; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=indvars -S -indvars-predicate-loops=0 | FileCheck %s
;
; Make sure that indvars isn't inserting canonical IVs.
; This is kinda hard to do until linear function test replacement is removed.
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
; We should only have 2 IVs.
; sext should be eliminated while preserving gep inboundsness.
define i32 @sum(ptr %arr, i32 %n) nounwind {
; CHECK-LABEL: @sum(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[PRECOND:%.*]] = icmp slt i32 0, [[N:%.*]]
; CHECK-NEXT: br i1 [[PRECOND]], label [[PH:%.*]], label [[RETURN:%.*]]
; CHECK: ph:
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP]] ], [ 0, [[PH]] ]
; CHECK-NEXT: [[S_01:%.*]] = phi i32 [ 0, [[PH]] ], [ [[SINC:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, ptr [[ARR:%.*]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[VAL:%.*]] = load i32, ptr [[ADR]], align 4
; CHECK-NEXT: [[SINC]] = add nsw i32 [[S_01]], [[VAL]]
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: [[S_LCSSA:%.*]] = phi i32 [ [[SINC]], [[LOOP]] ]
; CHECK-NEXT: br label [[RETURN]]
; CHECK: return:
; CHECK-NEXT: [[S_0_LCSSA:%.*]] = phi i32 [ [[S_LCSSA]], [[EXIT]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: ret i32 [[S_0_LCSSA]]
;
entry:
%precond = icmp slt i32 0, %n
br i1 %precond, label %ph, label %return
ph:
br label %loop
loop:
%i.02 = phi i32 [ 0, %ph ], [ %iinc, %loop ]
%s.01 = phi i32 [ 0, %ph ], [ %sinc, %loop ]
%ofs = sext i32 %i.02 to i64
%adr = getelementptr inbounds i32, ptr %arr, i64 %ofs
%val = load i32, ptr %adr
%sinc = add nsw i32 %s.01, %val
%iinc = add nsw i32 %i.02, 1
%cond = icmp slt i32 %iinc, %n
br i1 %cond, label %loop, label %exit
exit:
%s.lcssa = phi i32 [ %sinc, %loop ]
br label %return
return:
%s.0.lcssa = phi i32 [ %s.lcssa, %exit ], [ 0, %entry ]
ret i32 %s.0.lcssa
}
; We should only have 2 IVs.
; %ofs sext should be eliminated while preserving gep inboundsness.
; %vall sext should obviously not be eliminated
define i64 @suml(ptr %arr, i32 %n) nounwind {
; CHECK-LABEL: @suml(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[PRECOND:%.*]] = icmp slt i32 0, [[N:%.*]]
; CHECK-NEXT: br i1 [[PRECOND]], label [[PH:%.*]], label [[RETURN:%.*]]
; CHECK: ph:
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP]] ], [ 0, [[PH]] ]
; CHECK-NEXT: [[S_01:%.*]] = phi i64 [ 0, [[PH]] ], [ [[SINC:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, ptr [[ARR:%.*]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[VAL:%.*]] = load i32, ptr [[ADR]], align 4
; CHECK-NEXT: [[VALL:%.*]] = sext i32 [[VAL]] to i64
; CHECK-NEXT: [[SINC]] = add nsw i64 [[S_01]], [[VALL]]
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: [[S_LCSSA:%.*]] = phi i64 [ [[SINC]], [[LOOP]] ]
; CHECK-NEXT: br label [[RETURN]]
; CHECK: return:
; CHECK-NEXT: [[S_0_LCSSA:%.*]] = phi i64 [ [[S_LCSSA]], [[EXIT]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: ret i64 [[S_0_LCSSA]]
;
entry:
%precond = icmp slt i32 0, %n
br i1 %precond, label %ph, label %return
ph:
br label %loop
loop:
%i.02 = phi i32 [ 0, %ph ], [ %iinc, %loop ]
%s.01 = phi i64 [ 0, %ph ], [ %sinc, %loop ]
%ofs = sext i32 %i.02 to i64
%adr = getelementptr inbounds i32, ptr %arr, i64 %ofs
%val = load i32, ptr %adr
%vall = sext i32 %val to i64
%sinc = add nsw i64 %s.01, %vall
%iinc = add nsw i32 %i.02, 1
%cond = icmp slt i32 %iinc, %n
br i1 %cond, label %loop, label %exit
exit:
%s.lcssa = phi i64 [ %sinc, %loop ]
br label %return
return:
%s.0.lcssa = phi i64 [ %s.lcssa, %exit ], [ 0, %entry ]
ret i64 %s.0.lcssa
}
; It's not indvars' job to perform LICM on %ofs
; Preserve exactly one pointer type IV.
; Don't create any extra adds.
; Preserve gep inboundsness, and don't factor it.
define void @outofbounds(ptr %first, ptr %last, i32 %idx) nounwind {
; CHECK-LABEL: @outofbounds(
; CHECK-NEXT: [[PRECOND:%.*]] = icmp ne ptr [[FIRST:%.*]], [[LAST:%.*]]
; CHECK-NEXT: br i1 [[PRECOND]], label [[PH:%.*]], label [[RETURN:%.*]]
; CHECK: ph:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[PTRIV:%.*]] = phi ptr [ [[FIRST]], [[PH]] ], [ [[PTRPOST:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[OFS:%.*]] = sext i32 [[IDX:%.*]] to i64
; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, ptr [[PTRIV]], i64 [[OFS]]
; CHECK-NEXT: store i32 3, ptr [[ADR]], align 4
; CHECK-NEXT: [[PTRPOST]] = getelementptr inbounds i32, ptr [[PTRIV]], i32 1
; CHECK-NEXT: [[COND:%.*]] = icmp ne ptr [[PTRPOST]], [[LAST]]
; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: br label [[RETURN]]
; CHECK: return:
; CHECK-NEXT: ret void
;
%precond = icmp ne ptr %first, %last
br i1 %precond, label %ph, label %return
ph:
br label %loop
loop:
%ptriv = phi ptr [ %first, %ph ], [ %ptrpost, %loop ]
%ofs = sext i32 %idx to i64
%adr = getelementptr inbounds i32, ptr %ptriv, i64 %ofs
store i32 3, ptr %adr
%ptrpost = getelementptr inbounds i32, ptr %ptriv, i32 1
%cond = icmp ne ptr %ptrpost, %last
br i1 %cond, label %loop, label %exit
exit:
br label %return
return:
ret void
}
%structI = type { i32 }
; Preserve casts
define void @bitcastiv(i32 %start, i32 %limit, i32 %step, ptr %base)
; CHECK-LABEL: @bitcastiv(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ [[START:%.*]], [[ENTRY:%.*]] ], [ [[NEXT:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[P:%.*]] = phi ptr [ [[BASE:%.*]], [[ENTRY]] ], [ [[PINC:%.*]], [[LOOP]] ]
; CHECK-NEXT: store i32 3, ptr [[P]], align 4
; CHECK-NEXT: store i32 4, ptr [[P]], align 4
; CHECK-NEXT: [[PINC]] = getelementptr [[STRUCTI:%.*]], ptr [[P]], i32 1
; CHECK-NEXT: [[NEXT]] = add i32 [[IV]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[NEXT]], [[LIMIT:%.*]]
; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret void
;
nounwind
{
entry:
br label %loop
loop:
%iv = phi i32 [%start, %entry], [%next, %loop]
%p = phi ptr [%base, %entry], [%pinc, %loop]
store i32 3, ptr %p
store i32 4, ptr %p
%pinc = getelementptr %structI, ptr %p, i32 1
%next = add i32 %iv, 1
%cond = icmp ne i32 %next, %limit
br i1 %cond, label %loop, label %exit
exit:
ret void
}
; Test inserting a truncate at a phi use.
define void @maxvisitor(i32 %limit, ptr %base) nounwind {
; CHECK-LABEL: @maxvisitor(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[SMAX:%.*]] = call i32 @llvm.smax.i32(i32 [[LIMIT:%.*]], i32 1)
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[SMAX]] to i64
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP_INC:%.*]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[MAX:%.*]] = phi i32 [ 0, [[ENTRY]] ], [ [[MAX_NEXT:%.*]], [[LOOP_INC]] ]
; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, ptr [[BASE:%.*]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[VAL:%.*]] = load i32, ptr [[ADR]], align 4
; CHECK-NEXT: [[CMP19:%.*]] = icmp sgt i32 [[VAL]], [[MAX]]
; CHECK-NEXT: br i1 [[CMP19]], label [[IF_THEN:%.*]], label [[IF_ELSE:%.*]]
; CHECK: if.then:
; CHECK-NEXT: [[TMP0:%.*]] = trunc nuw nsw i64 [[INDVARS_IV]] to i32
; CHECK-NEXT: br label [[LOOP_INC]]
; CHECK: if.else:
; CHECK-NEXT: br label [[LOOP_INC]]
; CHECK: loop.inc:
; CHECK-NEXT: [[MAX_NEXT]] = phi i32 [ [[TMP0]], [[IF_THEN]] ], [ [[MAX]], [[IF_ELSE]] ]
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret void
;
entry:
br label %loop
loop:
%idx = phi i32 [ 0, %entry ], [ %idx.next, %loop.inc ]
%max = phi i32 [ 0, %entry ], [ %max.next, %loop.inc ]
%idxprom = sext i32 %idx to i64
%adr = getelementptr inbounds i32, ptr %base, i64 %idxprom
%val = load i32, ptr %adr
%cmp19 = icmp sgt i32 %val, %max
br i1 %cmp19, label %if.then, label %if.else
if.then:
br label %loop.inc
if.else:
br label %loop.inc
loop.inc:
%max.next = phi i32 [ %idx, %if.then ], [ %max, %if.else ]
%idx.next = add nsw i32 %idx, 1
%cmp = icmp slt i32 %idx.next, %limit
br i1 %cmp, label %loop, label %exit
exit:
ret void
}
; Test an edge case of removing an identity phi that directly feeds
; back to the loop iv.
define void @identityphi(i32 %limit) nounwind {
; CHECK-LABEL: @identityphi(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: br i1 undef, label [[IF_THEN:%.*]], label [[CONTROL:%.*]]
; CHECK: if.then:
; CHECK-NEXT: br label [[CONTROL]]
; CHECK: control:
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 0, [[LIMIT:%.*]]
; CHECK-NEXT: br i1 [[CMP]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret void
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [ %iv.next, %control ]
br i1 undef, label %if.then, label %control
if.then:
br label %control
control:
%iv.next = phi i32 [ %iv, %loop ], [ undef, %if.then ]
%cmp = icmp slt i32 %iv.next, %limit
br i1 %cmp, label %loop, label %exit
exit:
ret void
}
; Test cloning an or, which is not an OverflowBinaryOperator.
define i64 @cloneOr(i32 %limit, ptr %base) nounwind {
; CHECK-LABEL: @cloneOr(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[HALFLIM:%.*]] = ashr i32 [[LIMIT:%.*]], 2
; CHECK-NEXT: [[TMP0:%.*]] = sext i32 [[HALFLIM]] to i64
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[ADR:%.*]] = getelementptr i64, ptr [[BASE:%.*]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[VAL:%.*]] = load i64, ptr [[ADR]], align 8
; CHECK-NEXT: [[TMP1:%.*]] = or disjoint i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 2
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i64 [[INDVARS_IV_NEXT]], [[TMP0]]
; CHECK-NEXT: br i1 [[CMP]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: [[VAL_LCSSA:%.*]] = phi i64 [ [[VAL]], [[LOOP]] ]
; CHECK-NEXT: [[T3_LCSSA:%.*]] = phi i64 [ [[TMP1]], [[LOOP]] ]
; CHECK-NEXT: [[RESULT:%.*]] = and i64 [[VAL_LCSSA]], [[T3_LCSSA]]
; CHECK-NEXT: ret i64 [[RESULT]]
;
entry:
; ensure that the loop can't overflow
%halfLim = ashr i32 %limit, 2
br label %loop
loop:
%iv = phi i32 [ 0, %entry], [ %iv.next, %loop ]
%t1 = sext i32 %iv to i64
%adr = getelementptr i64, ptr %base, i64 %t1
%val = load i64, ptr %adr
%t2 = or disjoint i32 %iv, 1
%t3 = sext i32 %t2 to i64
%iv.next = add i32 %iv, 2
%cmp = icmp slt i32 %iv.next, %halfLim
br i1 %cmp, label %loop, label %exit
exit:
%result = and i64 %val, %t3
ret i64 %result
}
; The i induction variable looks like a wrap-around, but it really is just
; a simple affine IV. Make sure that indvars simplifies through.
; ReplaceLoopExitValue should fold the return value to constant 9.
define i32 @indirectRecurrence() nounwind {
; CHECK-LABEL: @indirectRecurrence(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[J_0:%.*]] = phi i32 [ 1, [[ENTRY:%.*]] ], [ [[J_NEXT:%.*]], [[COND_TRUE:%.*]] ]
; CHECK-NEXT: [[TMP:%.*]] = icmp ne i32 [[J_0]], 10
; CHECK-NEXT: br i1 [[TMP]], label [[COND_TRUE]], label [[RETURN:%.*]]
; CHECK: cond_true:
; CHECK-NEXT: [[J_NEXT]] = add nuw nsw i32 [[J_0]], 1
; CHECK-NEXT: br label [[LOOP]]
; CHECK: return:
; CHECK-NEXT: ret i32 9
;
entry:
br label %loop
loop:
%j.0 = phi i32 [ 1, %entry ], [ %j.next, %cond_true ]
%i.0 = phi i32 [ 0, %entry ], [ %j.0, %cond_true ]
%tmp = icmp ne i32 %j.0, 10
br i1 %tmp, label %cond_true, label %return
cond_true:
%j.next = add i32 %j.0, 1
br label %loop
return:
ret i32 %i.0
}
; Eliminate the congruent phis j, k, and l.
; Eliminate the redundant IV increments k.next and l.next.
; Two phis should remain, one starting at %init, and one at %init1.
; Two increments should remain, one by %step and one by %step1.
; Five live-outs should remain.
define i32 @isomorphic(i32 %init, i32 %step, i32 %lim) nounwind {
; CHECK-LABEL: @isomorphic(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[STEP1:%.*]] = add i32 [[STEP:%.*]], 1
; CHECK-NEXT: [[INIT1:%.*]] = add i32 [[INIT:%.*]], [[STEP1]]
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[II:%.*]] = phi i32 [ [[INIT1]], [[ENTRY:%.*]] ], [ [[II_NEXT:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[J:%.*]] = phi i32 [ [[INIT]], [[ENTRY]] ], [ [[J_NEXT:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[II_NEXT]] = add i32 [[II]], [[STEP1]]
; CHECK-NEXT: [[J_NEXT]] = add i32 [[J]], [[STEP1]]
; CHECK-NEXT: [[L_STEP:%.*]] = add i32 [[J]], [[STEP]]
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[II_NEXT]], [[LIM:%.*]]
; CHECK-NEXT: br i1 [[CMP]], label [[LOOP]], label [[RETURN:%.*]]
; CHECK: return:
; CHECK-NEXT: [[I_LCSSA:%.*]] = phi i32 [ [[J]], [[LOOP]] ]
; CHECK-NEXT: [[J_NEXT_LCSSA:%.*]] = phi i32 [ [[J_NEXT]], [[LOOP]] ]
; CHECK-NEXT: [[K_NEXT_LCSSA:%.*]] = phi i32 [ [[II_NEXT]], [[LOOP]] ]
; CHECK-NEXT: [[L_STEP_LCSSA:%.*]] = phi i32 [ [[L_STEP]], [[LOOP]] ]
; CHECK-NEXT: [[L_NEXT_LCSSA:%.*]] = phi i32 [ [[J_NEXT]], [[LOOP]] ]
; CHECK-NEXT: [[SUM1:%.*]] = add i32 [[I_LCSSA]], [[J_NEXT_LCSSA]]
; CHECK-NEXT: [[SUM2:%.*]] = add i32 [[SUM1]], [[K_NEXT_LCSSA]]
; CHECK-NEXT: [[SUM3:%.*]] = add i32 [[SUM1]], [[L_STEP_LCSSA]]
; CHECK-NEXT: [[SUM4:%.*]] = add i32 [[SUM1]], [[L_NEXT_LCSSA]]
; CHECK-NEXT: ret i32 [[SUM4]]
;
entry:
%step1 = add i32 %step, 1
%init1 = add i32 %init, %step1
%l.0 = sub i32 %init1, %step1
br label %loop
loop:
%ii = phi i32 [ %init1, %entry ], [ %ii.next, %loop ]
%i = phi i32 [ %init, %entry ], [ %ii, %loop ]
%j = phi i32 [ %init, %entry ], [ %j.next, %loop ]
%k = phi i32 [ %init1, %entry ], [ %k.next, %loop ]
%l = phi i32 [ %l.0, %entry ], [ %l.next, %loop ]
%ii.next = add i32 %ii, %step1
%j.next = add i32 %j, %step1
%k.next = add i32 %k, %step1
%l.step = add i32 %l, %step
%l.next = add i32 %l.step, 1
%cmp = icmp ne i32 %ii.next, %lim
br i1 %cmp, label %loop, label %return
return:
%sum1 = add i32 %i, %j.next
%sum2 = add i32 %sum1, %k.next
%sum3 = add i32 %sum1, %l.step
%sum4 = add i32 %sum1, %l.next
ret i32 %sum4
}
; Test a GEP IV that is derived from another GEP IV by a nop gep that
; lowers the type without changing the expression.
%structIF = type { i32, float }
define void @congruentgepiv(ptr %base) nounwind uwtable ssp {
; CHECK-LABEL: @congruentgepiv(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: store i32 4, ptr [[BASE:%.*]], align 4
; CHECK-NEXT: br i1 false, label [[LATCH:%.*]], label [[EXIT:%.*]]
; CHECK: latch:
; CHECK-NEXT: br label [[LOOP]]
; CHECK: exit:
; CHECK-NEXT: ret void
;
entry:
br label %loop
loop:
%ptr.iv = phi ptr [ %ptr.inc, %latch ], [ %base, %entry ]
%next = phi ptr [ %next, %latch ], [ %base, %entry ]
store i32 4, ptr %next
br i1 undef, label %latch, label %exit
latch: ; preds = %for.inc50.i
%ptr.inc = getelementptr inbounds %structIF, ptr %ptr.iv, i64 1
br label %loop
exit:
ret void
}
declare void @use32(i32 %x)
declare void @use64(i64 %x)
; Test a widened IV that is used by a phi on different paths within the loop.
define void @phiUsesTrunc() nounwind {
; CHECK-LABEL: @phiUsesTrunc(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 undef, label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_END:%.*]]
; CHECK: for.body.preheader:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: br i1 undef, label [[IF_THEN:%.*]], label [[IF_ELSE:%.*]]
; CHECK: if.then:
; CHECK-NEXT: br i1 undef, label [[IF_THEN33:%.*]], label [[FOR_INC:%.*]]
; CHECK: if.then33:
; CHECK-NEXT: br label [[FOR_INC]]
; CHECK: if.else:
; CHECK-NEXT: br i1 undef, label [[IF_THEN97:%.*]], label [[FOR_INC]]
; CHECK: if.then97:
; CHECK-NEXT: call void @use64(i64 1)
; CHECK-NEXT: br label [[FOR_INC]]
; CHECK: for.inc:
; CHECK-NEXT: [[KMIN_1:%.*]] = phi i32 [ 1, [[IF_THEN33]] ], [ 0, [[IF_THEN]] ], [ 1, [[IF_THEN97]] ], [ 0, [[IF_ELSE]] ]
; CHECK-NEXT: call void @use32(i32 [[KMIN_1]])
; CHECK-NEXT: br i1 false, label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK: for.end.loopexit:
; CHECK-NEXT: br label [[FOR_END]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
entry:
br i1 undef, label %for.body, label %for.end
for.body:
%iv = phi i32 [ %inc, %for.inc ], [ 1, %entry ]
br i1 undef, label %if.then, label %if.else
if.then:
br i1 undef, label %if.then33, label %for.inc
if.then33:
br label %for.inc
if.else:
br i1 undef, label %if.then97, label %for.inc
if.then97:
%idxprom100 = sext i32 %iv to i64
call void @use64(i64 %idxprom100)
br label %for.inc
for.inc:
%kmin.1 = phi i32 [ %iv, %if.then33 ], [ 0, %if.then ], [ %iv, %if.then97 ], [ 0, %if.else ]
call void @use32(i32 %kmin.1)
%inc = add nsw i32 %iv, 1
br i1 undef, label %for.body, label %for.end
for.end:
ret void
}