x11, 0xFF, 0xEE, 0xEF, 0x22};
uint8_t CH6[6] = {0x00, 0xFF, 0xEE, 0xEF, 0x11, 0x22};
uint8_t CH7[6] = {0xFF, 0xEE, 0xEF, 0x00, 0x11, 0x22};
for (int i = 0; i < NumIter; i++) {
uint8_t T[7] = {0x00, 0x11, 0x22};
size_t NewSize = (*MD.*M)(T, 3, 7);
if (NewSize == 7 && !memcmp(CH0, T, 7)) FoundMask |= 1 << 0;
if (NewSize == 7 && !memcmp(CH1, T, 7)) FoundMask |= 1 << 1;
if (NewSize == 7 && !memcmp(CH2, T, 7)) FoundMask |= 1 << 2;
if (NewSize == 7 && !memcmp(CH3, T, 7)) FoundMask |= 1 << 3;
if (NewSize == 6 && !memcmp(CH4, T, 6)) FoundMask |= 1 << 4;
if (NewSize == 6 && !memcmp(CH5, T, 6)) FoundMask |= 1 << 5;
if (NewSize == 6 && !memcmp(CH6, T, 6)) FoundMask |= 1 << 6;
if (NewSize == 6 && !memcmp(CH7, T, 6)) FoundMask |= 1 << 7;
}
EXPECT_EQ(FoundMask, 255);
}
TEST(FuzzerMutate, AddWordFromDictionary1) {
TestAddWordFromDictionary(
&MutationDispatcher::Mutate_AddWordFromManualDictionary, 1 << 15);
}
TEST(FuzzerMutate, AddWordFromDictionary2) {
TestAddWordFromDictionary(&MutationDispatcher::Mutate, 1 << 15);
}
void TestChangeASCIIInteger(Mutator M, int NumIter) {
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
uint8_t CH0[8] = {'1', '2', '3', '4', '5', '6', '7', '7'};
uint8_t CH1[8] = {'1', '2', '3', '4', '5', '6', '7', '9'};
uint8_t CH2[8] = {'2', '4', '6', '9', '1', '3', '5', '6'};
uint8_t CH3[8] = {'0', '6', '1', '7', '2', '8', '3', '9'};
int FoundMask = 0;
for (int i = 0; i < NumIter; i++) {
uint8_t T[8] = {'1', '2', '3', '4', '5', '6', '7', '8'};
size_t NewSize = (*MD.*M)(T, 8, 8);
/**/ if (NewSize == 8 && !memcmp(CH0, T, 8)) FoundMask |= 1 << 0;
else if (NewSize == 8 && !memcmp(CH1, T, 8)) FoundMask |= 1 << 1;
else if (NewSize == 8 && !memcmp(CH2, T, 8)) FoundMask |= 1 << 2;
else if (NewSize == 8 && !memcmp(CH3, T, 8)) FoundMask |= 1 << 3;
else if (NewSize == 8) FoundMask |= 1 << 4;
}
EXPECT_EQ(FoundMask, 31);
}
TEST(FuzzerMutate, ChangeASCIIInteger1) {
TestChangeASCIIInteger(&MutationDispatcher::Mutate_ChangeASCIIInteger,
1 << 15);
}
TEST(FuzzerMutate, ChangeASCIIInteger2) {
TestChangeASCIIInteger(&MutationDispatcher::Mutate, 1 << 15);
}
void TestChangeBinaryInteger(Mutator M, int NumIter) {
std::unique_ptr<ExternalFunctions> t(new ExternalFunctions());
fuzzer::EF = t.get();
Random Rand(0);
std::unique_ptr<MutationDispatcher> MD(new MutationDispatcher(Rand, {}));
uint8_t CH0[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x79};
uint8_t CH1[8] = {0x00, 0x11, 0x22, 0x31, 0x44, 0x55, 0x66, 0x77};
uint8_t CH2[8] = {0xff, 0x10, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t CH3[8] = {0x00, 0x11, 0x2a, 0x33, 0x44, 0x55, 0x66, 0x77};
uint8_t CH4[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x4f, 0x66, 0x77};
uint8_t CH5[8] = {0xff, 0xee, 0xdd, 0xcc, 0xbb, 0xaa, 0x99, 0x88};
uint8_t CH6[8] = {0x00, 0x11, 0x22, 0x00, 0x00, 0x00, 0x08, 0x77}; // Size
uint8_t CH7[8] = {0x00, 0x08, 0x00, 0x33, 0x44, 0x55, 0x66, 0x77}; // Sw(Size)
int FoundMask = 0;
for (int i = 0; i < NumIter; i++) {
uint8_t T[8] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
size_t NewSize = (*MD.*M)(T, 8, 8);
/**/ if (NewSize == 8 && !memcmp(CH0, T, 8)) FoundMask |= 1 << 0;
else if (NewSize == 8 && !memcmp(CH1, T, 8)) FoundMask |= 1 << 1;
else if (NewSize == 8 && !memcmp(CH2, T, 8)) FoundMask |= 1 << 2;
else if (NewSize == 8 && !memcmp(CH3, T, 8)) FoundMask |= 1 << 3;
else if (NewSize == 8 && !memcmp(CH4, T, 8)) FoundMask |= 1 << 4;
else if (NewSize == 8 && !memcmp(CH5, T, 8)) FoundMask |= 1 << 5;
else if (NewSize == 8 && !memcmp(CH6, T, 8)) FoundMask |= 1 << 6;
else if (NewSize == 8 && !memcmp(CH7, T, 8)) FoundMask |= 1 << 7;
}
EXPECT_EQ(FoundMask, 255);
}
TEST(FuzzerMutate, ChangeBinaryInteger1) {
TestChangeBinaryInteger(&MutationDispatcher::Mutate_ChangeBinaryInteger,
1 << 12);
}
TEST(FuzzerMutate, ChangeBinaryInteger2) {
TestChangeBinaryInteger(&MutationDispatcher::Mutate, 1 << 15);
}
TEST(FuzzerDictionary, ParseOneDictionaryEntry) {
Unit U;
EXPECT_FALSE(ParseOneDictionaryEntry("", &U));
EXPECT_FALSE(ParseOneDictionaryEntry(" ", &U));
EXPECT_FALSE(ParseOneDictionaryEntry("\t ", &U));
EXPECT_FALSE(ParseOneDictionaryEntry(" \" ", &U));
EXPECT_FALSE(ParseOneDictionaryEntry(" zz\" ", &U));
EXPECT_FALSE(ParseOneDictionaryEntry(" \"zz ", &U));
EXPECT_FALSE(ParseOneDictionaryEntry(" \"\" ", &U));
EXPECT_TRUE(ParseOneDictionaryEntry("\"a\"", &U));
EXPECT_EQ(U, Unit({'a'}));
EXPECT_TRUE(ParseOneDictionaryEntry("\"abc\"", &U));
EXPECT_EQ(U, Unit({'a', 'b', 'c'}));
EXPECT_TRUE(ParseOneDictionaryEntry("abc=\"abc\"", &U));
EXPECT_EQ(U, Unit({'a', 'b', 'c'}));
EXPECT_FALSE(ParseOneDictionaryEntry("\"\\\"", &U));
EXPECT_TRUE(ParseOneDictionaryEntry("\"\\\\\"", &U));
EXPECT_EQ(U, Unit({'\\'}));
EXPECT_TRUE(ParseOneDictionaryEntry("\"\\xAB\"", &U));
EXPECT_EQ(U, Unit({0xAB}));
EXPECT_TRUE(ParseOneDictionaryEntry("\"\\xABz\\xDE\"", &U));
EXPECT_EQ(U, Unit({0xAB, 'z', 0xDE}));
EXPECT_TRUE(ParseOneDictionaryEntry("\"#\"", &U));
EXPECT_EQ(U, Unit({'#'}));
EXPECT_TRUE(ParseOneDictionaryEntry("\"\\\"\"", &U));
EXPECT_EQ(U, Unit({'"'}));
}
TEST(FuzzerDictionary, ParseDictionaryFile) {
std::vector<Unit> Units;
EXPECT_FALSE(ParseDictionaryFile("zzz\n", &Units));
EXPECT_FALSE(ParseDictionaryFile("", &Units));
EXPECT_TRUE(ParseDictionaryFile("\n", &Units));
EXPECT_EQ(Units.size(), 0U);
EXPECT_TRUE(ParseDictionaryFile("#zzzz a b c d\n", &Units));
EXPECT_EQ(Units.size(), 0U);
EXPECT_TRUE(ParseDictionaryFile(" #zzzz\n", &Units));
EXPECT_EQ(Units.size(), 0U);
EXPECT_TRUE(ParseDictionaryFile(" #zzzz\n", &Units));
EXPECT_EQ(Units.size(), 0U);
EXPECT_TRUE(ParseDictionaryFile(" #zzzz\naaa=\"aa\"", &Units));
EXPECT_EQ(Units, std::vector<Unit>({Unit({'a', 'a'})}));
EXPECT_TRUE(
ParseDictionaryFile(" #zzzz\naaa=\"aa\"\n\nabc=\"abc\"", &Units));
EXPECT_EQ(Units,
std::vector<Unit>({Unit({'a', 'a'}), Unit({'a', 'b', 'c'})}));
}
TEST(FuzzerUtil, Base64) {
EXPECT_EQ("", Base64({}));
EXPECT_EQ("YQ==", Base64({'a'}));
EXPECT_EQ("eA==", Base64({'x'}));
EXPECT_EQ("YWI=", Base64({'a', 'b'}));
EXPECT_EQ("eHk=", Base64({'x', 'y'}));
EXPECT_EQ("YWJj", Base64({'a', 'b', 'c'}));
EXPECT_EQ("eHl6", Base64({'x', 'y', 'z'}));
EXPECT_EQ("YWJjeA==", Base64({'a', 'b', 'c', 'x'}));
EXPECT_EQ("YWJjeHk=", Base64({'a', 'b', 'c', 'x', 'y'}));
EXPECT_EQ("YWJjeHl6", Base64({'a', 'b', 'c', 'x', 'y', 'z'}));
}
#ifdef __GLIBC__
class PrintfCapture {
public:
PrintfCapture() {
OldOutputFile = GetOutputFile();
SetOutputFile(open_memstream(&Buffer, &Size));
}
~PrintfCapture() {
fclose(GetOutputFile());
SetOutputFile(OldOutputFile);
free(Buffer);
}
std::string str() { return std::string(Buffer, Size); }
private:
char *Buffer;
size_t Size;
FILE *OldOutputFile;
};
TEST(FuzzerUtil, PrintASCII) {
auto f = [](const char *Str, const char *PrintAfter = "") {
PrintfCapture Capture;
PrintASCII(reinterpret_cast<const uint8_t*>(Str), strlen(Str), PrintAfter);
return Capture.str();
};
EXPECT_EQ("hello", f("hello"));
EXPECT_EQ("c:\\\\", f("c:\\"));
EXPECT_EQ("\\\"hi\\\"", f("\"hi\""));
EXPECT_EQ("\\011a", f("\ta"));
EXPECT_EQ("\\0111", f("\t1"));
EXPECT_EQ("hello\\012", f("hello\n"));
EXPECT_EQ("hello\n", f("hello", "\n"));
}
#endif
TEST(Corpus, Distribution) {
DataFlowTrace DFT;
Random Rand(0);
struct EntropicOptions Entropic = {false, 0xFF, 100, false};
std::unique_ptr<InputCorpus> C(new InputCorpus("", Entropic));
size_t N = 10;
size_t TriesPerUnit = 1<<16;
for (size_t i = 0; i < N; i++)
C->AddToCorpus(Unit{static_cast<uint8_t>(i)}, /*NumFeatures*/ 1,
/*MayDeleteFile*/ false, /*HasFocusFunction*/ false,
/*ForceAddToCorpus*/ false,
/*TimeOfUnit*/ std::chrono::microseconds(0),
/*FeatureSet*/ {}, DFT,
/*BaseII*/ nullptr);
std::vector<size_t> Hist(N);
for (size_t i = 0; i < N * TriesPerUnit; i++) {
Hist[C->ChooseUnitIdxToMutate(Rand)]++;
}
for (size_t i = 0; i < N; i++) {
// A weak sanity check that every unit gets invoked.
EXPECT_GT(Hist[i], TriesPerUnit / N / 3);
}
}
TEST(Corpus, Replace) {
DataFlowTrace DFT;
struct EntropicOptions Entropic = {false, 0xFF, 100, false};
std::unique_ptr<InputCorpus> C(
new InputCorpus(/*OutputCorpus*/ "", Entropic));
InputInfo *FirstII =
C->AddToCorpus(Unit{0x01, 0x00}, /*NumFeatures*/ 1,
/*MayDeleteFile*/ false, /*HasFocusFunction*/ false,
/*ForceAddToCorpus*/ false,
/*TimeOfUnit*/ std::chrono::microseconds(1234),
/*FeatureSet*/ {}, DFT,
/*BaseII*/ nullptr);
InputInfo *SecondII =
C->AddToCorpus(Unit{0x02}, /*NumFeatures*/ 1,
/*MayDeleteFile*/ false, /*HasFocusFunction*/ false,
/*ForceAddToCorpus*/ false,
/*TimeOfUnit*/ std::chrono::microseconds(5678),
/*FeatureSet*/ {}, DFT,
/*BaseII*/ nullptr);
Unit ReplacedU = Unit{0x03};
C->Replace(FirstII, ReplacedU,
/*TimeOfUnit*/ std::chrono::microseconds(321));
// FirstII should be replaced.
EXPECT_EQ(FirstII->U, Unit{0x03});
EXPECT_EQ(FirstII->Reduced, true);
EXPECT_EQ(FirstII->TimeOfUnit, std::chrono::microseconds(321));
std::vector<uint8_t> ExpectedSha1(kSHA1NumBytes);
ComputeSHA1(ReplacedU.data(), ReplacedU.size(), ExpectedSha1.data());
std::vector<uint8_t> IISha1(FirstII->Sha1, FirstII->Sha1 + kSHA1NumBytes);
EXPECT_EQ(IISha1, ExpectedSha1);
// SecondII should not be replaced.
EXPECT_EQ(SecondII->U, Unit{0x02});
EXPECT_EQ(SecondII->Reduced, false);
EXPECT_EQ(SecondII->TimeOfUnit, std::chrono::microseconds(5678));
}
template <typename T>
void EQ(const std::vector<T> &A, const std::vector<T> &B) {
EXPECT_EQ(A, B);
}
template <typename T> void EQ(const std::set<T> &A, const std::vector<T> &B) {
EXPECT_EQ(A, std::set<T>(B.begin(), B.end()));
}
void EQ(const std::vector<MergeFileInfo> &A,
const std::vector<std::string> &B) {
std::set<std::string> a;
for (const auto &File : A)
a.insert(File.Name);
std::set<std::string> b(B.begin(), B.end());
EXPECT_EQ(a, b);
}
#define TRACED_EQ(A, ...) \
{ \
SCOPED_TRACE(#A); \
EQ(A, __VA_ARGS__); \
}
TEST(Merger, Parse) {
Merger M;
const char *kInvalidInputs[] = {
// Bad file numbers
"",
"x",
"0\n0",
"3\nx",
"2\n3",
"2\n2",
// Bad file names
"2\n2\nA\n",
"2\n2\nA\nB\nC\n",
// Unknown markers
"2\n1\nA\nSTARTED 0\nBAD 0 0x0",
// Bad file IDs
"1\n1\nA\nSTARTED 1",
"2\n1\nA\nSTARTED 0\nFT 1 0x0",
};
for (auto S : kInvalidInputs) {
SCOPED_TRACE(S);
EXPECT_FALSE(M.Parse(S, false));
}
// Parse initial control file
EXPECT_TRUE(M.Parse("1\n0\nAA\n", false));
ASSERT_EQ(M.Files.size(), 1U);
EXPECT_EQ(M.NumFilesInFirstCorpus, 0U);
EXPECT_EQ(M.Files[0].Name, "AA");
EXPECT_TRUE(M.LastFailure.empty());
EXPECT_EQ(M.FirstNotProcessedFile, 0U);
// Parse control file that failed on first attempt
EXPECT_TRUE(M.Parse("2\n1\nAA\nBB\nSTARTED 0 42\n", false));
ASSERT_EQ(M.Files.size(), 2U);
EXPECT_EQ(M.NumFilesInFirstCorpus, 1U);
EXPECT_EQ(M.Files[0].Name, "AA");
EXPECT_EQ(M.Files[1].Name, "BB");
EXPECT_EQ(M.LastFailure, "AA");
EXPECT_EQ(M.FirstNotProcessedFile, 1U);
// Parse control file that failed on later attempt
EXPECT_TRUE(M.Parse("3\n1\nAA\nBB\nC\n"
"STARTED 0 1000\n"
"FT 0 1 2 3\n"
"STARTED 1 1001\n"
"FT 1 4 5 6 \n"
"STARTED 2 1002\n"
"",
true));
ASSERT_EQ(M.Files.size(), 3U);
EXPECT_EQ(M.NumFilesInFirstCorpus, 1U);
EXPECT_EQ(M.Files[0].Name, "AA");
EXPECT_EQ(M.Files[0].Size, 1000U);
EXPECT_EQ(M.Files[1].Name, "BB");
EXPECT_EQ(M.Files[1].Size, 1001U);
EXPECT_EQ(M.Files[2].Name, "C");
EXPECT_EQ(M.Files[2].Size, 1002U);
EXPECT_EQ(M.LastFailure, "C");
EXPECT_EQ(M.FirstNotProcessedFile, 3U);
TRACED_EQ(M.Files[0].Features, {1, 2, 3});
TRACED_EQ(M.Files[1].Features, {4, 5, 6});
// Parse control file without features or PCs
EXPECT_TRUE(M.Parse("2\n0\nAA\nBB\n"
"STARTED 0 1000\n"
"FT 0\n"
"COV 0\n"
"STARTED 1 1001\n"
"FT 1\n"
"COV 1\n"
"",
true));
ASSERT_EQ(M.Files.size(), 2U);
EXPECT_EQ(M.NumFilesInFirstCorpus, 0U);
EXPECT_TRUE(M.LastFailure.empty());
EXPECT_EQ(M.FirstNotProcessedFile, 2U);
EXPECT_TRUE(M.Files[0].Features.empty());
EXPECT_TRUE(M.Files[0].Cov.empty());
EXPECT_TRUE(M.Files[1].Features.empty());
EXPECT_TRUE(M.Files[1].Cov.empty());
// Parse features and PCs
EXPECT_TRUE(M.Parse("3\n2\nAA\nBB\nC\n"
"STARTED 0 1000\n"
"FT 0 1 2 3\n"
"COV 0 11 12 13\n"
"STARTED 1 1001\n"
"FT 1 4 5 6\n"
"COV 1 7 8 9\n"
"STARTED 2 1002\n"
"FT 2 6 1 3\n"
"COV 2 16 11 13\n"
"",
true));
ASSERT_EQ(M.Files.size(), 3U);
EXPECT_EQ(M.NumFilesInFirstCorpus, 2U);
EXPECT_TRUE(M.LastFailure.empty());
EXPECT_EQ(M.FirstNotProcessedFile, 3U);
TRACED_EQ(M.Files[0].Features, {1, 2, 3});
TRACED_EQ(M.Files[0].Cov, {11, 12, 13});
TRACED_EQ(M.Files[1].Features, {4, 5, 6});
TRACED_EQ(M.Files[1].Cov, {7, 8, 9});
TRACED_EQ(M.Files[2].Features, {1, 3, 6});
TRACED_EQ(M.Files[2].Cov, {16});
}
TEST(Merger, Merge) {
Merger M;
std::set<uint32_t> Features, NewFeatures;
std::set<uint32_t> Cov, NewCov;
std::vector<std::string> NewFiles;
// Adds new files and features
EXPECT_TRUE(M.Parse("3\n0\nA\nB\nC\n"
"STARTED 0 1000\n"
"FT 0 1 2 3\n"
"STARTED 1 1001\n"
"FT 1 4 5 6 \n"
"STARTED 2 1002\n"
"FT 2 6 1 3\n"
"",
true));
EXPECT_EQ(M.Merge(Features, &NewFeatures, Cov, &NewCov, &NewFiles), 6U);
TRACED_EQ(M.Files, {"A", "B", "C"});
TRACED_EQ(NewFiles, {"A", "B"});
TRACED_EQ(NewFeatures, {1, 2, 3, 4, 5, 6});
// Doesn't return features or files in the initial corpus.
EXPECT_TRUE(M.Parse("3\n1\nA\nB\nC\n"
"STARTED 0 1000\n"
"FT 0 1 2 3\n"
"STARTED 1 1001\n"
"FT 1 4 5 6 \n"
"STARTED 2 1002\n"
"FT 2 6 1 3\n"
"",
true));
EXPECT_EQ(M.Merge(Features, &NewFeatures, Cov, &NewCov, &NewFiles), 3U);
TRACED_EQ(M.Files, {"A", "B", "C"});
TRACED_EQ(NewFiles, {"B"});
TRACED_EQ(NewFeatures, {4, 5, 6});
// No new features, so no new files
EXPECT_TRUE(M.Parse("3\n2\nA\nB\nC\n"
"STARTED 0 1000\n"
"FT 0 1 2 3\n"
"STARTED 1 1001\n"
"FT 1 4 5 6 \n"
"STARTED 2 1002\n"
"FT 2 6 1 3\n"
"",
true));
EXPECT_EQ(M.Merge(Features, &NewFeatures, Cov, &NewCov, &NewFiles), 0U);
TRACED_EQ(M.Files, {"A", "B", "C"});
TRACED_EQ(NewFiles, {});
TRACED_EQ(NewFeatures, {});
// Can pass initial features and coverage.
Features = {1, 2, 3};
Cov = {};
EXPECT_TRUE(M.Parse("2\n0\nA\nB\n"
"STARTED 0 1000\n"
"FT 0 1 2 3\n"
"STARTED 1 1001\n"
"FT 1 4 5 6\n"
"",
true));
EXPECT_EQ(M.Merge(Features, &NewFeatures, Cov, &NewCov, &NewFiles), 3U);
TRACED_EQ(M.Files, {"A", "B"});
TRACED_EQ(NewFiles, {"B"});
TRACED_EQ(NewFeatures, {4, 5, 6});
Features.clear();
Cov.clear();
// Parse smaller files first
EXPECT_TRUE(M.Parse("3\n0\nA\nB\nC\n"
"STARTED 0 2000\n"
"FT 0 1 2 3\n"
"STARTED 1 1001\n"
"FT 1 4 5 6 \n"
"STARTED 2 1002\n"
"FT 2 6 1 3 \n"
"",
true));
EXPECT_EQ(M.Merge(Features, &NewFeatures, Cov, &NewCov, &NewFiles), 6U);
TRACED_EQ(M.Files, {"B", "C", "A"});
TRACED_EQ(NewFiles, {"B", "C", "A"});
TRACED_EQ(NewFeatures, {1, 2, 3, 4, 5, 6});
EXPECT_TRUE(M.Parse("4\n0\nA\nB\nC\nD\n"
"STARTED 0 2000\n"
"FT 0 1 2 3\n"
"STARTED 1 1101\n"
"FT 1 4 5 6 \n"
"STARTED 2 1102\n"
"FT 2 6 1 3 100 \n"
"STARTED 3 1000\n"
"FT 3 1 \n"
"",
true));
EXPECT_EQ(M.Merge(Features, &NewFeatures, Cov, &NewCov, &NewFiles), 7U);
TRACED_EQ(M.Files, {"A", "B", "C", "D"});
TRACED_EQ(NewFiles, {"D", "B", "C", "A"});
TRACED_EQ(NewFeatures, {1, 2, 3, 4, 5, 6, 100});
// For same sized file, parse more features first
EXPECT_TRUE(M.Parse("4\n1\nA\nB\nC\nD\n"
"STARTED 0 2000\n"
"FT 0 4 5 6 7 8\n"
"STARTED 1 1100\n"
"FT 1 1 2 3 \n"
"STARTED 2 1100\n"
"FT 2 2 3 \n"
"STARTED 3 1000\n"
"FT 3 1 \n"
"",
true));
EXPECT_EQ(M.Merge(Features, &NewFeatures, Cov, &NewCov, &NewFiles), 3U);
TRACED_EQ(M.Files, {"A", "B", "C", "D"});
TRACED_EQ(NewFiles, {"D", "B"});
TRACED_EQ(NewFeatures, {1, 2, 3});
}
TEST(Merger, SetCoverMerge) {
Merger M;
std::set<uint32_t> Features, NewFeatures;
std::set<uint32_t> Cov, NewCov;
std::vector<std::string> NewFiles;
// Adds new files and features
EXPECT_TRUE(M.Parse("3\n0\nA\nB\nC\n"
"STARTED 0 1000\n"
"FT 0 1 2 3\n"
"STARTED 1 1001\n"
"FT 1 4 5 6 \n"
"STARTED 2 1002\n"
"FT 2 6 1 3\n"
"",
true));
EXPECT_EQ(M.SetCoverMerge(Features, &NewFeatures, Cov, &NewCov, &NewFiles),
6U);
TRACED_EQ(M.Files, {"A", "B", "C"});
TRACED_EQ(NewFiles, {"A", "B"});
TRACED_EQ(NewFeatures, {1, 2, 3, 4, 5, 6});
// Doesn't return features or files in the initial corpus.
EXPECT_TRUE(M.Parse("3\n1\nA\nB\nC\n"
"STARTED 0 1000\n"
"FT 0 1 2 3\n"
"STARTED 1 1001\n"
"FT 1 4 5 6 \n"
"STARTED 2 1002\n"
"FT 2 6 1 3\n"
"",
true));
EXPECT_EQ(M.SetCoverMerge(Features, &NewFeatures, Cov, &NewCov, &NewFiles),
3U);
TRACED_EQ(M.Files, {"A", "B", "C"});
TRACED_EQ(NewFiles, {"B"});
TRACED_EQ(NewFeatures, {4, 5, 6});
// No new features, so no new files
EXPECT_TRUE(M.Parse("3\n2\nA\nB\nC\n"
"STARTED 0 1000\n"
"FT 0 1 2 3\n"
"STARTED 1 1001\n"
"FT 1 4 5 6 \n"
"STARTED 2 1002\n"
"FT 2 6 1 3\n"
"",
true));
EXPECT_EQ(M.SetCoverMerge(Features, &NewFeatures, Cov, &NewCov, &NewFiles),
0U);
TRACED_EQ(M.Files, {"A", "B", "C"});
TRACED_EQ(NewFiles, {});
TRACED_EQ(NewFeatures, {});
// Can pass initial features and coverage.
Features = {1, 2, 3};
Cov = {};
EXPECT_TRUE(M.Parse("2\n0\nA\nB\n"
"STARTED 0 1000\n"
"FT 0 1 2 3\n"
"STARTED 1 1001\n"
"FT 1 4 5 6\n"
"",
true));
EXPECT_EQ(M.SetCoverMerge(Features, &NewFeatures, Cov, &NewCov, &NewFiles),
3U);
TRACED_EQ(M.Files, {"A", "B"});
TRACED_EQ(NewFiles, {"B"});
TRACED_EQ(NewFeatures, {4, 5, 6});
Features.clear();
Cov.clear();
// Prefer files with a lot of features first (C has 4 features)
// Then prefer B over A due to the smaller size. After choosing C and B,
// A and D have no new features to contribute.
EXPECT_TRUE(M.Parse("4\n0\nA\nB\nC\nD\n"
"STARTED 0 2000\n"
"FT 0 3 5 6\n"
"STARTED 1 1000\n"
"FT 1 4 5 6 \n"
"STARTED 2 1000\n"
"FT 2 1 2 3 4 \n"
"STARTED 3 500\n"
"FT 3 1 \n"
"",
true));
EXPECT_EQ(M.SetCoverMerge(Features, &NewFeatures, Cov, &NewCov, &NewFiles),
6U);
TRACED_EQ(M.Files, {"A", "B", "C", "D"});
TRACED_EQ(NewFiles, {"C", "B"});
TRACED_EQ(NewFeatures, {1, 2, 3, 4, 5, 6});
// Only 1 file covers all features.
EXPECT_TRUE(M.Parse("4\n1\nA\nB\nC\nD\n"
"STARTED 0 2000\n"
"FT 0 4 5 6 7 8\n"
"STARTED 1 1100\n"
"FT 1 1 2 3 \n"
"STARTED 2 1100\n"
"FT 2 2 3 \n"
"STARTED 3 1000\n"
"FT 3 1 \n"
"",
true));
EXPECT_EQ(M.SetCoverMerge(Features, &NewFeatures, Cov, &NewCov, &NewFiles),
3U);
TRACED_EQ(M.Files, {"A", "B", "C", "D"});
TRACED_EQ(NewFiles, {"B"});
TRACED_EQ(NewFeatures, {1, 2, 3});
// A Feature has a value greater than (1 << 21) and hence
// there are collisions in the underlying `covered features`
// bitvector.
EXPECT_TRUE(M.Parse("3\n0\nA\nB\nC\n"
"STARTED 0 2000\n"
"FT 0 1 2 3\n"
"STARTED 1 1000\n"
"FT 1 3 4 5 \n"
"STARTED 2 1000\n"
"FT 2 3 2097153 \n" // Last feature is (2^21 + 1).
"",
true));
EXPECT_EQ(M.SetCoverMerge(Features, &NewFeatures, Cov, &NewCov, &NewFiles),
5U);
TRACED_EQ(M.Files, {"A", "B", "C"});
// File 'C' is not added because it's last feature is considered
// covered due to collision with feature 1.
TRACED_EQ(NewFiles, {"B", "A"});
TRACED_EQ(NewFeatures, {1, 2, 3, 4, 5});
}
#undef TRACED_EQ
TEST(DFT, BlockCoverage) {
BlockCoverage Cov;
// Assuming C0 has 5 instrumented blocks,
// C1: 7 blocks, C2: 4, C3: 9, C4 never covered, C5: 15,
// Add C0
EXPECT_TRUE(Cov.AppendCoverage("C0 5\n"));
EXPECT_EQ(Cov.GetCounter(0, 0), 1U);
EXPECT_EQ(Cov.GetCounter(0, 1), 0U); // not seen this BB yet.
EXPECT_EQ(Cov.GetCounter(0, 5), 0U); // BB ID out of bounds.
EXPECT_EQ(Cov.GetCounter(1, 0), 0U); // not seen this function yet.
EXPECT_EQ(Cov.GetNumberOfBlocks(0), 5U);
EXPECT_EQ(Cov.GetNumberOfCoveredBlocks(0), 1U);
EXPECT_EQ(Cov.GetNumberOfBlocks(1), 0U);
// Various errors.
EXPECT_FALSE(Cov.AppendCoverage("C0\n")); // No total number.
EXPECT_FALSE(Cov.AppendCoverage("C0 7\n")); // No total number.
EXPECT_FALSE(Cov.AppendCoverage("CZ\n")); // Wrong function number.
EXPECT_FALSE(Cov.AppendCoverage("C1 7 7")); // BB ID is too big.
EXPECT_FALSE(Cov.AppendCoverage("C1 100 7")); // BB ID is too big.
// Add C0 more times.
EXPECT_TRUE(Cov.AppendCoverage("C0 5\n"));
EXPECT_EQ(Cov.GetCounter(0, 0), 2U);
EXPECT_TRUE(Cov.AppendCoverage("C0 1 2 5\n"));
EXPECT_EQ(Cov.GetCounter(0, 0), 3U);
EXPECT_EQ(Cov.GetCounter(0, 1), 1U);
EXPECT_EQ(Cov.GetCounter(0, 2), 1U);
EXPECT_EQ(Cov.GetCounter(0, 3), 0U);
EXPECT_EQ(Cov.GetCounter(0, 4), 0U);
EXPECT_EQ(Cov.GetNumberOfCoveredBlocks(0), 3U);
EXPECT_TRUE(Cov.AppendCoverage("C0 1 3 4 5\n"));
EXPECT_EQ(Cov.GetCounter(0, 0), 4U);
EXPECT_EQ(Cov.GetCounter(0, 1), 2U);
EXPECT_EQ(Cov.GetCounter(0, 2), 1U);
EXPECT_EQ(Cov.GetCounter(0, 3), 1U);
EXPECT_EQ(Cov.GetCounter(0, 4), 1U);
EXPECT_EQ(Cov.GetNumberOfCoveredBlocks(0), 5U);
EXPECT_TRUE(Cov.AppendCoverage("C1 7\nC2 4\nC3 9\nC5 15\nC0 5\n"));
EXPECT_EQ(Cov.GetCounter(0, 0), 5U);
EXPECT_EQ(Cov.GetCounter(1, 0), 1U);
EXPECT_EQ(Cov.GetCounter(2, 0), 1U);
EXPECT_EQ(Cov.GetCounter(3, 0), 1U);
EXPECT_EQ(Cov.GetCounter(4, 0), 0U);
EXPECT_EQ(Cov.GetCounter(5, 0), 1U);
EXPECT_TRUE(Cov.AppendCoverage("C3 4 5 9\nC5 11 12 15"));
EXPECT_EQ(Cov.GetCounter(0, 0), 5U);
EXPECT_EQ(Cov.GetCounter(1, 0), 1U);
EXPECT_EQ(Cov.GetCounter(2, 0), 1U);
EXPECT_EQ(Cov.GetCounter(3, 0), 2U);
EXPECT_EQ(Cov.GetCounter(3, 4), 1U);
EXPECT_EQ(Cov.GetCounter(3, 5), 1U);
EXPECT_EQ(Cov.GetCounter(3, 6), 0U);
EXPECT_EQ(Cov.GetCounter(4, 0), 0U);
EXPECT_EQ(Cov.GetCounter(5, 0), 2U);
EXPECT_EQ(Cov.GetCounter(5, 10), 0U);
EXPECT_EQ(Cov.GetCounter(5, 11), 1U);
EXPECT_EQ(Cov.GetCounter(5, 12), 1U);
}
TEST(DFT, FunctionWeights) {
BlockCoverage Cov;
// unused function gets zero weight.
EXPECT_TRUE(Cov.AppendCoverage("C0 5\n"));
auto Weights = Cov.FunctionWeights(2);
EXPECT_GT(Weights[0], 0.);
EXPECT_EQ(Weights[1], 0.);
// Less frequently used function gets less weight.
Cov.clear();
EXPECT_TRUE(Cov.AppendCoverage("C0 5\nC1 5\nC1 5\n"));
Weights = Cov.FunctionWeights(2);
EXPECT_GT(Weights[0], Weights[1]);
// A function with more uncovered blocks gets more weight.
Cov.clear();
EXPECT_TRUE(Cov.AppendCoverage("C0 1 2 3 5\nC1 2 4\n"));
Weights = Cov.FunctionWeights(2);
EXPECT_GT(Weights[1], Weights[0]);
// A function with DFT gets more weight than the function w/o DFT.
Cov.clear();
EXPECT_TRUE(Cov.AppendCoverage("F1 111\nC0 3\nC1 1 2 3\n"));
Weights = Cov.FunctionWeights(2);
EXPECT_GT(Weights[1], Weights[0]);
}
TEST(Fuzzer, ForEachNonZeroByte) {
const size_t N = 64;
alignas(64) uint8_t Ar[N + 8] = {
0, 0, 0, 0, 0, 0, 0, 0,
1, 2, 0, 0, 0, 0, 0, 0,
0, 0, 3, 0, 4, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 5, 0, 6, 0, 0,
0, 0, 0, 0, 0, 0, 7, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 8,
9, 9, 9, 9, 9, 9, 9, 9,
};
typedef std::vector<std::pair<size_t, uint8_t>> Vec;
Vec Res, Expected;
auto CB = [&](size_t FirstFeature, size_t Idx, uint8_t V) {
Res.push_back({FirstFeature + Idx, V});
};
ForEachNonZeroByte(Ar, Ar + N, 100, CB);
Expected = {{108, 1}, {109, 2}, {118, 3}, {120, 4},
{135, 5}, {137, 6}, {146, 7}, {163, 8}};
EXPECT_EQ(Res, Expected);
Res.clear();
ForEachNonZeroByte(Ar + 9, Ar + N, 109, CB);
Expected = { {109, 2}, {118, 3}, {120, 4},
{135, 5}, {137, 6}, {146, 7}, {163, 8}};
EXPECT_EQ(Res, Expected);
Res.clear();
ForEachNonZeroByte(Ar + 9, Ar + N - 9, 109, CB);
Expected = { {109, 2}, {118, 3}, {120, 4},
{135, 5}, {137, 6}, {146, 7}};
EXPECT_EQ(Res, Expected);
}
// FuzzerCommand unit tests. The arguments in the two helper methods below must
// match.
static void makeCommandArgs(std::vector<std::string> *ArgsToAdd) {
assert(ArgsToAdd);
ArgsToAdd->clear();
ArgsToAdd->push_back("foo");
ArgsToAdd->push_back("-bar=baz");
ArgsToAdd->push_back("qux");
ArgsToAdd->push_back(Command::ignoreRemainingArgs());
ArgsToAdd->push_back("quux");
ArgsToAdd->push_back("-grault=garply");
}
static std::string makeCmdLine(const char *separator, const char *suffix) {
std::string CmdLine("foo -bar=baz qux ");
if (strlen(separator) != 0) {
CmdLine += separator;
CmdLine += " ";
}
CmdLine += Command::ignoreRemainingArgs();
CmdLine += " quux -grault=garply";
if (strlen(suffix) != 0) {
CmdLine += " ";
CmdLine += suffix;
}
return CmdLine;
}
TEST(FuzzerCommand, Create) {
std::string CmdLine;
// Default constructor
Command DefaultCmd;
CmdLine = DefaultCmd.toString();
EXPECT_EQ(CmdLine, "");
// Explicit constructor
std::vector<std::string> ArgsToAdd;
makeCommandArgs(&ArgsToAdd);
Command InitializedCmd(ArgsToAdd);
CmdLine = InitializedCmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("", ""));
// Compare each argument
auto InitializedArgs = InitializedCmd.getArguments();
auto i = ArgsToAdd.begin();
auto j = InitializedArgs.begin();
while (i != ArgsToAdd.end() && j != InitializedArgs.end()) {
EXPECT_EQ(*i++, *j++);
}
EXPECT_EQ(i, ArgsToAdd.end());
EXPECT_EQ(j, InitializedArgs.end());
// Copy constructor
Command CopiedCmd(InitializedCmd);
CmdLine = CopiedCmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("", ""));
// Assignment operator
Command AssignedCmd;
AssignedCmd = CopiedCmd;
CmdLine = AssignedCmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("", ""));
}
TEST(FuzzerCommand, ModifyArguments) {
std::vector<std::string> ArgsToAdd;
makeCommandArgs(&ArgsToAdd);
Command Cmd;
std::string CmdLine;
Cmd.addArguments(ArgsToAdd);
CmdLine = Cmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("", ""));
Cmd.addArgument("waldo");
EXPECT_TRUE(Cmd.hasArgument("waldo"));
CmdLine = Cmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("waldo", ""));
Cmd.removeArgument("waldo");
EXPECT_FALSE(Cmd.hasArgument("waldo"));
CmdLine = Cmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("", ""));
}
TEST(FuzzerCommand, ModifyFlags) {
std::vector<std::string> ArgsToAdd;
makeCommandArgs(&ArgsToAdd);
Command Cmd(ArgsToAdd);
std::string Value, CmdLine;
ASSERT_FALSE(Cmd.hasFlag("fred"));
Value = Cmd.getFlagValue("fred");
EXPECT_EQ(Value, "");
CmdLine = Cmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("", ""));
Cmd.addFlag("fred", "plugh");
EXPECT_TRUE(Cmd.hasFlag("fred"));
Value = Cmd.getFlagValue("fred");
EXPECT_EQ(Value, "plugh");
CmdLine = Cmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("-fred=plugh", ""));
Cmd.removeFlag("fred");
EXPECT_FALSE(Cmd.hasFlag("fred"));
Value = Cmd.getFlagValue("fred");
EXPECT_EQ(Value, "");
CmdLine = Cmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("", ""));
}
TEST(FuzzerCommand, SetOutput) {
std::vector<std::string> ArgsToAdd;
makeCommandArgs(&ArgsToAdd);
Command Cmd(ArgsToAdd);
std::string CmdLine;
ASSERT_FALSE(Cmd.hasOutputFile());
ASSERT_FALSE(Cmd.isOutAndErrCombined());
Cmd.combineOutAndErr(true);
EXPECT_TRUE(Cmd.isOutAndErrCombined());
CmdLine = Cmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("", "2>&1"));
Cmd.combineOutAndErr(false);
EXPECT_FALSE(Cmd.isOutAndErrCombined());
Cmd.setOutputFile("xyzzy");
EXPECT_TRUE(Cmd.hasOutputFile());
CmdLine = Cmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("", ">xyzzy"));
Cmd.setOutputFile("thud");
EXPECT_TRUE(Cmd.hasOutputFile());
CmdLine = Cmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("", ">thud"));
Cmd.combineOutAndErr();
EXPECT_TRUE(Cmd.isOutAndErrCombined());
CmdLine = Cmd.toString();
EXPECT_EQ(CmdLine, makeCmdLine("", ">thud 2>&1"));
}
TEST(Entropic, UpdateFrequency) {
const size_t One = 1, Two = 2;
const size_t FeatIdx1 = 0, FeatIdx2 = 42, FeatIdx3 = 12, FeatIdx4 = 26;
size_t Index;
// Create input corpus with default entropic configuration
struct EntropicOptions Entropic = {true, 0xFF, 100, false};
std::unique_ptr<InputCorpus> C(new InputCorpus("", Entropic));
std::unique_ptr<InputInfo> II(new InputInfo());
C->AddRareFeature(FeatIdx1);
C->UpdateFeatureFrequency(II.get(), FeatIdx1);
EXPECT_EQ(II->FeatureFreqs.size(), One);
C->AddRareFeature(FeatIdx2);
C->UpdateFeatureFrequency(II.get(), FeatIdx1);
C->UpdateFeatureFrequency(II.get(), FeatIdx2);
EXPECT_EQ(II->FeatureFreqs.size(), Two);
EXPECT_EQ(II->FeatureFreqs[0].second, 2);
EXPECT_EQ(II->FeatureFreqs[1].second, 1);
C->AddRareFeature(FeatIdx3);
C->AddRareFeature(FeatIdx4);
C->UpdateFeatureFrequency(II.get(), FeatIdx3);
C->UpdateFeatureFrequency(II.get(), FeatIdx3);
C->UpdateFeatureFrequency(II.get(), FeatIdx3);
C->UpdateFeatureFrequency(II.get(), FeatIdx4);
for (Index = 1; Index < II->FeatureFreqs.size(); Index++)
EXPECT_LT(II->FeatureFreqs[Index - 1].first, II->FeatureFreqs[Index].first);
II->DeleteFeatureFreq(FeatIdx3);
for (Index = 1; Index < II->FeatureFreqs.size(); Index++)
EXPECT_LT(II->FeatureFreqs[Index - 1].first, II->FeatureFreqs[Index].first);
}
double SubAndSquare(double X, double Y) {
double R = X - Y;
R = R * R;
return R;
}
TEST(Entropic, ComputeEnergy) {
const double Precision = 0.01;
struct EntropicOptions Entropic = {true, 0xFF, 100, false};
std::unique_ptr<InputCorpus> C(new InputCorpus("", Entropic));
std::unique_ptr<InputInfo> II(new InputInfo());
std::vector<std::pair<uint32_t, uint16_t>> FeatureFreqs = {
{1, 3}, {2, 3}, {3, 3}};
II->FeatureFreqs = FeatureFreqs;
II->NumExecutedMutations = 0;
II->UpdateEnergy(4, false, std::chrono::microseconds(0));
EXPECT_LT(SubAndSquare(II->Energy, 1.450805), Precision);
II->NumExecutedMutations = 9;
II->UpdateEnergy(5, false, std::chrono::microseconds(0));
EXPECT_LT(SubAndSquare(II->Energy, 1.525496), Precision);
II->FeatureFreqs[0].second++;
II->FeatureFreqs.push_back(std::pair<uint32_t, uint16_t>(42, 6));
II->NumExecutedMutations = 20;
II->UpdateEnergy(10, false, std::chrono::microseconds(0));
EXPECT_LT(SubAndSquare(II->Energy, 1.792831), Precision);
}
int main(int argc, char **argv) {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}