//===-- tsan_shadow_test.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "gtest/gtest.h"
namespace __tsan {
struct Region {
uptr start;
uptr end;
};
void CheckShadow(const Shadow *s, Sid sid, Epoch epoch, uptr addr, uptr size,
AccessType typ) {
uptr addr1 = 0;
uptr size1 = 0;
AccessType typ1 = 0;
s->GetAccess(&addr1, &size1, &typ1);
CHECK_EQ(s->sid(), sid);
CHECK_EQ(s->epoch(), epoch);
CHECK_EQ(addr1, addr);
CHECK_EQ(size1, size);
CHECK_EQ(typ1, typ);
}
TEST(Shadow, Shadow) {
Sid sid = static_cast<Sid>(11);
Epoch epoch = static_cast<Epoch>(22);
FastState fs;
fs.SetSid(sid);
fs.SetEpoch(epoch);
CHECK_EQ(fs.sid(), sid);
CHECK_EQ(fs.epoch(), epoch);
CHECK_EQ(fs.GetIgnoreBit(), false);
fs.SetIgnoreBit();
CHECK_EQ(fs.GetIgnoreBit(), true);
fs.ClearIgnoreBit();
CHECK_EQ(fs.GetIgnoreBit(), false);
Shadow s0(fs, 1, 2, kAccessWrite);
CheckShadow(&s0, sid, epoch, 1, 2, kAccessWrite);
Shadow s1(fs, 2, 3, kAccessRead);
CheckShadow(&s1, sid, epoch, 2, 3, kAccessRead);
Shadow s2(fs, 0xfffff8 + 4, 1, kAccessWrite | kAccessAtomic);
CheckShadow(&s2, sid, epoch, 4, 1, kAccessWrite | kAccessAtomic);
Shadow s3(fs, 0xfffff8 + 0, 8, kAccessRead | kAccessAtomic);
CheckShadow(&s3, sid, epoch, 0, 8, kAccessRead | kAccessAtomic);
CHECK(!s0.IsBothReadsOrAtomic(kAccessRead | kAccessAtomic));
CHECK(!s1.IsBothReadsOrAtomic(kAccessAtomic));
CHECK(!s1.IsBothReadsOrAtomic(kAccessWrite));
CHECK(s1.IsBothReadsOrAtomic(kAccessRead));
CHECK(s2.IsBothReadsOrAtomic(kAccessAtomic));
CHECK(!s2.IsBothReadsOrAtomic(kAccessWrite));
CHECK(!s2.IsBothReadsOrAtomic(kAccessRead));
CHECK(s3.IsBothReadsOrAtomic(kAccessAtomic));
CHECK(!s3.IsBothReadsOrAtomic(kAccessWrite));
CHECK(s3.IsBothReadsOrAtomic(kAccessRead));
CHECK(!s0.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
CHECK(s1.IsRWWeakerOrEqual(kAccessWrite));
CHECK(s1.IsRWWeakerOrEqual(kAccessRead));
CHECK(!s1.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
CHECK(!s2.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
CHECK(s2.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
CHECK(s2.IsRWWeakerOrEqual(kAccessRead));
CHECK(s2.IsRWWeakerOrEqual(kAccessWrite));
CHECK(s3.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
CHECK(s3.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
CHECK(s3.IsRWWeakerOrEqual(kAccessRead));
CHECK(s3.IsRWWeakerOrEqual(kAccessWrite));
Shadow sro(Shadow::kRodata);
CheckShadow(&sro, static_cast<Sid>(0), kEpochZero, 0, 0, kAccessRead);
}
TEST(Shadow, Mapping) {
static int global;
int stack;
void *heap = malloc(0);
free(heap);
CHECK(IsAppMem((uptr)&global));
CHECK(IsAppMem((uptr)&stack));
CHECK(IsAppMem((uptr)heap));
CHECK(IsShadowMem(MemToShadow((uptr)&global)));
CHECK(IsShadowMem(MemToShadow((uptr)&stack)));
CHECK(IsShadowMem(MemToShadow((uptr)heap)));
}
TEST(Shadow, Celling) {
u64 aligned_data[4];
char *data = (char*)aligned_data;
CHECK(IsAligned(reinterpret_cast<uptr>(data), kShadowSize));
RawShadow *s0 = MemToShadow((uptr)&data[0]);
CHECK(IsAligned(reinterpret_cast<uptr>(s0), kShadowSize));
for (unsigned i = 1; i < kShadowCell; i++)
CHECK_EQ(s0, MemToShadow((uptr)&data[i]));
for (unsigned i = kShadowCell; i < 2*kShadowCell; i++)
CHECK_EQ(s0 + kShadowCnt, MemToShadow((uptr)&data[i]));
for (unsigned i = 2*kShadowCell; i < 3*kShadowCell; i++)
CHECK_EQ(s0 + 2 * kShadowCnt, MemToShadow((uptr)&data[i]));
}
// Detect is the Mapping has kBroken field.
template <uptr>
struct Has {
typedef bool Result;
};
template <typename Mapping>
bool broken(...) {
return false;
}
template <typename Mapping>
bool broken(uptr what, typename Has<Mapping::kBroken>::Result = false) {
return Mapping::kBroken & what;
}
static int CompareRegion(const void *region_a, const void *region_b) {
uptr start_a = ((const struct Region *)region_a)->start;
uptr start_b = ((const struct Region *)region_b)->start;
if (start_a < start_b) {
return -1;
} else if (start_a > start_b) {
return 1;
} else {
return 0;
}
}
template <typename Mapping>
static void AddMetaRegion(struct Region *shadows, int *num_regions, uptr start,
uptr end) {
// If the app region is not empty, add its meta to the array.
if (start != end) {
shadows[*num_regions].start = (uptr)MemToMetaImpl::Apply<Mapping>(start);
shadows[*num_regions].end = (uptr)MemToMetaImpl::Apply<Mapping>(end - 1);
*num_regions = (*num_regions) + 1;
}
}
struct MappingTest {
template <typename Mapping>
static void Apply() {
// Easy (but ugly) way to print the mapping name.
Printf("%s\n", __PRETTY_FUNCTION__);
TestRegion<Mapping>(Mapping::kLoAppMemBeg, Mapping::kLoAppMemEnd);
TestRegion<Mapping>(Mapping::kMidAppMemBeg, Mapping::kMidAppMemEnd);
TestRegion<Mapping>(Mapping::kHiAppMemBeg, Mapping::kHiAppMemEnd);
TestRegion<Mapping>(Mapping::kHeapMemBeg, Mapping::kHeapMemEnd);
TestDisjointMetas<Mapping>();
// Not tested: the ordering of regions (low app vs. shadow vs. mid app
// etc.). That is enforced at runtime by CheckAndProtect.
}
template <typename Mapping>
static void TestRegion(uptr beg, uptr end) {
if (beg == end)
return;
Printf("checking region [0x%zx-0x%zx)\n", beg, end);
uptr prev = 0;
for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 256) {
for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
const uptr p = RoundDown(p0 + x, kShadowCell);
if (p < beg || p >= end)
continue;
const uptr s = MemToShadowImpl::Apply<Mapping>(p);
u32 *const m = MemToMetaImpl::Apply<Mapping>(p);
const uptr r = ShadowToMemImpl::Apply<Mapping>(s);
Printf(" addr=0x%zx: shadow=0x%zx meta=%p reverse=0x%zx\n", p, s, m,
r);
CHECK(IsAppMemImpl::Apply<Mapping>(p));
if (!broken<Mapping>(kBrokenMapping))
CHECK(IsShadowMemImpl::Apply<Mapping>(s));
CHECK(IsMetaMemImpl::Apply<Mapping>(reinterpret_cast<uptr>(m)));
CHECK_EQ(p, RestoreAddrImpl::Apply<Mapping>(CompressAddr(p)));
if (!broken<Mapping>(kBrokenReverseMapping))
CHECK_EQ(p, r);
if (prev && !broken<Mapping>(kBrokenLinearity)) {
// Ensure that shadow and meta mappings are linear within a single
// user range. Lots of code that processes memory ranges assumes it.
const uptr prev_s = MemToShadowImpl::Apply<Mapping>(prev);
u32 *const prev_m = MemToMetaImpl::Apply<Mapping>(prev);
CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
CHECK_EQ(m - prev_m, (p - prev) / kMetaShadowCell);
}
prev = p;
}
}
}
template <typename Mapping>
static void TestDisjointMetas() {
// Checks that the meta for each app region does not overlap with
// the meta for other app regions. For example, the meta for a high
// app pointer shouldn't be aliased to the meta of a mid app pointer.
// Notice that this is important even though there does not exist a
// MetaToMem function.
// (If a MetaToMem function did exist, we could simply
// check in the TestRegion function that it inverts MemToMeta.)
//
// We don't try to be clever by allowing the non-PIE (low app)
// and PIE (mid and high app) meta regions to overlap.
struct Region metas[4];
int num_regions = 0;
AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kLoAppMemBeg,
Mapping::kLoAppMemEnd);
AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kMidAppMemBeg,
Mapping::kMidAppMemEnd);
AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kHiAppMemBeg,
Mapping::kHiAppMemEnd);
AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kHeapMemBeg,
Mapping::kHeapMemEnd);
// It is not required that the low app shadow is below the mid app
// shadow etc., hence we sort the shadows.
qsort(metas, num_regions, sizeof(struct Region), CompareRegion);
for (int i = 0; i < num_regions; i++)
Printf("[0x%lu, 0x%lu]\n", metas[i].start, metas[i].end);
if (!broken<Mapping>(kBrokenAliasedMetas))
for (int i = 1; i < num_regions; i++)
CHECK(metas[i - 1].end <= metas[i].start);
}
};
TEST(Shadow, AllMappings) { ForEachMapping<MappingTest>(); }
} // namespace __tsan