; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=vector-combine -S -mtriple=x86_64-- -mattr=SSE2 | FileCheck %s --check-prefixes=CHECK,SSE
; RUN: opt < %s -passes=vector-combine -S -mtriple=x86_64-- -mattr=AVX2 | FileCheck %s --check-prefixes=CHECK,AVX
declare void @use(float)
; TODO: The insert is costed as free, so creating a shuffle appears to be a loss.
define <4 x float> @ext0_v4f32(<4 x float> %x, <4 x float> %y) {
; CHECK-LABEL: @ext0_v4f32(
; CHECK-NEXT: [[TMP1:%.*]] = fneg <4 x float> [[X:%.*]]
; CHECK-NEXT: [[R:%.*]] = shufflevector <4 x float> [[Y:%.*]], <4 x float> [[TMP1]], <4 x i32> <i32 4, i32 1, i32 2, i32 3>
; CHECK-NEXT: ret <4 x float> [[R]]
;
%e = extractelement <4 x float> %x, i32 0
%n = fneg float %e
%r = insertelement <4 x float> %y, float %n, i32 0
ret <4 x float> %r
}
; Eliminating extract/insert is profitable.
define <4 x float> @ext2_v4f32(<4 x float> %x, <4 x float> %y) {
; CHECK-LABEL: @ext2_v4f32(
; CHECK-NEXT: [[TMP1:%.*]] = fneg <4 x float> [[X:%.*]]
; CHECK-NEXT: [[R:%.*]] = shufflevector <4 x float> [[Y:%.*]], <4 x float> [[TMP1]], <4 x i32> <i32 0, i32 1, i32 6, i32 3>
; CHECK-NEXT: ret <4 x float> [[R]]
;
%e = extractelement <4 x float> %x, i32 2
%n = fneg float %e
%r = insertelement <4 x float> %y, float %n, i32 2
ret <4 x float> %r
}
; Eliminating extract/insert is still profitable. Flags propagate.
define <2 x double> @ext1_v2f64(<2 x double> %x, <2 x double> %y) {
; CHECK-LABEL: @ext1_v2f64(
; CHECK-NEXT: [[TMP1:%.*]] = fneg nsz <2 x double> [[X:%.*]]
; CHECK-NEXT: [[R:%.*]] = shufflevector <2 x double> [[Y:%.*]], <2 x double> [[TMP1]], <2 x i32> <i32 0, i32 3>
; CHECK-NEXT: ret <2 x double> [[R]]
;
%e = extractelement <2 x double> %x, i32 1
%n = fneg nsz double %e
%r = insertelement <2 x double> %y, double %n, i32 1
ret <2 x double> %r
}
; The vector fneg would cost twice as much as the scalar op with SSE,
; so we don't transform there (the shuffle would also be more expensive).
define <8 x float> @ext7_v8f32(<8 x float> %x, <8 x float> %y) {
; SSE-LABEL: @ext7_v8f32(
; SSE-NEXT: [[E:%.*]] = extractelement <8 x float> [[X:%.*]], i32 7
; SSE-NEXT: [[N:%.*]] = fneg float [[E]]
; SSE-NEXT: [[R:%.*]] = insertelement <8 x float> [[Y:%.*]], float [[N]], i32 7
; SSE-NEXT: ret <8 x float> [[R]]
;
; AVX-LABEL: @ext7_v8f32(
; AVX-NEXT: [[TMP1:%.*]] = fneg <8 x float> [[X:%.*]]
; AVX-NEXT: [[R:%.*]] = shufflevector <8 x float> [[Y:%.*]], <8 x float> [[TMP1]], <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 15>
; AVX-NEXT: ret <8 x float> [[R]]
;
%e = extractelement <8 x float> %x, i32 7
%n = fneg float %e
%r = insertelement <8 x float> %y, float %n, i32 7
ret <8 x float> %r
}
; Same as above with an extra use of the extracted element.
define <8 x float> @ext7_v8f32_use1(<8 x float> %x, <8 x float> %y) {
; SSE-LABEL: @ext7_v8f32_use1(
; SSE-NEXT: [[E:%.*]] = extractelement <8 x float> [[X:%.*]], i32 5
; SSE-NEXT: call void @use(float [[E]])
; SSE-NEXT: [[N:%.*]] = fneg float [[E]]
; SSE-NEXT: [[R:%.*]] = insertelement <8 x float> [[Y:%.*]], float [[N]], i32 5
; SSE-NEXT: ret <8 x float> [[R]]
;
; AVX-LABEL: @ext7_v8f32_use1(
; AVX-NEXT: [[E:%.*]] = extractelement <8 x float> [[X:%.*]], i32 5
; AVX-NEXT: call void @use(float [[E]])
; AVX-NEXT: [[TMP1:%.*]] = fneg <8 x float> [[X]]
; AVX-NEXT: [[R:%.*]] = shufflevector <8 x float> [[Y:%.*]], <8 x float> [[TMP1]], <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 13, i32 6, i32 7>
; AVX-NEXT: ret <8 x float> [[R]]
;
%e = extractelement <8 x float> %x, i32 5
call void @use(float %e)
%n = fneg float %e
%r = insertelement <8 x float> %y, float %n, i32 5
ret <8 x float> %r
}
; Negative test - the transform is likely not profitable if the fneg has another use.
define <8 x float> @ext7_v8f32_use2(<8 x float> %x, <8 x float> %y) {
; CHECK-LABEL: @ext7_v8f32_use2(
; CHECK-NEXT: [[E:%.*]] = extractelement <8 x float> [[X:%.*]], i32 3
; CHECK-NEXT: [[N:%.*]] = fneg float [[E]]
; CHECK-NEXT: call void @use(float [[N]])
; CHECK-NEXT: [[R:%.*]] = insertelement <8 x float> [[Y:%.*]], float [[N]], i32 3
; CHECK-NEXT: ret <8 x float> [[R]]
;
%e = extractelement <8 x float> %x, i32 3
%n = fneg float %e
call void @use(float %n)
%r = insertelement <8 x float> %y, float %n, i32 3
ret <8 x float> %r
}
; Negative test - can't convert variable index to a shuffle.
define <2 x double> @ext_index_var_v2f64(<2 x double> %x, <2 x double> %y, i32 %index) {
; CHECK-LABEL: @ext_index_var_v2f64(
; CHECK-NEXT: [[E:%.*]] = extractelement <2 x double> [[X:%.*]], i32 [[INDEX:%.*]]
; CHECK-NEXT: [[N:%.*]] = fneg nsz double [[E]]
; CHECK-NEXT: [[R:%.*]] = insertelement <2 x double> [[Y:%.*]], double [[N]], i32 [[INDEX]]
; CHECK-NEXT: ret <2 x double> [[R]]
;
%e = extractelement <2 x double> %x, i32 %index
%n = fneg nsz double %e
%r = insertelement <2 x double> %y, double %n, i32 %index
ret <2 x double> %r
}
; Negative test - require same extract/insert index for simple shuffle.
; TODO: We could handle this by adjusting the cost calculation.
define <2 x double> @ext1_v2f64_ins0(<2 x double> %x, <2 x double> %y) {
; CHECK-LABEL: @ext1_v2f64_ins0(
; CHECK-NEXT: [[E:%.*]] = extractelement <2 x double> [[X:%.*]], i32 1
; CHECK-NEXT: [[N:%.*]] = fneg nsz double [[E]]
; CHECK-NEXT: [[R:%.*]] = insertelement <2 x double> [[Y:%.*]], double [[N]], i32 0
; CHECK-NEXT: ret <2 x double> [[R]]
;
%e = extractelement <2 x double> %x, i32 1
%n = fneg nsz double %e
%r = insertelement <2 x double> %y, double %n, i32 0
ret <2 x double> %r
}
; Negative test - avoid changing poison ops
define <4 x float> @ext12_v4f32(<4 x float> %x, <4 x float> %y) {
; CHECK-LABEL: @ext12_v4f32(
; CHECK-NEXT: [[E:%.*]] = extractelement <4 x float> [[X:%.*]], i32 12
; CHECK-NEXT: [[N:%.*]] = fneg float [[E]]
; CHECK-NEXT: [[R:%.*]] = insertelement <4 x float> [[Y:%.*]], float [[N]], i32 12
; CHECK-NEXT: ret <4 x float> [[R]]
;
%e = extractelement <4 x float> %x, i32 12
%n = fneg float %e
%r = insertelement <4 x float> %y, float %n, i32 12
ret <4 x float> %r
}
; This used to crash because we assumed matching a true, unary fneg instruction.
define <2 x float> @ext1_v2f32_fsub(<2 x float> %x) {
; CHECK-LABEL: @ext1_v2f32_fsub(
; CHECK-NEXT: [[TMP1:%.*]] = fneg <2 x float> [[X:%.*]]
; CHECK-NEXT: [[R:%.*]] = shufflevector <2 x float> [[X]], <2 x float> [[TMP1]], <2 x i32> <i32 0, i32 3>
; CHECK-NEXT: ret <2 x float> [[R]]
;
%e = extractelement <2 x float> %x, i32 1
%s = fsub float -0.0, %e
%r = insertelement <2 x float> %x, float %s, i32 1
ret <2 x float> %r
}
; This used to crash because we assumed matching a true, unary fneg instruction.
define <2 x float> @ext1_v2f32_fsub_fmf(<2 x float> %x, <2 x float> %y) {
; CHECK-LABEL: @ext1_v2f32_fsub_fmf(
; CHECK-NEXT: [[TMP1:%.*]] = fneg nnan nsz <2 x float> [[X:%.*]]
; CHECK-NEXT: [[R:%.*]] = shufflevector <2 x float> [[Y:%.*]], <2 x float> [[TMP1]], <2 x i32> <i32 0, i32 3>
; CHECK-NEXT: ret <2 x float> [[R]]
;
%e = extractelement <2 x float> %x, i32 1
%s = fsub nsz nnan float 0.0, %e
%r = insertelement <2 x float> %y, float %s, i32 1
ret <2 x float> %r
}