//===-- M68kInstrArithmetic.td - Integer Arith Instrs ------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file describes the integer arithmetic instructions in the M68k
/// architecture. Here is the current status of the file:
///
/// Machine:
///
/// ADD [~] ADDA [~] ADDI [~] ADDQ [ ] ADDX [~]
/// CLR [ ] CMP [~] CMPA [~] CMPI [~] CMPM [ ]
/// CMP2 [ ] DIVS/DIVU [~] DIVSL/DIVUL [ ] EXT [~] EXTB [ ]
/// MULS/MULU [~] NEG [~] NEGX [~] NOT [~] SUB [~]
/// SUBA [~] SUBI [~] SUBQ [ ] SUBX [~]
///
/// Map:
///
/// [ ] - was not touched at all
/// [!] - requires extarnal stuff implemented
/// [~] - functional implementation
/// [X] - complete implementation
///
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// OPMODE Encoding
//===----------------------------------------------------------------------===//
class MxOpModeEncoding<bits<3> encoding> {
bits<3> Value = encoding;
}
// op EA, Dn
def MxOpMode8_d_EA : MxOpModeEncoding<0b000>;
def MxOpMode16_d_EA : MxOpModeEncoding<0b001>;
def MxOpMode32_d_EA : MxOpModeEncoding<0b010>;
// op Dn, EA
def MxOpMode8_EA_d : MxOpModeEncoding<0b100>;
def MxOpMode16_EA_d : MxOpModeEncoding<0b101>;
def MxOpMode32_EA_d : MxOpModeEncoding<0b110>;
// op EA, An
def MxOpMode16_a_EA : MxOpModeEncoding<0b011>;
def MxOpMode32_a_EA : MxOpModeEncoding<0b111>;
//===----------------------------------------------------------------------===//
// Encoding
//===----------------------------------------------------------------------===//
let Defs = [CCR] in {
let Constraints = "$src = $dst" in {
/// Encoding for Normal forms
/// ----------------------------------------------------
/// F E D C | B A 9 | 8 7 6 | 5 4 3 | 2 1 0
/// ----------------------------------------------------
/// | | | EFFECTIVE ADDRESS
/// x x x x | REG | OP MODE | MODE | REG
/// ----------------------------------------------------
// $reg, $ccr <- $reg op $reg
class MxBiArOp_R_RR_xEA<string MN, SDNode NODE, MxType DST_TYPE, MxType SRC_TYPE,
bits<4> CMD>
: MxInst<(outs DST_TYPE.ROp:$dst), (ins DST_TYPE.ROp:$src, SRC_TYPE.ROp:$opd),
MN#"."#DST_TYPE.Prefix#"\t$opd, $dst",
[(set DST_TYPE.VT:$dst, CCR, (NODE DST_TYPE.VT:$src, SRC_TYPE.VT:$opd))]> {
let Inst = (descend
CMD, (operand "$dst", 3),
!cast<MxOpModeEncoding>("MxOpMode"#DST_TYPE.Size#"_"#DST_TYPE.RLet#"_EA").Value,
!cond(
!eq(SRC_TYPE.RLet, "r") : (descend 0b00, (operand "$opd", 4)),
!eq(SRC_TYPE.RLet, "d") : (descend 0b000, (operand "$opd", 3))
)
);
}
/// This Op is similar to the one above except it uses reversed opmode, some
/// commands(e.g. eor) do not support dEA or rEA modes and require EAd for
/// register only operations.
/// NOTE when using dd commands it is irrelevant which opmode to use(as it seems)
/// but some opcodes support address register and some do not which creates this
/// mess.
class MxBiArOp_R_RR_EAd<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.ROp:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst",
[(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.VT:$opd))]> {
let Inst = (descend
CMD, (operand "$opd", 3),
!cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_EA_"#TYPE.RLet).Value,
/*Destination can only be a data register*/
/*MODE*/0b000,
/*REGISTER*/(operand "$dst", 3));
}
let mayLoad = 1 in
class MxBiArOp_R_RM<string MN, SDNode NODE, MxType TYPE, MxOperand OPD, ComplexPattern PAT,
bits<4> CMD, MxEncMemOp SRC_ENC>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, OPD:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst",
[(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, (TYPE.Load PAT:$opd)))]> {
let Inst = (ascend
(descend CMD, (operand "$dst", 3),
!cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_"#TYPE.RLet#"_EA").Value,
SRC_ENC.EA),
SRC_ENC.Supplement
);
}
/// Encoding for Immediate forms
/// ---------------------------------------------------
/// F E D C B A 9 8 | 7 6 | 5 4 3 | 2 1 0
/// ---------------------------------------------------
/// | | EFFECTIVE ADDRESS
/// x x x x x x x x | SIZE | MODE | REG
/// ---------------------------------------------------
/// 16-BIT WORD DATA | 8-BIT BYTE DATA
/// ---------------------------------------------------
/// 32-BIT LONG DATA
/// ---------------------------------------------------
/// NOTE It is used to store an immediate to memory, imm-to-reg are handled with
/// normal version
// $reg <- $reg op $imm
class MxBiArOp_R_RI_xEA<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.IOp:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst",
[(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.IPat:$opd))]> {
let Inst = (ascend
(descend CMD, (operand "$dst", 3),
!cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_"#TYPE.RLet#"_EA").Value,
MxEncAddrMode_i<"opd", TYPE.Size>.EA),
MxEncAddrMode_i<"opd", TYPE.Size>.Supplement
);
}
// Again, there are two ways to write an immediate to Dn register either dEA
// opmode or using *I encoding, and again some instructions also support address
// registers some do not.
class MxBiArOp_R_RI<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.IOp:$opd),
MN#"i."#TYPE.Prefix#"\t$opd, $dst",
[(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.IPat:$opd))]> {
let Inst = (ascend
(descend 0b0000, CMD,
!cast<MxEncSize>("MxEncSize"#TYPE.Size).Value,
// The destination cannot be address register, so it's always
// the MODE for data register direct mode.
/*MODE*/0b000,
/*REGISTER*/(operand "$dst", 3)),
// Source (i.e. immediate value) encoding
MxEncAddrMode_i<"opd", TYPE.Size>.Supplement
);
}
} // Constraints
let mayLoad = 1, mayStore = 1 in {
// FIXME MxBiArOp_FMR/FMI cannot consume CCR from MxAdd/MxSub which leads for
// MxAdd to survive the match and subsequent mismatch.
class MxBiArOp_MR<string MN, MxType TYPE,
MxOperand MEMOpd, bits<4> CMD, MxEncMemOp DST_ENC>
: MxInst<(outs), (ins MEMOpd:$dst, TYPE.ROp:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst", []> {
let Inst = (ascend
(descend CMD, (operand "$opd", 3),
!cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_EA_"#TYPE.RLet).Value,
DST_ENC.EA),
DST_ENC.Supplement
);
}
class MxBiArOp_MI<string MN, MxType TYPE,
MxOperand MEMOpd, bits<4> CMD, MxEncMemOp DST_ENC>
: MxInst<(outs), (ins MEMOpd:$dst, TYPE.IOp:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst", []> {
let Inst = (ascend
(descend 0b0000, CMD,
!cast<MxEncSize>("MxEncSize"#TYPE.Size).Value,
DST_ENC.EA),
// Source (i.e. immediate value) encoding
MxEncAddrMode_i<"opd", TYPE.Size>.Supplement,
// Destination encoding
DST_ENC.Supplement
);
}
} // mayLoad, mayStore
} // Defs = [CCR]
multiclass MxBiArOp_DF<string MN, SDNode NODE, bit isComm,
bits<4> CMD, bits<4> CMDI> {
foreach SZ = [8, 16, 32] in {
// op $mem, $reg
def NAME#SZ#"dk" : MxBiArOp_R_RM<MN, NODE,
!cast<MxType>("MxType"#SZ#"d"),
!cast<MxType>("MxType"#SZ).KOp,
!cast<MxType>("MxType"#SZ).KPat,
CMD, MxEncAddrMode_k<"opd">>;
def NAME#SZ#"dq" : MxBiArOp_R_RM<MN, NODE,
!cast<MxType>("MxType"#SZ#"d"),
!cast<MxType>("MxType"#SZ).QOp,
!cast<MxType>("MxType"#SZ).QPat,
CMD, MxEncAddrMode_q<"opd">>;
def NAME#SZ#"dp" : MxBiArOp_R_RM<MN, NODE,
!cast<MxType>("MxType"#SZ#"d"),
!cast<MxType>("MxType"#SZ).POp,
!cast<MxType>("MxType"#SZ).PPat,
CMD, MxEncAddrMode_p<"opd">>;
def NAME#SZ#"df" : MxBiArOp_R_RM<MN, NODE,
!cast<MxType>("MxType"#SZ#"d"),
!cast<MxType>("MxType"#SZ).FOp,
!cast<MxType>("MxType"#SZ).FPat,
CMD, MxEncAddrMode_f<"opd">>;
def NAME#SZ#"dj" : MxBiArOp_R_RM<MN, NODE,
!cast<MxType>("MxType"#SZ#"d"),
!cast<MxType>("MxType"#SZ).JOp,
!cast<MxType>("MxType"#SZ).JPat,
CMD, MxEncAddrMode_j<"opd">>;
// op $imm, $reg
def NAME#SZ#"di" : MxBiArOp_R_RI_xEA<MN, NODE,
!cast<MxType>("MxType"#SZ#"d"),
CMD>;
// op $reg, $mem
def NAME#SZ#"pd" : MxBiArOp_MR<MN,
!cast<MxType>("MxType"#SZ#"d"),
!cast<MxType>("MxType"#SZ).POp,
CMD, MxEncAddrMode_p<"dst">>;
def NAME#SZ#"fd" : MxBiArOp_MR<MN,
!cast<MxType>("MxType"#SZ#"d"),
!cast<MxType>("MxType"#SZ).FOp,
CMD, MxEncAddrMode_f<"dst">>;
def NAME#SZ#"jd" : MxBiArOp_MR<MN,
!cast<MxType>("MxType"#SZ#"d"),
!cast<MxType>("MxType"#SZ).JOp,
CMD, MxEncAddrMode_j<"dst">>;
// op $imm, $mem
def NAME#SZ#"pi" : MxBiArOp_MI<MN,
!cast<MxType>("MxType"#SZ),
!cast<MxType>("MxType"#SZ).POp,
CMDI, MxEncAddrMode_p<"dst">>;
def NAME#SZ#"fi" : MxBiArOp_MI<MN,
!cast<MxType>("MxType"#SZ),
!cast<MxType>("MxType"#SZ).FOp,
CMDI, MxEncAddrMode_f<"dst">>;
def NAME#SZ#"ji" : MxBiArOp_MI<MN,
!cast<MxType>("MxType"#SZ),
!cast<MxType>("MxType"#SZ).JOp,
CMDI, MxEncAddrMode_j<"dst">>;
// op $reg, $reg
let isCommutable = isComm in
def NAME#SZ#"dd" : MxBiArOp_R_RR_xEA<MN, NODE,
!cast<MxType>("MxType"#SZ#"d"),
!cast<MxType>("MxType"#SZ#"d"),
CMD>;
} // foreach SZ
foreach SZ = [16, 32] in
def NAME#SZ#"dr" : MxBiArOp_R_RR_xEA<MN, NODE,
!cast<MxType>("MxType"#SZ#"d"),
!cast<MxType>("MxType"#SZ#"r"),
CMD>;
} // MxBiArOp_DF
// These special snowflakes allowed to match address registers but since *A
// operations do not produce CCR we should not match them against Mx nodes that
// produce it.
let Pattern = [(null_frag)] in
multiclass MxBiArOp_AF<string MN, SDNode NODE, bits<4> CMD> {
def NAME#"32ak" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.KOp, MxType32.KPat,
CMD, MxEncAddrMode_k<"opd">>;
def NAME#"32aq" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.QOp, MxType32.QPat,
CMD, MxEncAddrMode_q<"opd">>;
def NAME#"32af" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.FOp, MxType32.FPat,
CMD, MxEncAddrMode_f<"opd">>;
def NAME#"32ap" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.POp, MxType32.PPat,
CMD, MxEncAddrMode_p<"opd">>;
def NAME#"32aj" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.JOp, MxType32.JPat,
CMD, MxEncAddrMode_j<"opd">>;
def NAME#"32ab" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.BOp, MxType32.BPat,
CMD, MxEncAddrMode_abs<"opd", true>>;
def NAME#"32ai" : MxBiArOp_R_RI_xEA<MN, NODE, MxType32a, CMD>;
def NAME#"32ar" : MxBiArOp_R_RR_xEA<MN, NODE, MxType32a, MxType32r, CMD>;
} // MxBiArOp_AF
// NOTE These naturally produce CCR
//===----------------------------------------------------------------------===//
// Add/Sub
//===----------------------------------------------------------------------===//
defm ADD : MxBiArOp_DF<"add", MxAdd, 1, 0xD, 0x6>;
defm ADD : MxBiArOp_AF<"adda", MxAdd, 0xD>;
defm SUB : MxBiArOp_DF<"sub", MxSub, 0, 0x9, 0x4>;
defm SUB : MxBiArOp_AF<"suba", MxSub, 0x9>;
// This pattern is used to enable the instruction selector to select ADD32ab
// for global values that are allocated in thread-local storage, i.e.:
// t8: i32 = ISD::ADD GLOBAL_OFFSET_TABLE, TargetGlobalTLSAddress:i32<ptr @myvar>
// ====>
// t8: i32,i8 = ADD32ab GLOBAL_OFFSET_TABLE, TargetGlobalTLSAddress:i32<ptr @myvar>
def : Pat<(add MxARD32:$src, tglobaltlsaddr:$opd), (ADD32ab MxARD32:$src, MxAL32:$opd)>;
let Uses = [CCR], Defs = [CCR] in {
let Constraints = "$src = $dst" in {
/// Encoding for Extended forms
/// ------------------------------------------------------
/// F E D C | B A 9 | 8 | 7 6 | 5 4 | 3 | 2 1 0
/// ------------------------------------------------------
/// x x x x | REG Rx | 1 | SIZE | 0 0 | M | REG Ry
/// ------------------------------------------------------
/// Rx - destination
/// Ry - source
/// M - address mode switch
// $reg, ccr <- $reg op $reg op ccr
class MxBiArOp_R_RRX<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.ROp:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst",
[(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.VT:$opd, CCR))]> {
let Inst = (descend CMD,
// Destination register
(operand "$dst", 3),
0b1,
// SIZE
!cond(!eq(TYPE.Size, 8): 0b00,
!eq(TYPE.Size, 16): 0b01,
!eq(TYPE.Size, 32): 0b10),
0b00, /*R/M*/0b0,
// Source register
(operand "$opd", 3)
);
}
} // Constraints
} // Uses, Defs
multiclass MxBiArOp_RFF<string MN, SDNode NODE, bit isComm, bits<4> CMD> {
let isCommutable = isComm in {
foreach SZ = [8, 16, 32] in
def NAME#SZ#"dd" : MxBiArOp_R_RRX<MN, NODE, !cast<MxType>("MxType"#SZ#"d"), CMD>;
} // isComm
} // MxBiArOp_RFF
// NOTE These consume and produce CCR
defm ADDX : MxBiArOp_RFF<"addx", MxAddX, 1, 0xD>;
defm SUBX : MxBiArOp_RFF<"subx", MxSubX, 0, 0x9>;
//===----------------------------------------------------------------------===//
// And/Xor/Or
//===----------------------------------------------------------------------===//
defm AND : MxBiArOp_DF<"and", MxAnd, 1, 0xC, 0x2>;
defm OR : MxBiArOp_DF<"or", MxOr, 1, 0x8, 0x0>;
multiclass MxBiArOp_DF_EAd<string MN, SDNode NODE, bits<4> CMD, bits<4> CMDI> {
foreach SZ = [8, 16, 32] in {
let isCommutable = 1 in
def NAME#SZ#"dd" : MxBiArOp_R_RR_EAd<MN, NODE,
!cast<MxType>("MxType"#SZ#"d"),
CMD>;
def NAME#SZ#"di" : MxBiArOp_R_RI<MN, NODE,
!cast<MxType>("MxType"#SZ#"d"),
CMDI>;
} // foreach SZ
} // MxBiArOp_DF_EAd
defm XOR : MxBiArOp_DF_EAd<"eor", MxXor, 0xB, 0xA>;
//===----------------------------------------------------------------------===//
// CMP
//===----------------------------------------------------------------------===//
let Defs = [CCR] in {
class MxCmp_RR<MxType LHS_TYPE, MxType RHS_TYPE = LHS_TYPE>
: MxInst<(outs), (ins LHS_TYPE.ROp:$lhs, RHS_TYPE.ROp:$rhs),
"cmp."#RHS_TYPE.Prefix#"\t$lhs, $rhs",
[(set CCR, (MxCmp LHS_TYPE.VT:$lhs, RHS_TYPE.VT:$rhs))]> {
let Inst = (descend 0b1011,
// REGISTER
(operand "$rhs", 3),
// OPMODE
!cast<MxOpModeEncoding>("MxOpMode"#RHS_TYPE.Size#"_"#RHS_TYPE.RLet#"_EA").Value,
// MODE without last bit
0b00,
// REGISTER prefixed by D/A bit
(operand "$lhs", 4)
);
}
class MxCmp_RI<MxType TYPE>
: MxInst<(outs), (ins TYPE.IOp:$imm, TYPE.ROp:$reg),
"cmpi."#TYPE.Prefix#"\t$imm, $reg",
[(set CCR, (MxCmp TYPE.IPat:$imm, TYPE.VT:$reg))]> {
let Inst = (ascend
(descend 0b00001100,
!cast<MxEncSize>("MxEncSize"#TYPE.Size).Value,
// The destination cannot be address register, so it's always
// the MODE for data register direct mode.
/*MODE*/0b000,
/*REGISTER*/(operand "$reg", 3)),
// Source (i.e. immediate value) encoding
MxEncAddrMode_i<"imm", TYPE.Size>.Supplement
);
}
let mayLoad = 1 in {
class MxCmp_MI<MxType TYPE, MxOperand MEMOpd, ComplexPattern MEMPat,
MxEncMemOp MEM_ENC>
: MxInst<(outs), (ins TYPE.IOp:$imm, MEMOpd:$mem),
"cmpi."#TYPE.Prefix#"\t$imm, $mem",
[(set CCR, (MxCmp TYPE.IPat:$imm, (load MEMPat:$mem)))]> {
let Inst = (ascend
(descend 0b00001100,
!cast<MxEncSize>("MxEncSize"#TYPE.Size).Value,
MEM_ENC.EA),
// Source (i.e. immediate value) encoding
MxEncAddrMode_i<"imm", TYPE.Size>.Supplement,
// Destination (i.e. memory operand) encoding
MEM_ENC.Supplement
);
}
// FIXME: What about abs.W?
class MxCmp_BI<MxType TYPE>
: MxInst<(outs), (ins TYPE.IOp:$imm, MxAL32:$abs),
"cmpi."#TYPE.Prefix#"\t$imm, $abs",
[(set CCR, (MxCmp TYPE.IPat:$imm,
(load (i32 (MxWrapper tglobaladdr:$abs)))))]> {
defvar AbsEncoding = MxEncAddrMode_abs<"abs", true>;
let Inst = (ascend
(descend 0b00001100,
!cast<MxEncSize>("MxEncSize"#TYPE.Size).Value,
AbsEncoding.EA),
// Source (i.e. immediate value) encoding
MxEncAddrMode_i<"imm", TYPE.Size>.Supplement,
// Destination (i.e. memory operand) encoding
AbsEncoding.Supplement
);
}
class MxCmp_RM<MxType TYPE, MxOperand MEMOpd, ComplexPattern MEMPat,
MxEncMemOp MEM_ENC>
: MxInst<(outs), (ins TYPE.ROp:$reg, MEMOpd:$mem),
"cmp."#TYPE.Prefix#"\t$mem, $reg",
[(set CCR, (MxCmp (load MEMPat:$mem), TYPE.ROp:$reg))]> {
let Inst = (ascend
(descend 0b1011,
// REGISTER
(operand "$reg", 3),
// OPMODE
!cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_d_EA").Value,
MEM_ENC.EA),
MEM_ENC.Supplement
);
}
} // let mayLoad = 1
} // let Defs = [CCR]
multiclass MMxCmp_RM<MxType TYPE> {
def NAME#TYPE.KOp.Letter : MxCmp_RM<TYPE, TYPE.KOp, TYPE.KPat, MxEncAddrMode_k<"mem">>;
def NAME#TYPE.QOp.Letter : MxCmp_RM<TYPE, TYPE.QOp, TYPE.QPat, MxEncAddrMode_q<"mem">>;
def NAME#TYPE.POp.Letter : MxCmp_RM<TYPE, TYPE.POp, TYPE.PPat, MxEncAddrMode_p<"mem">>;
def NAME#TYPE.FOp.Letter : MxCmp_RM<TYPE, TYPE.FOp, TYPE.FPat, MxEncAddrMode_f<"mem">>;
def NAME#TYPE.JOp.Letter : MxCmp_RM<TYPE, TYPE.JOp, TYPE.JPat, MxEncAddrMode_j<"mem">>;
}
multiclass MMxCmp_MI<MxType TYPE> {
def NAME#TYPE.KOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.KOp, TYPE.KPat,
MxEncAddrMode_k<"mem">>;
def NAME#TYPE.QOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.QOp, TYPE.QPat,
MxEncAddrMode_q<"mem">>;
def NAME#TYPE.POp.Letter#"i" : MxCmp_MI<TYPE, TYPE.POp, TYPE.PPat,
MxEncAddrMode_p<"mem">>;
def NAME#TYPE.FOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.FOp, TYPE.FPat,
MxEncAddrMode_f<"mem">>;
def NAME#TYPE.JOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.JOp, TYPE.JPat,
MxEncAddrMode_j<"mem">>;
}
foreach S = [8, 16, 32] in {
def CMP#S#di : MxCmp_RI<!cast<MxType>("MxType"#S#"d")>;
def CMP#S#bi : MxCmp_BI<!cast<MxType>("MxType"#S#"d")>;
} // foreach
def CMP8dd : MxCmp_RR<MxType8d>;
foreach S = [16, 32] in {
def CMP#S#dr : MxCmp_RR<!cast<MxType>("MxType"#S#"r"),
!cast<MxType>("MxType"#S#"d")>;
}
// cmp mem, Dn
defm CMP8d : MMxCmp_RM<MxType8d>;
defm CMP16d : MMxCmp_RM<MxType16d>;
defm CMP32d : MMxCmp_RM<MxType32d>;
// cmp #imm, mem
defm CMP8 : MMxCmp_MI<MxType8d>;
defm CMP16 : MMxCmp_MI<MxType16d>;
defm CMP32 : MMxCmp_MI<MxType32d>;
//===----------------------------------------------------------------------===//
// EXT
//===----------------------------------------------------------------------===//
/// ---------------------------------------------------
/// F E D C B A 9 | 8 7 6 | 5 4 3 | 2 1 0
/// ---------------------------------------------------
/// 0 1 0 0 1 0 0 | OPMODE | 0 0 0 | REG
/// ---------------------------------------------------
let Defs = [CCR] in
let Constraints = "$src = $dst" in
class MxExt<MxType TO, MxType FROM>
: MxInst<(outs TO.ROp:$dst), (ins TO.ROp:$src),
"ext."#TO.Prefix#"\t$src", []> {
let Inst = (descend 0b0100100,
// OPMODE
!cond(
// byte -> word
!and(!eq(FROM.Size, 8), !eq(TO.Size, 16)): 0b010,
// word -> long
!and(!eq(FROM.Size, 16), !eq(TO.Size, 32)): 0b011,
// byte -> long
!and(!eq(FROM.Size, 8), !eq(TO.Size, 32)): 0b111
),
0b000,
// REGISTER
(operand "$src", 3)
);
}
def EXT16 : MxExt<MxType16d, MxType8d>;
def EXT32 : MxExt<MxType32d, MxType16d>;
def : Pat<(sext_inreg i16:$src, i8), (EXT16 $src)>;
def : Pat<(sext_inreg i32:$src, i16), (EXT32 $src)>;
def : Pat<(sext_inreg i32:$src, i8),
(EXT32 (MOVXd32d16 (EXT16 (EXTRACT_SUBREG $src, MxSubRegIndex16Lo))))>;
//===----------------------------------------------------------------------===//
// DIV/MUL
//===----------------------------------------------------------------------===//
/// Word operation:
/// ----------------------------------------------------
/// F E D C | B A 9 | 8 7 6 | 5 4 3 | 2 1 0
/// ----------------------------------------------------
/// | | | EFFECTIVE ADDRESS
/// x x x x | REG | OP MODE | MODE | REG
/// ----------------------------------------------------
let Defs = [CCR] in {
let Constraints = "$src = $dst" in {
// $dreg <- $dreg op $dreg
class MxDiMuOp_DD<string MN, bits<4> CMD, bit SIGNED = false,
MxOperand DST, MxOperand OPD>
: MxInst<(outs DST:$dst), (ins DST:$src, OPD:$opd), MN#"\t$opd, $dst", []> {
let Inst = (descend CMD,
// REGISTER
(operand "$dst", 3),
!if(SIGNED, 0b111, 0b011),
/*MODE*/0b000, /*REGISTER*/(operand "$opd", 3)
);
}
// $dreg <- $dreg op $dreg
class MxDiMuOp_DD_Long<string MN, SDNode NODE, bits<10> CMD, bit SIGNED = false>
: MxInst<(outs MxDRD32:$dst), (ins MxDRD32:$src, MxDRD32:$opd), MN#"\t$opd, $dst",
[(set i32:$dst, CCR, (NODE i32:$src, i32:$opd))]> {
let Inst = (ascend
(descend CMD,
/*MODE*/0b000, /*REGISTER*/(operand "$opd", 3)),
(descend 0b0,
// REGISTER
(operand "$dst", 3),
!if(SIGNED, 0b1, 0b0),
/*SIZE*/0b0, 0b0000000,
// Dr REGISTER
0b000)
);
}
// $reg <- $reg op $imm
class MxDiMuOp_DI<string MN, bits<4> CMD, bit SIGNED = false,
MxOperand DST, MxOperand OPD>
: MxInst<(outs DST:$dst), (ins DST:$src, OPD:$opd), MN#"\t$opd, $dst", []> {
// FIXME: Support immediates with different widths.
defvar ImmEnc = MxEncAddrMode_i<"opd", 16>;
let Inst = (ascend
(descend CMD,
// REGISTER
(operand "$dst", 3),
!if(SIGNED, 0b111, 0b011), ImmEnc.EA),
ImmEnc.Supplement
);
}
} // let Constraints
} // Defs = [CCR]
multiclass MxDiMuOp<string MN, bits<4> CMD> {
def "S"#NAME#"d32d16" : MxDiMuOp_DD<MN#"s", CMD, /*SIGNED*/true, MxDRD32, MxDRD16>;
def "U"#NAME#"d32d16" : MxDiMuOp_DD<MN#"u", CMD, /*SIGNED*/false, MxDRD32, MxDRD16>;
def "S"#NAME#"d32i16" : MxDiMuOp_DI<MN#"s", CMD, /*SIGNED*/true, MxDRD32, Mxi16imm>;
def "U"#NAME#"d32i16" : MxDiMuOp_DI<MN#"u", CMD, /*SIGNED*/false, MxDRD32, Mxi16imm>;
}
defm DIV : MxDiMuOp<"div", 0x8>;
def SDIVd32d32 : MxDiMuOp_DD_Long<"divs.l", sdiv, 0x131, /*SIGNED*/true>;
def UDIVd32d32 : MxDiMuOp_DD_Long<"divu.l", udiv, 0x131, /*SIGNED*/false>;
// This is used to cast immediates to 16-bits for operations which don't
// support smaller immediate sizes.
def as_i16imm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i16);
}]>;
// RR i8
def : Pat<(sdiv i8:$dst, i8:$opd),
(EXTRACT_SUBREG
(SDIVd32d16 (MOVSXd32d8 $dst), (MOVSXd16d8 $opd)),
MxSubRegIndex8Lo)>;
def : Pat<(udiv i8:$dst, i8:$opd),
(EXTRACT_SUBREG
(UDIVd32d16 (MOVZXd32d8 $dst), (MOVZXd16d8 $opd)),
MxSubRegIndex8Lo)>;
def : Pat<(srem i8:$dst, i8:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SDIVd32d16 (MOVSXd32d8 $dst), (MOVSXd16d8 $opd)), 8), 8),
MxSubRegIndex8Lo)>;
def : Pat<(urem i8:$dst, i8:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UDIVd32d16 (MOVZXd32d8 $dst), (MOVZXd16d8 $opd)), 8), 8),
MxSubRegIndex8Lo)>;
// RR i16
def : Pat<(sdiv i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(SDIVd32d16 (MOVSXd32d16 $dst), $opd),
MxSubRegIndex16Lo)>;
def : Pat<(udiv i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(UDIVd32d16 (MOVZXd32d16 $dst), $opd),
MxSubRegIndex16Lo)>;
def : Pat<(srem i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SDIVd32d16 (MOVSXd32d16 $dst), $opd), 8), 8),
MxSubRegIndex16Lo)>;
def : Pat<(urem i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UDIVd32d16 (MOVZXd32d16 $dst), $opd), 8), 8),
MxSubRegIndex16Lo)>;
// RI i8
def : Pat<(sdiv i8:$dst, Mxi8immSExt8:$opd),
(EXTRACT_SUBREG
(SDIVd32i16 (MOVSXd32d8 $dst), (as_i16imm $opd)),
MxSubRegIndex8Lo)>;
def : Pat<(udiv i8:$dst, Mxi8immSExt8:$opd),
(EXTRACT_SUBREG
(UDIVd32i16 (MOVZXd32d8 $dst), (as_i16imm $opd)),
MxSubRegIndex8Lo)>;
def : Pat<(srem i8:$dst, Mxi8immSExt8:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SDIVd32i16 (MOVSXd32d8 $dst), (as_i16imm $opd)), 8), 8),
MxSubRegIndex8Lo)>;
def : Pat<(urem i8:$dst, Mxi8immSExt8:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UDIVd32i16 (MOVZXd32d8 $dst), (as_i16imm $opd)), 8), 8),
MxSubRegIndex8Lo)>;
// RI i16
def : Pat<(sdiv i16:$dst, Mxi16immSExt16:$opd),
(EXTRACT_SUBREG
(SDIVd32i16 (MOVSXd32d16 $dst), imm:$opd),
MxSubRegIndex16Lo)>;
def : Pat<(udiv i16:$dst, Mxi16immSExt16:$opd),
(EXTRACT_SUBREG
(UDIVd32i16 (MOVZXd32d16 $dst), imm:$opd),
MxSubRegIndex16Lo)>;
def : Pat<(srem i16:$dst, Mxi16immSExt16:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SDIVd32i16 (MOVSXd32d16 $dst), imm:$opd), 8), 8),
MxSubRegIndex16Lo)>;
def : Pat<(urem i16:$dst, Mxi16immSExt16:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UDIVd32i16 (MOVZXd32d16 $dst), imm:$opd), 8), 8),
MxSubRegIndex16Lo)>;
defm MUL : MxDiMuOp<"mul", 0xC>;
def SMULd32d32 : MxDiMuOp_DD_Long<"muls.l", MxSMul, 0x130, /*SIGNED*/true>;
def UMULd32d32 : MxDiMuOp_DD_Long<"mulu.l", MxUMul, 0x130, /*SIGNED*/false>;
// RR
def : Pat<(mul i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(SMULd32d16 (MOVXd32d16 $dst), $opd),
MxSubRegIndex16Lo)>;
def : Pat<(mulhs i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SMULd32d16 (MOVXd32d16 $dst), $opd), 8), 8),
MxSubRegIndex16Lo)>;
def : Pat<(mulhu i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UMULd32d16 (MOVXd32d16 $dst), $opd), 8), 8),
MxSubRegIndex16Lo)>;
def : Pat<(mul i32:$dst, i32:$opd), (SMULd32d32 $dst, $opd)>;
// RI
def : Pat<(mul i16:$dst, Mxi16immSExt16:$opd),
(EXTRACT_SUBREG
(SMULd32i16 (MOVXd32d16 $dst), imm:$opd),
MxSubRegIndex16Lo)>;
def : Pat<(mulhs i16:$dst, Mxi16immSExt16:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SMULd32i16 (MOVXd32d16 $dst), imm:$opd), 8), 8),
MxSubRegIndex16Lo)>;
def : Pat<(mulhu i16:$dst, Mxi16immSExt16:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UMULd32i16 (MOVXd32d16 $dst), imm:$opd), 8), 8),
MxSubRegIndex16Lo)>;
//===----------------------------------------------------------------------===//
// NEG/NEGX/NOT
//===----------------------------------------------------------------------===//
/// ------------+------------+------+---------+---------
/// F E D C | B A 9 8 | 7 6 | 5 4 3 | 2 1 0
/// ------------+------------+------+-------------------
/// | | | EFFECTIVE ADDRESS
/// 0 1 0 0 | x x x x | SIZE | MODE | REG
/// ------------+------------+------+---------+---------
let Defs = [CCR] in {
let Constraints = "$src = $dst" in {
class MxNeg_D<MxType TYPE>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src),
"neg."#TYPE.Prefix#"\t$dst",
[(set TYPE.VT:$dst, (ineg TYPE.VT:$src))]> {
let Inst = (descend 0b01000100,
/*SIZE*/!cast<MxEncSize>("MxEncSize"#TYPE.Size).Value,
//MODE without last bit
0b00,
//REGISTER prefixed by D/A bit
(operand "$dst", 4)
);
}
let Uses = [CCR] in {
class MxNegX_D<MxType TYPE>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src),
"negx."#TYPE.Prefix#"\t$dst",
[(set TYPE.VT:$dst, (MxSubX 0, TYPE.VT:$src, CCR))]> {
let Inst = (descend 0b01000000,
/*SIZE*/!cast<MxEncSize>("MxEncSize"#TYPE.Size).Value,
//MODE without last bit
0b00,
//REGISTER prefixed by D/A bit
(operand "$dst", 4)
);
}
}
class MxNot_D<MxType TYPE>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src),
"not."#TYPE.Prefix#"\t$dst",
[(set TYPE.VT:$dst, (not TYPE.VT:$src))]> {
let Inst = (descend 0b01000110,
/*SIZE*/!cast<MxEncSize>("MxEncSize"#TYPE.Size).Value,
//MODE without last bit
0b00,
//REGISTER prefixed by D/A bit
(operand "$dst", 4)
);
}
} // let Constraints
} // let Defs = [CCR]
foreach S = [8, 16, 32] in {
def NEG#S#d : MxNeg_D<!cast<MxType>("MxType"#S#"d")>;
def NEGX#S#d : MxNegX_D<!cast<MxType>("MxType"#S#"d")>;
def NOT#S#d : MxNot_D<!cast<MxType>("MxType"#S#"d")>;
}
def : Pat<(MxSub 0, i8 :$src), (NEG8d MxDRD8 :$src)>;
def : Pat<(MxSub 0, i16:$src), (NEG16d MxDRD16:$src)>;
def : Pat<(MxSub 0, i32:$src), (NEG32d MxDRD32:$src)>;
// SExt of i1 values.
// Although we specify `ZeroOrOneBooleanContent` for boolean content,
// we're still adding an AND here as we don't know the origin of the i1 value.
def : Pat<(sext_inreg i8:$src, i1), (NEG8d (AND8di MxDRD8:$src, 1))>;
def : Pat<(sext_inreg i16:$src, i1), (NEG16d (AND16di MxDRD16:$src, 1))>;
def : Pat<(sext_inreg i32:$src, i1), (NEG32d (AND32di MxDRD32:$src, 1))>;
//===----------------------------------------------------------------------===//
// no-CCR Patterns
//===----------------------------------------------------------------------===//
/// Basically the reason for this stuff is that add and addc share the same
/// operand types constraints for whatever reasons and I had to define a common
/// MxAdd and MxSub instructions that produce CCR and then pattern-map add and addc
/// to it.
/// NOTE On the other hand I see no reason why I cannot just drop explicit CCR
/// result. Anyway works for now, hopefully I will better understand how this stuff
/// is designed later
foreach N = ["add", "addc"] in {
// add reg, reg
def : Pat<(!cast<SDNode>(N) i8 :$src, i8 :$opd),
(ADD8dd MxDRD8 :$src, MxDRD8 :$opd)>;
def : Pat<(!cast<SDNode>(N) i16:$src, i16:$opd),
(ADD16dr MxXRD16:$src, MxDRD16:$opd)>;
def : Pat<(!cast<SDNode>(N) i32:$src, i32:$opd),
(ADD32dr MxXRD32:$src, MxDRD32:$opd)>;
// add (An), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.JPat:$opd)),
(ADD8dj MxDRD8:$src, MxType8.JOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.JPat:$opd)),
(ADD16dj MxDRD16:$src, MxType16.JOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.JPat:$opd)),
(ADD32dj MxDRD32:$src, MxType32.JOp:$opd)>;
// add (i,An), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.PPat:$opd)),
(ADD8dp MxDRD8:$src, MxType8.POp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.PPat:$opd)),
(ADD16dp MxDRD16:$src, MxType16.POp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.PPat:$opd)),
(ADD32dp MxDRD32:$src, MxType32.POp:$opd)>;
// add (i,An,Xn), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.FPat:$opd)),
(ADD8df MxDRD8:$src, MxType8.FOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.FPat:$opd)),
(ADD16df MxDRD16:$src, MxType16.FOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.FPat:$opd)),
(ADD32df MxDRD32:$src, MxType32.FOp:$opd)>;
// add reg, imm
def : Pat<(!cast<SDNode>(N) i8: $src, Mxi8immSExt8:$opd),
(ADD8di MxDRD8 :$src, imm:$opd)>;
def : Pat<(!cast<SDNode>(N) i16:$src, Mxi16immSExt16:$opd),
(ADD16di MxDRD16:$src, imm:$opd)>;
// LEAp is more complex and thus will be selected over normal ADD32ri but it cannot
// be used with data registers, here by adding complexity to a simple ADD32ri insts
// we make sure it will be selected over LEAp
let AddedComplexity = 15 in {
def : Pat<(!cast<SDNode>(N) i32:$src, Mxi32immSExt32:$opd),
(ADD32di MxDRD32:$src, imm:$opd)>;
} // AddedComplexity = 15
// add imm, (An)
def : Pat<(store (!cast<SDNode>(N) (load MxType8.JPat:$dst), MxType8.IPat:$opd),
MxType8.JPat:$dst),
(ADD8ji MxType8.JOp:$dst, imm:$opd)>;
def : Pat<(store (!cast<SDNode>(N) (load MxType16.JPat:$dst), MxType16.IPat:$opd),
MxType16.JPat:$dst),
(ADD16ji MxType16.JOp:$dst, imm:$opd)>;
def : Pat<(store (!cast<SDNode>(N) (load MxType32.JPat:$dst), MxType32.IPat:$opd),
MxType32.JPat:$dst),
(ADD32ji MxType32.JOp:$dst, imm:$opd)>;
} // foreach add, addc
def : Pat<(adde i8 :$src, i8 :$opd), (ADDX8dd MxDRD8 :$src, MxDRD8 :$opd)>;
def : Pat<(adde i16:$src, i16:$opd), (ADDX16dd MxDRD16:$src, MxDRD16:$opd)>;
def : Pat<(adde i32:$src, i32:$opd), (ADDX32dd MxDRD32:$src, MxDRD32:$opd)>;
foreach N = ["sub", "subc"] in {
// sub reg, reg
def : Pat<(!cast<SDNode>(N) i8 :$src, i8 :$opd),
(SUB8dd MxDRD8 :$src, MxDRD8 :$opd)>;
def : Pat<(!cast<SDNode>(N) i16:$src, i16:$opd),
(SUB16dd MxDRD16:$src, MxDRD16:$opd)>;
def : Pat<(!cast<SDNode>(N) i32:$src, i32:$opd),
(SUB32dd MxDRD32:$src, MxDRD32:$opd)>;
// sub (An), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.JPat:$opd)),
(SUB8dj MxDRD8:$src, MxType8.JOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.JPat:$opd)),
(SUB16dj MxDRD16:$src, MxType16.JOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.JPat:$opd)),
(SUB32dj MxDRD32:$src, MxType32.JOp:$opd)>;
// sub (i,An), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.PPat:$opd)),
(SUB8dp MxDRD8:$src, MxType8.POp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.PPat:$opd)),
(SUB16dp MxDRD16:$src, MxType16.POp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.PPat:$opd)),
(SUB32dp MxDRD32:$src, MxType32.POp:$opd)>;
// sub (i,An,Xn), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.FPat:$opd)),
(SUB8df MxDRD8:$src, MxType8.FOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.FPat:$opd)),
(SUB16df MxDRD16:$src, MxType16.FOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.FPat:$opd)),
(SUB32df MxDRD32:$src, MxType32.FOp:$opd)>;
// sub reg, imm
def : Pat<(!cast<SDNode>(N) i8 :$src, Mxi8immSExt8 :$opd),
(SUB8di MxDRD8 :$src, imm:$opd)>;
def : Pat<(!cast<SDNode>(N) i16:$src, Mxi16immSExt16:$opd),
(SUB16di MxDRD16:$src, imm:$opd)>;
def : Pat<(!cast<SDNode>(N) i32:$src, Mxi32immSExt32:$opd),
(SUB32di MxDRD32:$src, imm:$opd)>;
// sub imm, (An)
def : Pat<(store (!cast<SDNode>(N) (load MxType8.JPat:$dst), MxType8.IPat:$opd),
MxType8.JPat:$dst),
(SUB8ji MxType8.JOp:$dst, imm:$opd)>;
def : Pat<(store (!cast<SDNode>(N) (load MxType16.JPat:$dst), MxType16.IPat:$opd),
MxType16.JPat:$dst),
(SUB16ji MxType16.JOp:$dst, imm:$opd)>;
def : Pat<(store (!cast<SDNode>(N) (load MxType32.JPat:$dst), MxType32.IPat:$opd),
MxType32.JPat:$dst),
(SUB32ji MxType32.JOp:$dst, imm:$opd)>;
} // foreach sub, subx
def : Pat<(sube i8 :$src, i8 :$opd), (SUBX8dd MxDRD8 :$src, MxDRD8 :$opd)>;
def : Pat<(sube i16:$src, i16:$opd), (SUBX16dd MxDRD16:$src, MxDRD16:$opd)>;
def : Pat<(sube i32:$src, i32:$opd), (SUBX32dd MxDRD32:$src, MxDRD32:$opd)>;
multiclass BitwisePat<string INST, SDNode OP> {
// op reg, reg
def : Pat<(OP i8 :$src, i8 :$opd),
(!cast<MxInst>(INST#"8dd") MxDRD8 :$src, MxDRD8 :$opd)>;
def : Pat<(OP i16:$src, i16:$opd),
(!cast<MxInst>(INST#"16dd") MxDRD16:$src, MxDRD16:$opd)>;
def : Pat<(OP i32:$src, i32:$opd),
(!cast<MxInst>(INST#"32dd") MxDRD32:$src, MxDRD32:$opd)>;
// op reg, imm
def : Pat<(OP i8: $src, Mxi8immSExt8 :$opd),
(!cast<MxInst>(INST#"8di") MxDRD8 :$src, imm:$opd)>;
def : Pat<(OP i16:$src, Mxi16immSExt16:$opd),
(!cast<MxInst>(INST#"16di") MxDRD16:$src, imm:$opd)>;
def : Pat<(OP i32:$src, Mxi32immSExt32:$opd),
(!cast<MxInst>(INST#"32di") MxDRD32:$src, imm:$opd)>;
}
defm : BitwisePat<"AND", and>;
defm : BitwisePat<"OR", or>;
defm : BitwisePat<"XOR", xor>;
//===----------------------------------------------------------------------===//
// Floating point arithmetic instruction
//===----------------------------------------------------------------------===//
let Defs = [FPS] in
class MxFArithBase_FF<dag outs, dag ins, string asm, string rounding,
list<dag> patterns>
: MxInst<outs, ins, asm, patterns> {
let Uses = !if(!eq(rounding, ""), [FPC], []);
let Predicates = !if(!eq(rounding, ""), [AtLeastM68881], [AtLeastM68040]);
}
class MxFPOpModeSelector<string rounding, bits<7> single, bits<7> double,
bits<7> extended> {
bits<7> Mode = !cond(!eq(rounding, "s"): single,
!eq(rounding, "d"): double,
!eq(rounding, ""): extended);
}
//===----------------------------------------------------------------------===//
// Unary floating point instruction
//===----------------------------------------------------------------------===//
class MxFUnary_FF<MxOpBundle Opnd, string rounding,
string mnemonic, bits<7> opmode>
: MxFArithBase_FF<(outs Opnd.Op:$dst), (ins Opnd.Op:$src),
"f"#rounding#mnemonic#".x\t$src, $dst", rounding, [(null_frag)]> {
let Inst = (ascend
(descend 0b1111,
/*COPROCESSOR ID*/0b001,
0b000,
/*MODE+REGISTER*/0b000000),
(descend 0b0, /* R/M */ 0b0, 0b0,
/*SOURCE SPECIFIER*/
(operand "$src", 3),
/*DESTINATION*/
(operand "$dst", 3),
/*OPMODE*/
opmode)
);
}
multiclass MxFUnaryOp<string mnemonic, bits<7> single, bits<7> double,
bits<7> extended> {
foreach rounding = ["", "s", "d"] in {
defvar opmode = MxFPOpModeSelector<rounding, single, double, extended>.Mode;
def F # !toupper(rounding) # !substr(NAME, 1) # "80fp_fp"
: MxFUnary_FF<MxOp80AddrMode_fpr, rounding, mnemonic, opmode>;
let isCodeGenOnly = 1 in
foreach size = [32, 64] in
def F # !toupper(rounding) # !substr(NAME, 1) # size # "fp_fp"
: MxFUnary_FF<!cast<MxOpBundle>("MxOp"#size#"AddrMode_fpr"),
rounding, mnemonic, opmode>;
}
}
defm FABS : MxFUnaryOp<"abs", 0b1011000, 0b1011100, 0b0011000>;
defm FNEG : MxFUnaryOp<"neg", 0b1011010, 0b1011110, 0b0011010>;
//===----------------------------------------------------------------------===//
// Binary floating point instruction
//===----------------------------------------------------------------------===//
let Constraints = "$src = $dst" in
class MxFBinary_FF<MxOpBundle Opnd, string rounding,
string mnemonic, bits<7> opmode>
: MxFArithBase_FF<(outs Opnd.Op:$dst), (ins Opnd.Op:$src, Opnd.Op:$opd),
"f"#rounding#mnemonic#".x\t$opd, $dst", rounding, [(null_frag)]> {
let Inst = (ascend
(descend 0b1111,
/*COPROCESSOR ID*/0b001,
0b000,
/*MODE+REGISTER*/0b000000),
(descend 0b0, /* R/M */ 0b0, 0b0,
/*SOURCE SPECIFIER*/
(operand "$opd", 3),
/*DESTINATION*/
(operand "$dst", 3),
/*OPMODE*/
opmode)
);
}
multiclass MxFBinaryOp<string mnemonic, bits<7> single, bits<7> double,
bits<7> extended> {
foreach rounding = ["", "s", "d"] in {
defvar opmode = MxFPOpModeSelector<rounding, single, double, extended>.Mode;
def F # !toupper(rounding) # !substr(NAME, 1) # "80fp_fp"
: MxFBinary_FF<MxOp80AddrMode_fpr, rounding, mnemonic, opmode>;
let isCodeGenOnly = 1 in
foreach size = [32, 64] in
def F # !toupper(rounding) # !substr(NAME, 1) # size # "fp_fp"
: MxFBinary_FF<!cast<MxOpBundle>("MxOp"#size#"AddrMode_fpr"),
rounding, mnemonic, opmode>;
}
}
defm FADD : MxFBinaryOp<"add", 0b1100010, 0b1100110, 0b0100010>;
defm FSUB : MxFBinaryOp<"sub", 0b1101000, 0b1101100, 0b0101000>;
defm FMUL : MxFBinaryOp<"mul", 0b1100011, 0b1100111, 0b0100011>;
defm FDIV : MxFBinaryOp<"div", 0b1100000, 0b1100100, 0b0100000>;