llvm/llvm/include/llvm/Frontend/OpenMP/OMPIRBuilder.h

//===- IR/OpenMPIRBuilder.h - OpenMP encoding builder for LLVM IR - C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the OpenMPIRBuilder class and helpers used as a convenient
// way to create LLVM instructions for OpenMP directives.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_FRONTEND_OPENMP_OMPIRBUILDER_H
#define LLVM_FRONTEND_OPENMP_OMPIRBUILDER_H

#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Frontend/Atomic/Atomic.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Frontend/OpenMP/OMPGridValues.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Allocator.h"
#include "llvm/TargetParser/Triple.h"
#include <forward_list>
#include <map>
#include <optional>

namespace llvm {
class CanonicalLoopInfo;
struct TargetRegionEntryInfo;
class OffloadEntriesInfoManager;
class OpenMPIRBuilder;

/// Move the instruction after an InsertPoint to the beginning of another
/// BasicBlock.
///
/// The instructions after \p IP are moved to the beginning of \p New which must
/// not have any PHINodes. If \p CreateBranch is true, a branch instruction to
/// \p New will be added such that there is no semantic change. Otherwise, the
/// \p IP insert block remains degenerate and it is up to the caller to insert a
/// terminator.
void spliceBB(IRBuilderBase::InsertPoint IP, BasicBlock *New,
              bool CreateBranch);

/// Splice a BasicBlock at an IRBuilder's current insertion point. Its new
/// insert location will stick to after the instruction before the insertion
/// point (instead of moving with the instruction the InsertPoint stores
/// internally).
void spliceBB(IRBuilder<> &Builder, BasicBlock *New, bool CreateBranch);

/// Split a BasicBlock at an InsertPoint, even if the block is degenerate
/// (missing the terminator).
///
/// llvm::SplitBasicBlock and BasicBlock::splitBasicBlock require a well-formed
/// BasicBlock. \p Name is used for the new successor block. If \p CreateBranch
/// is true, a branch to the new successor will new created such that
/// semantically there is no change; otherwise the block of the insertion point
/// remains degenerate and it is the caller's responsibility to insert a
/// terminator. Returns the new successor block.
BasicBlock *splitBB(IRBuilderBase::InsertPoint IP, bool CreateBranch,
                    llvm::Twine Name = {};

/// Split a BasicBlock at \p Builder's insertion point, even if the block is
/// degenerate (missing the terminator).  Its new insert location will stick to
/// after the instruction before the insertion point (instead of moving with the
/// instruction the InsertPoint stores internally).
BasicBlock *splitBB(IRBuilderBase &Builder, bool CreateBranch,
                    llvm::Twine Name = {};

/// Split a BasicBlock at \p Builder's insertion point, even if the block is
/// degenerate (missing the terminator).  Its new insert location will stick to
/// after the instruction before the insertion point (instead of moving with the
/// instruction the InsertPoint stores internally).
BasicBlock *splitBB(IRBuilder<> &Builder, bool CreateBranch, llvm::Twine Name);

/// Like splitBB, but reuses the current block's name for the new name.
BasicBlock *splitBBWithSuffix(IRBuilderBase &Builder, bool CreateBranch,
                              llvm::Twine Suffix = ".split");

/// Captures attributes that affect generating LLVM-IR using the
/// OpenMPIRBuilder and related classes. Note that not all attributes are
/// required for all classes or functions. In some use cases the configuration
/// is not necessary at all, because because the only functions that are called
/// are ones that are not dependent on the configuration.
class OpenMPIRBuilderConfig {};

/// Data structure to contain the information needed to uniquely identify
/// a target entry.
struct TargetRegionEntryInfo {};

/// Class that manages information about offload code regions and data
class OffloadEntriesInfoManager {};

/// An interface to create LLVM-IR for OpenMP directives.
///
/// Each OpenMP directive has a corresponding public generator method.
class OpenMPIRBuilder {};

/// Class to represented the control flow structure of an OpenMP canonical loop.
///
/// The control-flow structure is standardized for easy consumption by
/// directives associated with loops. For instance, the worksharing-loop
/// construct may change this control flow such that each loop iteration is
/// executed on only one thread. The constraints of a canonical loop in brief
/// are:
///
///  * The number of loop iterations must have been computed before entering the
///    loop.
///
///  * Has an (unsigned) logical induction variable that starts at zero and
///    increments by one.
///
///  * The loop's CFG itself has no side-effects. The OpenMP specification
///    itself allows side-effects, but the order in which they happen, including
///    how often or whether at all, is unspecified. We expect that the frontend
///    will emit those side-effect instructions somewhere (e.g. before the loop)
///    such that the CanonicalLoopInfo itself can be side-effect free.
///
/// Keep in mind that CanonicalLoopInfo is meant to only describe a repeated
/// execution of a loop body that satifies these constraints. It does NOT
/// represent arbitrary SESE regions that happen to contain a loop. Do not use
/// CanonicalLoopInfo for such purposes.
///
/// The control flow can be described as follows:
///
///     Preheader
///        |
///  /-> Header
///  |     |
///  |    Cond---\
///  |     |     |
///  |    Body   |
///  |    | |    |
///  |   <...>   |
///  |    | |    |
///   \--Latch   |
///              |
///             Exit
///              |
///            After
///
/// The loop is thought to start at PreheaderIP (at the Preheader's terminator,
/// including) and end at AfterIP (at the After's first instruction, excluding).
/// That is, instructions in the Preheader and After blocks (except the
/// Preheader's terminator) are out of CanonicalLoopInfo's control and may have
/// side-effects. Typically, the Preheader is used to compute the loop's trip
/// count. The instructions from BodyIP (at the Body block's first instruction,
/// excluding) until the Latch are also considered outside CanonicalLoopInfo's
/// control and thus can have side-effects. The body block is the single entry
/// point into the loop body, which may contain arbitrary control flow as long
/// as all control paths eventually branch to the Latch block.
///
/// TODO: Consider adding another standardized BasicBlock between Body CFG and
/// Latch to guarantee that there is only a single edge to the latch. It would
/// make loop transformations easier to not needing to consider multiple
/// predecessors of the latch (See redirectAllPredecessorsTo) and would give us
/// an equivalant to PreheaderIP, AfterIP and BodyIP for inserting code that
/// executes after each body iteration.
///
/// There must be no loop-carried dependencies through llvm::Values. This is
/// equivalant to that the Latch has no PHINode and the Header's only PHINode is
/// for the induction variable.
///
/// All code in Header, Cond, Latch and Exit (plus the terminator of the
/// Preheader) are CanonicalLoopInfo's responsibility and their build-up checked
/// by assertOK(). They are expected to not be modified unless explicitly
/// modifying the CanonicalLoopInfo through a methods that applies a OpenMP
/// loop-associated construct such as applyWorkshareLoop, tileLoops, unrollLoop,
/// etc. These methods usually invalidate the CanonicalLoopInfo and re-use its
/// basic blocks. After invalidation, the CanonicalLoopInfo must not be used
/// anymore as its underlying control flow may not exist anymore.
/// Loop-transformation methods such as tileLoops, collapseLoops and unrollLoop
/// may also return a new CanonicalLoopInfo that can be passed to other
/// loop-associated construct implementing methods. These loop-transforming
/// methods may either create a new CanonicalLoopInfo usually using
/// createLoopSkeleton and invalidate the input CanonicalLoopInfo, or reuse and
/// modify one of the input CanonicalLoopInfo and return it as representing the
/// modified loop. What is done is an implementation detail of
/// transformation-implementing method and callers should always assume that the
/// CanonicalLoopInfo passed to it is invalidated and a new object is returned.
/// Returned CanonicalLoopInfo have the same structure and guarantees as the one
/// created by createCanonicalLoop, such that transforming methods do not have
/// to special case where the CanonicalLoopInfo originated from.
///
/// Generally, methods consuming CanonicalLoopInfo do not need an
/// OpenMPIRBuilder::InsertPointTy as argument, but use the locations of the
/// CanonicalLoopInfo to insert new or modify existing instructions. Unless
/// documented otherwise, methods consuming CanonicalLoopInfo do not invalidate
/// any InsertPoint that is outside CanonicalLoopInfo's control. Specifically,
/// any InsertPoint in the Preheader, After or Block can still be used after
/// calling such a method.
///
/// TODO: Provide mechanisms for exception handling and cancellation points.
///
/// Defined outside OpenMPIRBuilder because nested classes cannot be
/// forward-declared, e.g. to avoid having to include the entire OMPIRBuilder.h.
class CanonicalLoopInfo {};

} // end namespace llvm

#endif // LLVM_FRONTEND_OPENMP_OMPIRBUILDER_H