//===- NaryReassociate.h - Reassociate n-ary expressions --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass reassociates n-ary add expressions and eliminates the redundancy // exposed by the reassociation. // // A motivating example: // // void foo(int a, int b) { // bar(a + b); // bar((a + 2) + b); // } // // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify // the above code to // // int t = a + b; // bar(t); // bar(t + 2); // // However, the Reassociate pass is unable to do that because it processes each // instruction individually and believes (a + 2) + b is the best form according // to its rank system. // // To address this limitation, NaryReassociate reassociates an expression in a // form that reuses existing instructions. As a result, NaryReassociate can // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that // (a + b) is computed before. // // NaryReassociate works as follows. For every instruction in the form of (a + // b) + c, it checks whether a + c or b + c is already computed by a dominating // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b + // c) + a and removes the redundancy accordingly. To efficiently look up whether // an expression is computed before, we store each instruction seen and its SCEV // into an SCEV-to-instruction map. // // Although the algorithm pattern-matches only ternary additions, it // automatically handles many >3-ary expressions by walking through the function // in the depth-first order. For example, given // // (a + c) + d // ((a + b) + c) + d // // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites // ((a + c) + b) + d into ((a + c) + d) + b. // // Finally, the above dominator-based algorithm may need to be run multiple // iterations before emitting optimal code. One source of this need is that we // only split an operand when it is used only once. The above algorithm can // eliminate an instruction and decrease the usage count of its operands. As a // result, an instruction that previously had multiple uses may become a // single-use instruction and thus eligible for split consideration. For // example, // // ac = a + c // ab = a + b // abc = ab + c // ab2 = ab + b // ab2c = ab2 + c // // In the first iteration, we cannot reassociate abc to ac+b because ab is used // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a // result, ab2 becomes dead and ab will be used only once in the second // iteration. // // Limitations and TODO items: // // 1) We only considers n-ary adds and muls for now. This should be extended // and generalized. // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H #define LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ValueHandle.h" namespace llvm { class AssumptionCache; class BinaryOperator; class DataLayout; class DominatorTree; class Function; class GetElementPtrInst; class Instruction; class ScalarEvolution; class SCEV; class TargetLibraryInfo; class TargetTransformInfo; class Type; class Value; class NaryReassociatePass : public PassInfoMixin<NaryReassociatePass> { … }; } // end namespace llvm #endif // LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H