; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=instcombine -S | FileCheck %s
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128"
; Canonicalize rotate by constant to funnel shift intrinsics.
; This should help cost modeling for vectorization, inlining, etc.
; If a target does not have a rotate instruction, the expansion will
; be exactly these same 3 basic ops (shl/lshr/or).
define i32 @rotl_i32_constant(i32 %x) {
; CHECK-LABEL: @rotl_i32_constant(
; CHECK-NEXT: [[R:%.*]] = call i32 @llvm.fshl.i32(i32 [[X:%.*]], i32 [[X]], i32 11)
; CHECK-NEXT: ret i32 [[R]]
;
%shl = shl i32 %x, 11
%shr = lshr i32 %x, 21
%r = or i32 %shr, %shl
ret i32 %r
}
define i42 @rotr_i42_constant(i42 %x) {
; CHECK-LABEL: @rotr_i42_constant(
; CHECK-NEXT: [[R:%.*]] = call i42 @llvm.fshl.i42(i42 [[X:%.*]], i42 [[X]], i42 31)
; CHECK-NEXT: ret i42 [[R]]
;
%shl = shl i42 %x, 31
%shr = lshr i42 %x, 11
%r = or i42 %shr, %shl
ret i42 %r
}
define i8 @rotr_i8_constant_commute(i8 %x) {
; CHECK-LABEL: @rotr_i8_constant_commute(
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.fshl.i8(i8 [[X:%.*]], i8 [[X]], i8 5)
; CHECK-NEXT: ret i8 [[R]]
;
%shl = shl i8 %x, 5
%shr = lshr i8 %x, 3
%r = or i8 %shl, %shr
ret i8 %r
}
define i88 @rotl_i88_constant_commute(i88 %x) {
; CHECK-LABEL: @rotl_i88_constant_commute(
; CHECK-NEXT: [[R:%.*]] = call i88 @llvm.fshl.i88(i88 [[X:%.*]], i88 [[X]], i88 44)
; CHECK-NEXT: ret i88 [[R]]
;
%shl = shl i88 %x, 44
%shr = lshr i88 %x, 44
%r = or i88 %shl, %shr
ret i88 %r
}
; Vector types are allowed.
define <2 x i16> @rotl_v2i16_constant_splat(<2 x i16> %x) {
; CHECK-LABEL: @rotl_v2i16_constant_splat(
; CHECK-NEXT: [[R:%.*]] = call <2 x i16> @llvm.fshl.v2i16(<2 x i16> [[X:%.*]], <2 x i16> [[X]], <2 x i16> <i16 1, i16 1>)
; CHECK-NEXT: ret <2 x i16> [[R]]
;
%shl = shl <2 x i16> %x, <i16 1, i16 1>
%shr = lshr <2 x i16> %x, <i16 15, i16 15>
%r = or <2 x i16> %shl, %shr
ret <2 x i16> %r
}
define <2 x i16> @rotl_v2i16_constant_splat_poison0(<2 x i16> %x) {
; CHECK-LABEL: @rotl_v2i16_constant_splat_poison0(
; CHECK-NEXT: [[R:%.*]] = call <2 x i16> @llvm.fshl.v2i16(<2 x i16> [[X:%.*]], <2 x i16> [[X]], <2 x i16> <i16 1, i16 1>)
; CHECK-NEXT: ret <2 x i16> [[R]]
;
%shl = shl <2 x i16> %x, <i16 poison, i16 1>
%shr = lshr <2 x i16> %x, <i16 15, i16 15>
%r = or <2 x i16> %shl, %shr
ret <2 x i16> %r
}
define <2 x i16> @rotl_v2i16_constant_splat_poison1(<2 x i16> %x) {
; CHECK-LABEL: @rotl_v2i16_constant_splat_poison1(
; CHECK-NEXT: [[R:%.*]] = call <2 x i16> @llvm.fshl.v2i16(<2 x i16> [[X:%.*]], <2 x i16> [[X]], <2 x i16> <i16 1, i16 1>)
; CHECK-NEXT: ret <2 x i16> [[R]]
;
%shl = shl <2 x i16> %x, <i16 1, i16 1>
%shr = lshr <2 x i16> %x, <i16 15, i16 poison>
%r = or <2 x i16> %shl, %shr
ret <2 x i16> %r
}
; Non-power-of-2 vector types are allowed.
define <2 x i17> @rotr_v2i17_constant_splat(<2 x i17> %x) {
; CHECK-LABEL: @rotr_v2i17_constant_splat(
; CHECK-NEXT: [[R:%.*]] = call <2 x i17> @llvm.fshl.v2i17(<2 x i17> [[X:%.*]], <2 x i17> [[X]], <2 x i17> <i17 12, i17 12>)
; CHECK-NEXT: ret <2 x i17> [[R]]
;
%shl = shl <2 x i17> %x, <i17 12, i17 12>
%shr = lshr <2 x i17> %x, <i17 5, i17 5>
%r = or <2 x i17> %shr, %shl
ret <2 x i17> %r
}
define <2 x i17> @rotr_v2i17_constant_splat_poison0(<2 x i17> %x) {
; CHECK-LABEL: @rotr_v2i17_constant_splat_poison0(
; CHECK-NEXT: [[R:%.*]] = call <2 x i17> @llvm.fshl.v2i17(<2 x i17> [[X:%.*]], <2 x i17> [[X]], <2 x i17> <i17 12, i17 12>)
; CHECK-NEXT: ret <2 x i17> [[R]]
;
%shl = shl <2 x i17> %x, <i17 12, i17 poison>
%shr = lshr <2 x i17> %x, <i17 poison, i17 5>
%r = or <2 x i17> %shr, %shl
ret <2 x i17> %r
}
define <2 x i17> @rotr_v2i17_constant_splat_poison1(<2 x i17> %x) {
; CHECK-LABEL: @rotr_v2i17_constant_splat_poison1(
; CHECK-NEXT: [[R:%.*]] = call <2 x i17> @llvm.fshl.v2i17(<2 x i17> [[X:%.*]], <2 x i17> [[X]], <2 x i17> <i17 12, i17 12>)
; CHECK-NEXT: ret <2 x i17> [[R]]
;
%shl = shl <2 x i17> %x, <i17 12, i17 poison>
%shr = lshr <2 x i17> %x, <i17 5, i17 poison>
%r = or <2 x i17> %shr, %shl
ret <2 x i17> %r
}
; Allow arbitrary shift constants.
; Support poison elements.
define <2 x i32> @rotr_v2i32_constant_nonsplat(<2 x i32> %x) {
; CHECK-LABEL: @rotr_v2i32_constant_nonsplat(
; CHECK-NEXT: [[R:%.*]] = call <2 x i32> @llvm.fshl.v2i32(<2 x i32> [[X:%.*]], <2 x i32> [[X]], <2 x i32> <i32 17, i32 19>)
; CHECK-NEXT: ret <2 x i32> [[R]]
;
%shl = shl <2 x i32> %x, <i32 17, i32 19>
%shr = lshr <2 x i32> %x, <i32 15, i32 13>
%r = or <2 x i32> %shl, %shr
ret <2 x i32> %r
}
define <2 x i32> @rotr_v2i32_constant_nonsplat_poison0(<2 x i32> %x) {
; CHECK-LABEL: @rotr_v2i32_constant_nonsplat_poison0(
; CHECK-NEXT: [[R:%.*]] = call <2 x i32> @llvm.fshl.v2i32(<2 x i32> [[X:%.*]], <2 x i32> [[X]], <2 x i32> <i32 poison, i32 19>)
; CHECK-NEXT: ret <2 x i32> [[R]]
;
%shl = shl <2 x i32> %x, <i32 poison, i32 19>
%shr = lshr <2 x i32> %x, <i32 15, i32 13>
%r = or <2 x i32> %shl, %shr
ret <2 x i32> %r
}
define <2 x i32> @rotr_v2i32_constant_nonsplat_poison1(<2 x i32> %x) {
; CHECK-LABEL: @rotr_v2i32_constant_nonsplat_poison1(
; CHECK-NEXT: [[R:%.*]] = call <2 x i32> @llvm.fshl.v2i32(<2 x i32> [[X:%.*]], <2 x i32> [[X]], <2 x i32> <i32 17, i32 0>)
; CHECK-NEXT: ret <2 x i32> [[R]]
;
%shl = shl <2 x i32> %x, <i32 17, i32 19>
%shr = lshr <2 x i32> %x, <i32 15, i32 poison>
%r = or <2 x i32> %shl, %shr
ret <2 x i32> %r
}
define <2 x i36> @rotl_v2i36_constant_nonsplat(<2 x i36> %x) {
; CHECK-LABEL: @rotl_v2i36_constant_nonsplat(
; CHECK-NEXT: [[R:%.*]] = call <2 x i36> @llvm.fshl.v2i36(<2 x i36> [[X:%.*]], <2 x i36> [[X]], <2 x i36> <i36 21, i36 11>)
; CHECK-NEXT: ret <2 x i36> [[R]]
;
%shl = shl <2 x i36> %x, <i36 21, i36 11>
%shr = lshr <2 x i36> %x, <i36 15, i36 25>
%r = or <2 x i36> %shl, %shr
ret <2 x i36> %r
}
define <3 x i36> @rotl_v3i36_constant_nonsplat_poison0(<3 x i36> %x) {
; CHECK-LABEL: @rotl_v3i36_constant_nonsplat_poison0(
; CHECK-NEXT: [[R:%.*]] = call <3 x i36> @llvm.fshl.v3i36(<3 x i36> [[X:%.*]], <3 x i36> [[X]], <3 x i36> <i36 21, i36 11, i36 poison>)
; CHECK-NEXT: ret <3 x i36> [[R]]
;
%shl = shl <3 x i36> %x, <i36 21, i36 11, i36 poison>
%shr = lshr <3 x i36> %x, <i36 15, i36 25, i36 poison>
%r = or <3 x i36> %shl, %shr
ret <3 x i36> %r
}
; The most basic rotate by variable - no guards for UB due to oversized shifts.
; This cannot be canonicalized to funnel shift target-independently. The safe
; expansion includes masking for the shift amount that is not included here,
; so it could be more expensive.
define i32 @rotl_i32(i32 %x, i32 %y) {
; CHECK-LABEL: @rotl_i32(
; CHECK-NEXT: [[SUB:%.*]] = sub i32 32, [[Y:%.*]]
; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y]]
; CHECK-NEXT: [[SHR:%.*]] = lshr i32 [[X]], [[SUB]]
; CHECK-NEXT: [[R:%.*]] = or i32 [[SHR]], [[SHL]]
; CHECK-NEXT: ret i32 [[R]]
;
%sub = sub i32 32, %y
%shl = shl i32 %x, %y
%shr = lshr i32 %x, %sub
%r = or i32 %shr, %shl
ret i32 %r
}
; Non-power-of-2 types should follow the same reasoning. Left/right is determined by subtract.
define i37 @rotr_i37(i37 %x, i37 %y) {
; CHECK-LABEL: @rotr_i37(
; CHECK-NEXT: [[SUB:%.*]] = sub i37 37, [[Y:%.*]]
; CHECK-NEXT: [[SHL:%.*]] = shl i37 [[X:%.*]], [[SUB]]
; CHECK-NEXT: [[SHR:%.*]] = lshr i37 [[X]], [[Y]]
; CHECK-NEXT: [[R:%.*]] = or i37 [[SHR]], [[SHL]]
; CHECK-NEXT: ret i37 [[R]]
;
%sub = sub i37 37, %y
%shl = shl i37 %x, %sub
%shr = lshr i37 %x, %y
%r = or i37 %shr, %shl
ret i37 %r
}
; Commute 'or' operands.
define i8 @rotr_i8_commute(i8 %x, i8 %y) {
; CHECK-LABEL: @rotr_i8_commute(
; CHECK-NEXT: [[SUB:%.*]] = sub i8 8, [[Y:%.*]]
; CHECK-NEXT: [[SHL:%.*]] = shl i8 [[X:%.*]], [[SUB]]
; CHECK-NEXT: [[SHR:%.*]] = lshr i8 [[X]], [[Y]]
; CHECK-NEXT: [[R:%.*]] = or i8 [[SHL]], [[SHR]]
; CHECK-NEXT: ret i8 [[R]]
;
%sub = sub i8 8, %y
%shl = shl i8 %x, %sub
%shr = lshr i8 %x, %y
%r = or i8 %shl, %shr
ret i8 %r
}
; Vector types should follow the same rules.
define <4 x i32> @rotl_v4i32(<4 x i32> %x, <4 x i32> %y) {
; CHECK-LABEL: @rotl_v4i32(
; CHECK-NEXT: [[SUB:%.*]] = sub <4 x i32> <i32 32, i32 32, i32 32, i32 32>, [[Y:%.*]]
; CHECK-NEXT: [[SHL:%.*]] = shl <4 x i32> [[X:%.*]], [[Y]]
; CHECK-NEXT: [[SHR:%.*]] = lshr <4 x i32> [[X]], [[SUB]]
; CHECK-NEXT: [[R:%.*]] = or <4 x i32> [[SHL]], [[SHR]]
; CHECK-NEXT: ret <4 x i32> [[R]]
;
%sub = sub <4 x i32> <i32 32, i32 32, i32 32, i32 32>, %y
%shl = shl <4 x i32> %x, %y
%shr = lshr <4 x i32> %x, %sub
%r = or <4 x i32> %shl, %shr
ret <4 x i32> %r
}
; Non-power-of-2 vector types should follow the same rules.
define <3 x i42> @rotr_v3i42(<3 x i42> %x, <3 x i42> %y) {
; CHECK-LABEL: @rotr_v3i42(
; CHECK-NEXT: [[SUB:%.*]] = sub <3 x i42> <i42 42, i42 42, i42 42>, [[Y:%.*]]
; CHECK-NEXT: [[SHL:%.*]] = shl <3 x i42> [[X:%.*]], [[SUB]]
; CHECK-NEXT: [[SHR:%.*]] = lshr <3 x i42> [[X]], [[Y]]
; CHECK-NEXT: [[R:%.*]] = or <3 x i42> [[SHR]], [[SHL]]
; CHECK-NEXT: ret <3 x i42> [[R]]
;
%sub = sub <3 x i42> <i42 42, i42 42, i42 42>, %y
%shl = shl <3 x i42> %x, %sub
%shr = lshr <3 x i42> %x, %y
%r = or <3 x i42> %shr, %shl
ret <3 x i42> %r
}
; This is the canonical pattern for a UB-safe rotate-by-variable with power-of-2-size scalar type.
; The backend expansion of funnel shift for targets that don't have a rotate instruction should
; match the original IR, so it is always good to canonicalize to the intrinsics for this pattern.
define i32 @rotl_safe_i32(i32 %x, i32 %y) {
; CHECK-LABEL: @rotl_safe_i32(
; CHECK-NEXT: [[R:%.*]] = call i32 @llvm.fshl.i32(i32 [[X:%.*]], i32 [[X]], i32 [[Y:%.*]])
; CHECK-NEXT: ret i32 [[R]]
;
%negy = sub i32 0, %y
%ymask = and i32 %y, 31
%negymask = and i32 %negy, 31
%shl = shl i32 %x, %ymask
%shr = lshr i32 %x, %negymask
%r = or i32 %shr, %shl
ret i32 %r
}
; Extra uses don't change anything.
define i16 @rotl_safe_i16_commute_extra_use(i16 %x, i16 %y, ptr %p) {
; CHECK-LABEL: @rotl_safe_i16_commute_extra_use(
; CHECK-NEXT: [[NEGY:%.*]] = sub i16 0, [[Y:%.*]]
; CHECK-NEXT: [[NEGYMASK:%.*]] = and i16 [[NEGY]], 15
; CHECK-NEXT: store i16 [[NEGYMASK]], ptr [[P:%.*]], align 2
; CHECK-NEXT: [[R:%.*]] = call i16 @llvm.fshl.i16(i16 [[X:%.*]], i16 [[X]], i16 [[Y]])
; CHECK-NEXT: ret i16 [[R]]
;
%negy = sub i16 0, %y
%ymask = and i16 %y, 15
%negymask = and i16 %negy, 15
store i16 %negymask, ptr %p
%shl = shl i16 %x, %ymask
%shr = lshr i16 %x, %negymask
%r = or i16 %shl, %shr
ret i16 %r
}
; Left/right is determined by the negation.
define i64 @rotr_safe_i64(i64 %x, i64 %y) {
; CHECK-LABEL: @rotr_safe_i64(
; CHECK-NEXT: [[R:%.*]] = call i64 @llvm.fshr.i64(i64 [[X:%.*]], i64 [[X]], i64 [[Y:%.*]])
; CHECK-NEXT: ret i64 [[R]]
;
%negy = sub i64 0, %y
%ymask = and i64 %y, 63
%negymask = and i64 %negy, 63
%shl = shl i64 %x, %negymask
%shr = lshr i64 %x, %ymask
%r = or i64 %shr, %shl
ret i64 %r
}
; Extra uses don't change anything.
define i8 @rotr_safe_i8_commute_extra_use(i8 %x, i8 %y, ptr %p) {
; CHECK-LABEL: @rotr_safe_i8_commute_extra_use(
; CHECK-NEXT: [[NEGY:%.*]] = sub i8 0, [[Y:%.*]]
; CHECK-NEXT: [[YMASK:%.*]] = and i8 [[Y]], 7
; CHECK-NEXT: [[NEGYMASK:%.*]] = and i8 [[NEGY]], 7
; CHECK-NEXT: [[SHL:%.*]] = shl i8 [[X:%.*]], [[NEGYMASK]]
; CHECK-NEXT: [[SHR:%.*]] = lshr i8 [[X]], [[YMASK]]
; CHECK-NEXT: store i8 [[SHR]], ptr [[P:%.*]], align 1
; CHECK-NEXT: [[R:%.*]] = or i8 [[SHL]], [[SHR]]
; CHECK-NEXT: ret i8 [[R]]
;
%negy = sub i8 0, %y
%ymask = and i8 %y, 7
%negymask = and i8 %negy, 7
%shl = shl i8 %x, %negymask
%shr = lshr i8 %x, %ymask
store i8 %shr, ptr %p
%r = or i8 %shl, %shr
ret i8 %r
}
; Vectors follow the same rules.
define <2 x i32> @rotl_safe_v2i32(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: @rotl_safe_v2i32(
; CHECK-NEXT: [[R:%.*]] = call <2 x i32> @llvm.fshl.v2i32(<2 x i32> [[X:%.*]], <2 x i32> [[X]], <2 x i32> [[Y:%.*]])
; CHECK-NEXT: ret <2 x i32> [[R]]
;
%negy = sub <2 x i32> zeroinitializer, %y
%ymask = and <2 x i32> %y, <i32 31, i32 31>
%negymask = and <2 x i32> %negy, <i32 31, i32 31>
%shl = shl <2 x i32> %x, %ymask
%shr = lshr <2 x i32> %x, %negymask
%r = or <2 x i32> %shr, %shl
ret <2 x i32> %r
}
; Vectors follow the same rules.
define <3 x i16> @rotr_safe_v3i16(<3 x i16> %x, <3 x i16> %y) {
; CHECK-LABEL: @rotr_safe_v3i16(
; CHECK-NEXT: [[R:%.*]] = call <3 x i16> @llvm.fshr.v3i16(<3 x i16> [[X:%.*]], <3 x i16> [[X]], <3 x i16> [[Y:%.*]])
; CHECK-NEXT: ret <3 x i16> [[R]]
;
%negy = sub <3 x i16> zeroinitializer, %y
%ymask = and <3 x i16> %y, <i16 15, i16 15, i16 15>
%negymask = and <3 x i16> %negy, <i16 15, i16 15, i16 15>
%shl = shl <3 x i16> %x, %negymask
%shr = lshr <3 x i16> %x, %ymask
%r = or <3 x i16> %shr, %shl
ret <3 x i16> %r
}
; These are optionally UB-free rotate left/right patterns that are narrowed to a smaller bitwidth.
; See PR34046, PR16726, and PR39624 for motivating examples:
; https://bugs.llvm.org/show_bug.cgi?id=34046
; https://bugs.llvm.org/show_bug.cgi?id=16726
; https://bugs.llvm.org/show_bug.cgi?id=39624
define i16 @rotate_left_16bit(i16 %v, i32 %shift) {
; CHECK-LABEL: @rotate_left_16bit(
; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHIFT:%.*]] to i16
; CHECK-NEXT: [[CONV2:%.*]] = call i16 @llvm.fshl.i16(i16 [[V:%.*]], i16 [[V]], i16 [[TMP1]])
; CHECK-NEXT: ret i16 [[CONV2]]
;
%and = and i32 %shift, 15
%conv = zext i16 %v to i32
%shl = shl i32 %conv, %and
%sub = sub i32 16, %and
%shr = lshr i32 %conv, %sub
%or = or i32 %shr, %shl
%conv2 = trunc i32 %or to i16
ret i16 %conv2
}
; Commute the 'or' operands and try a vector type.
define <2 x i16> @rotate_left_commute_16bit_vec(<2 x i16> %v, <2 x i32> %shift) {
; CHECK-LABEL: @rotate_left_commute_16bit_vec(
; CHECK-NEXT: [[TMP1:%.*]] = trunc <2 x i32> [[SHIFT:%.*]] to <2 x i16>
; CHECK-NEXT: [[CONV2:%.*]] = call <2 x i16> @llvm.fshl.v2i16(<2 x i16> [[V:%.*]], <2 x i16> [[V]], <2 x i16> [[TMP1]])
; CHECK-NEXT: ret <2 x i16> [[CONV2]]
;
%and = and <2 x i32> %shift, <i32 15, i32 15>
%conv = zext <2 x i16> %v to <2 x i32>
%shl = shl <2 x i32> %conv, %and
%sub = sub <2 x i32> <i32 16, i32 16>, %and
%shr = lshr <2 x i32> %conv, %sub
%or = or <2 x i32> %shl, %shr
%conv2 = trunc <2 x i32> %or to <2 x i16>
ret <2 x i16> %conv2
}
; Change the size, rotation direction (the subtract is on the left-shift), and mask op.
define i8 @rotate_right_8bit(i8 %v, i3 %shift) {
; CHECK-LABEL: @rotate_right_8bit(
; CHECK-NEXT: [[TMP1:%.*]] = zext i3 [[SHIFT:%.*]] to i8
; CHECK-NEXT: [[CONV2:%.*]] = call i8 @llvm.fshr.i8(i8 [[V:%.*]], i8 [[V]], i8 [[TMP1]])
; CHECK-NEXT: ret i8 [[CONV2]]
;
%and = zext i3 %shift to i32
%conv = zext i8 %v to i32
%shr = lshr i32 %conv, %and
%sub = sub i32 8, %and
%shl = shl i32 %conv, %sub
%or = or i32 %shl, %shr
%conv2 = trunc i32 %or to i8
ret i8 %conv2
}
; The right-shifted value does not need to be a zexted value; here it is masked.
; The shift mask could be less than the bitwidth, but this is still ok.
define i8 @rotate_right_commute_8bit_unmasked_shl(i32 %v, i32 %shift) {
; CHECK-LABEL: @rotate_right_commute_8bit_unmasked_shl(
; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHIFT:%.*]] to i8
; CHECK-NEXT: [[TMP2:%.*]] = and i8 [[TMP1]], 3
; CHECK-NEXT: [[TMP3:%.*]] = trunc i32 [[V:%.*]] to i8
; CHECK-NEXT: [[TMP4:%.*]] = trunc i32 [[V]] to i8
; CHECK-NEXT: [[CONV2:%.*]] = call i8 @llvm.fshr.i8(i8 [[TMP3]], i8 [[TMP4]], i8 [[TMP2]])
; CHECK-NEXT: ret i8 [[CONV2]]
;
%and = and i32 %shift, 3
%conv = and i32 %v, 255
%shr = lshr i32 %conv, %and
%sub = sub i32 8, %and
%shl = shl i32 %conv, %sub
%or = or i32 %shr, %shl
%conv2 = trunc i32 %or to i8
ret i8 %conv2
}
; The left-shifted value does not need to be masked at all.
define i8 @rotate_right_commute_8bit(i32 %v, i32 %shift) {
; CHECK-LABEL: @rotate_right_commute_8bit(
; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHIFT:%.*]] to i8
; CHECK-NEXT: [[TMP2:%.*]] = and i8 [[TMP1]], 3
; CHECK-NEXT: [[TMP3:%.*]] = trunc i32 [[V:%.*]] to i8
; CHECK-NEXT: [[TMP4:%.*]] = trunc i32 [[V]] to i8
; CHECK-NEXT: [[CONV2:%.*]] = call i8 @llvm.fshr.i8(i8 [[TMP3]], i8 [[TMP4]], i8 [[TMP2]])
; CHECK-NEXT: ret i8 [[CONV2]]
;
%and = and i32 %shift, 3
%conv = and i32 %v, 255
%shr = lshr i32 %conv, %and
%sub = sub i32 8, %and
%shl = shl i32 %v, %sub
%or = or i32 %shr, %shl
%conv2 = trunc i32 %or to i8
ret i8 %conv2
}
; If the original source does not mask the shift amount,
; we still do the transform by adding masks to make it safe.
define i8 @rotate8_not_safe(i8 %v, i32 %shamt) {
; CHECK-LABEL: @rotate8_not_safe(
; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHAMT:%.*]] to i8
; CHECK-NEXT: [[RET:%.*]] = call i8 @llvm.fshl.i8(i8 [[V:%.*]], i8 [[V]], i8 [[TMP1]])
; CHECK-NEXT: ret i8 [[RET]]
;
%conv = zext i8 %v to i32
%sub = sub i32 8, %shamt
%shr = lshr i32 %conv, %sub
%shl = shl i32 %conv, %shamt
%or = or i32 %shr, %shl
%ret = trunc i32 %or to i8
ret i8 %ret
}
; A non-power-of-2 destination type can't be masked as above.
define i9 @rotate9_not_safe(i9 %v, i32 %shamt) {
; CHECK-LABEL: @rotate9_not_safe(
; CHECK-NEXT: [[CONV:%.*]] = zext i9 [[V:%.*]] to i32
; CHECK-NEXT: [[SUB:%.*]] = sub i32 9, [[SHAMT:%.*]]
; CHECK-NEXT: [[SHR:%.*]] = lshr i32 [[CONV]], [[SUB]]
; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[CONV]], [[SHAMT]]
; CHECK-NEXT: [[OR:%.*]] = or i32 [[SHR]], [[SHL]]
; CHECK-NEXT: [[RET:%.*]] = trunc i32 [[OR]] to i9
; CHECK-NEXT: ret i9 [[RET]]
;
%conv = zext i9 %v to i32
%sub = sub i32 9, %shamt
%shr = lshr i32 %conv, %sub
%shl = shl i32 %conv, %shamt
%or = or i32 %shr, %shl
%ret = trunc i32 %or to i9
ret i9 %ret
}
; We should narrow (v << (s & 15)) | (v >> (-s & 15))
; when both v and s have been promoted.
define i16 @rotateleft_16_neg_mask(i16 %v, i16 %shamt) {
; CHECK-LABEL: @rotateleft_16_neg_mask(
; CHECK-NEXT: [[OR:%.*]] = call i16 @llvm.fshl.i16(i16 [[V:%.*]], i16 [[V]], i16 [[SHAMT:%.*]])
; CHECK-NEXT: ret i16 [[OR]]
;
%neg = sub i16 0, %shamt
%lshamt = and i16 %shamt, 15
%lshamtconv = zext i16 %lshamt to i32
%rshamt = and i16 %neg, 15
%rshamtconv = zext i16 %rshamt to i32
%conv = zext i16 %v to i32
%shl = shl i32 %conv, %lshamtconv
%shr = lshr i32 %conv, %rshamtconv
%or = or i32 %shr, %shl
%ret = trunc i32 %or to i16
ret i16 %ret
}
define i16 @rotateleft_16_neg_mask_commute(i16 %v, i16 %shamt) {
; CHECK-LABEL: @rotateleft_16_neg_mask_commute(
; CHECK-NEXT: [[OR:%.*]] = call i16 @llvm.fshl.i16(i16 [[V:%.*]], i16 [[V]], i16 [[SHAMT:%.*]])
; CHECK-NEXT: ret i16 [[OR]]
;
%neg = sub i16 0, %shamt
%lshamt = and i16 %shamt, 15
%lshamtconv = zext i16 %lshamt to i32
%rshamt = and i16 %neg, 15
%rshamtconv = zext i16 %rshamt to i32
%conv = zext i16 %v to i32
%shl = shl i32 %conv, %lshamtconv
%shr = lshr i32 %conv, %rshamtconv
%or = or i32 %shl, %shr
%ret = trunc i32 %or to i16
ret i16 %ret
}
define i8 @rotateright_8_neg_mask(i8 %v, i8 %shamt) {
; CHECK-LABEL: @rotateright_8_neg_mask(
; CHECK-NEXT: [[OR:%.*]] = call i8 @llvm.fshr.i8(i8 [[V:%.*]], i8 [[V]], i8 [[SHAMT:%.*]])
; CHECK-NEXT: ret i8 [[OR]]
;
%neg = sub i8 0, %shamt
%rshamt = and i8 %shamt, 7
%rshamtconv = zext i8 %rshamt to i32
%lshamt = and i8 %neg, 7
%lshamtconv = zext i8 %lshamt to i32
%conv = zext i8 %v to i32
%shl = shl i32 %conv, %lshamtconv
%shr = lshr i32 %conv, %rshamtconv
%or = or i32 %shr, %shl
%ret = trunc i32 %or to i8
ret i8 %ret
}
define i8 @rotateright_8_neg_mask_commute(i8 %v, i8 %shamt) {
; CHECK-LABEL: @rotateright_8_neg_mask_commute(
; CHECK-NEXT: [[OR:%.*]] = call i8 @llvm.fshr.i8(i8 [[V:%.*]], i8 [[V]], i8 [[SHAMT:%.*]])
; CHECK-NEXT: ret i8 [[OR]]
;
%neg = sub i8 0, %shamt
%rshamt = and i8 %shamt, 7
%rshamtconv = zext i8 %rshamt to i32
%lshamt = and i8 %neg, 7
%lshamtconv = zext i8 %lshamt to i32
%conv = zext i8 %v to i32
%shl = shl i32 %conv, %lshamtconv
%shr = lshr i32 %conv, %rshamtconv
%or = or i32 %shl, %shr
%ret = trunc i32 %or to i8
ret i8 %ret
}
; The shift amount may already be in the wide type,
; so we need to truncate it going into the rotate pattern.
define i16 @rotateright_16_neg_mask_wide_amount(i16 %v, i32 %shamt) {
; CHECK-LABEL: @rotateright_16_neg_mask_wide_amount(
; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHAMT:%.*]] to i16
; CHECK-NEXT: [[RET:%.*]] = call i16 @llvm.fshr.i16(i16 [[V:%.*]], i16 [[V]], i16 [[TMP1]])
; CHECK-NEXT: ret i16 [[RET]]
;
%neg = sub i32 0, %shamt
%rshamt = and i32 %shamt, 15
%lshamt = and i32 %neg, 15
%conv = zext i16 %v to i32
%shl = shl i32 %conv, %lshamt
%shr = lshr i32 %conv, %rshamt
%or = or i32 %shr, %shl
%ret = trunc i32 %or to i16
ret i16 %ret
}
define i16 @rotateright_16_neg_mask_wide_amount_commute(i16 %v, i32 %shamt) {
; CHECK-LABEL: @rotateright_16_neg_mask_wide_amount_commute(
; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHAMT:%.*]] to i16
; CHECK-NEXT: [[RET:%.*]] = call i16 @llvm.fshr.i16(i16 [[V:%.*]], i16 [[V]], i16 [[TMP1]])
; CHECK-NEXT: ret i16 [[RET]]
;
%neg = sub i32 0, %shamt
%rshamt = and i32 %shamt, 15
%lshamt = and i32 %neg, 15
%conv = zext i16 %v to i32
%shl = shl i32 %conv, %lshamt
%shr = lshr i32 %conv, %rshamt
%or = or i32 %shl, %shr
%ret = trunc i32 %or to i16
ret i16 %ret
}
define i64 @rotateright_64_zext_neg_mask_amount(i64 %0, i32 %1) {
; CHECK-LABEL: @rotateright_64_zext_neg_mask_amount(
; CHECK-NEXT: [[TMP3:%.*]] = zext i32 [[TMP1:%.*]] to i64
; CHECK-NEXT: [[TMP4:%.*]] = call i64 @llvm.fshr.i64(i64 [[TMP0:%.*]], i64 [[TMP0]], i64 [[TMP3]])
; CHECK-NEXT: ret i64 [[TMP4]]
;
%3 = and i32 %1, 63
%4 = zext i32 %3 to i64
%5 = lshr i64 %0, %4
%6 = sub nsw i32 0, %1
%7 = and i32 %6, 63
%8 = zext i32 %7 to i64
%9 = shl i64 %0, %8
%10 = or i64 %5, %9
ret i64 %10
}
define i8 @rotateleft_8_neg_mask_wide_amount(i8 %v, i32 %shamt) {
; CHECK-LABEL: @rotateleft_8_neg_mask_wide_amount(
; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHAMT:%.*]] to i8
; CHECK-NEXT: [[RET:%.*]] = call i8 @llvm.fshl.i8(i8 [[V:%.*]], i8 [[V]], i8 [[TMP1]])
; CHECK-NEXT: ret i8 [[RET]]
;
%neg = sub i32 0, %shamt
%lshamt = and i32 %shamt, 7
%rshamt = and i32 %neg, 7
%conv = zext i8 %v to i32
%shl = shl i32 %conv, %lshamt
%shr = lshr i32 %conv, %rshamt
%or = or i32 %shr, %shl
%ret = trunc i32 %or to i8
ret i8 %ret
}
define i8 @rotateleft_8_neg_mask_wide_amount_commute(i8 %v, i32 %shamt) {
; CHECK-LABEL: @rotateleft_8_neg_mask_wide_amount_commute(
; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHAMT:%.*]] to i8
; CHECK-NEXT: [[RET:%.*]] = call i8 @llvm.fshl.i8(i8 [[V:%.*]], i8 [[V]], i8 [[TMP1]])
; CHECK-NEXT: ret i8 [[RET]]
;
%neg = sub i32 0, %shamt
%lshamt = and i32 %shamt, 7
%rshamt = and i32 %neg, 7
%conv = zext i8 %v to i32
%shl = shl i32 %conv, %lshamt
%shr = lshr i32 %conv, %rshamt
%or = or i32 %shl, %shr
%ret = trunc i32 %or to i8
ret i8 %ret
}
define i64 @rotateleft_64_zext_neg_mask_amount(i64 %0, i32 %1) {
; CHECK-LABEL: @rotateleft_64_zext_neg_mask_amount(
; CHECK-NEXT: [[TMP3:%.*]] = zext i32 [[TMP1:%.*]] to i64
; CHECK-NEXT: [[TMP4:%.*]] = call i64 @llvm.fshl.i64(i64 [[TMP0:%.*]], i64 [[TMP0]], i64 [[TMP3]])
; CHECK-NEXT: ret i64 [[TMP4]]
;
%3 = and i32 %1, 63
%4 = zext i32 %3 to i64
%5 = shl i64 %0, %4
%6 = sub nsw i32 0, %1
%7 = and i32 %6, 63
%8 = zext i32 %7 to i64
%9 = lshr i64 %0, %8
%10 = or i64 %5, %9
ret i64 %10
}
; Non-power-of-2 types. This could be transformed, but it's not a typical rotate pattern.
define i9 @rotateleft_9_neg_mask_wide_amount_commute(i9 %v, i33 %shamt) {
; CHECK-LABEL: @rotateleft_9_neg_mask_wide_amount_commute(
; CHECK-NEXT: [[NEG:%.*]] = sub i33 0, [[SHAMT:%.*]]
; CHECK-NEXT: [[LSHAMT:%.*]] = and i33 [[SHAMT]], 8
; CHECK-NEXT: [[RSHAMT:%.*]] = and i33 [[NEG]], 8
; CHECK-NEXT: [[CONV:%.*]] = zext i9 [[V:%.*]] to i33
; CHECK-NEXT: [[SHL:%.*]] = shl nuw nsw i33 [[CONV]], [[LSHAMT]]
; CHECK-NEXT: [[SHR:%.*]] = lshr i33 [[CONV]], [[RSHAMT]]
; CHECK-NEXT: [[OR:%.*]] = or i33 [[SHL]], [[SHR]]
; CHECK-NEXT: [[RET:%.*]] = trunc i33 [[OR]] to i9
; CHECK-NEXT: ret i9 [[RET]]
;
%neg = sub i33 0, %shamt
%lshamt = and i33 %shamt, 8
%rshamt = and i33 %neg, 8
%conv = zext i9 %v to i33
%shl = shl i33 %conv, %lshamt
%shr = lshr i33 %conv, %rshamt
%or = or i33 %shl, %shr
%ret = trunc i33 %or to i9
ret i9 %ret
}
; Fold or(shl(v,x),lshr(v,bw-x)) iff x < bw
define i64 @rotl_sub_mask(i64 %0, i64 %1) {
; CHECK-LABEL: @rotl_sub_mask(
; CHECK-NEXT: [[TMP3:%.*]] = call i64 @llvm.fshl.i64(i64 [[TMP0:%.*]], i64 [[TMP0]], i64 [[TMP1:%.*]])
; CHECK-NEXT: ret i64 [[TMP3]]
;
%3 = and i64 %1, 63
%4 = shl i64 %0, %3
%5 = sub nuw nsw i64 64, %3
%6 = lshr i64 %0, %5
%7 = or i64 %6, %4
ret i64 %7
}
; Fold or(lshr(v,x),shl(v,bw-x)) iff x < bw
define i64 @rotr_sub_mask(i64 %0, i64 %1) {
; CHECK-LABEL: @rotr_sub_mask(
; CHECK-NEXT: [[TMP3:%.*]] = call i64 @llvm.fshr.i64(i64 [[TMP0:%.*]], i64 [[TMP0]], i64 [[TMP1:%.*]])
; CHECK-NEXT: ret i64 [[TMP3]]
;
%3 = and i64 %1, 63
%4 = lshr i64 %0, %3
%5 = sub nuw nsw i64 64, %3
%6 = shl i64 %0, %5
%7 = or i64 %6, %4
ret i64 %7
}
define <2 x i64> @rotr_sub_mask_vector(<2 x i64> %0, <2 x i64> %1) {
; CHECK-LABEL: @rotr_sub_mask_vector(
; CHECK-NEXT: [[TMP3:%.*]] = call <2 x i64> @llvm.fshr.v2i64(<2 x i64> [[TMP0:%.*]], <2 x i64> [[TMP0]], <2 x i64> [[TMP1:%.*]])
; CHECK-NEXT: ret <2 x i64> [[TMP3]]
;
%3 = and <2 x i64> %1, <i64 63, i64 63>
%4 = lshr <2 x i64> %0, %3
%5 = sub nuw nsw <2 x i64> <i64 64, i64 64>, %3
%6 = shl <2 x i64> %0, %5
%7 = or <2 x i64> %6, %4
ret <2 x i64> %7
}
; Convert select pattern to masked shift that ends in 'or'.
define i32 @rotr_select(i32 %x, i32 %shamt) {
; CHECK-LABEL: @rotr_select(
; CHECK-NEXT: [[R:%.*]] = call i32 @llvm.fshr.i32(i32 [[X:%.*]], i32 [[X]], i32 [[SHAMT:%.*]])
; CHECK-NEXT: ret i32 [[R]]
;
%cmp = icmp eq i32 %shamt, 0
%sub = sub i32 32, %shamt
%shr = lshr i32 %x, %shamt
%shl = shl i32 %x, %sub
%or = or i32 %shr, %shl
%r = select i1 %cmp, i32 %x, i32 %or
ret i32 %r
}
; Convert select pattern to masked shift that ends in 'or'.
define i8 @rotr_select_commute(i8 %x, i8 %shamt) {
; CHECK-LABEL: @rotr_select_commute(
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.fshr.i8(i8 [[X:%.*]], i8 [[X]], i8 [[SHAMT:%.*]])
; CHECK-NEXT: ret i8 [[R]]
;
%cmp = icmp eq i8 %shamt, 0
%sub = sub i8 8, %shamt
%shr = lshr i8 %x, %shamt
%shl = shl i8 %x, %sub
%or = or i8 %shl, %shr
%r = select i1 %cmp, i8 %x, i8 %or
ret i8 %r
}
; Convert select pattern to masked shift that ends in 'or'.
define i16 @rotl_select(i16 %x, i16 %shamt) {
; CHECK-LABEL: @rotl_select(
; CHECK-NEXT: [[R:%.*]] = call i16 @llvm.fshl.i16(i16 [[X:%.*]], i16 [[X]], i16 [[SHAMT:%.*]])
; CHECK-NEXT: ret i16 [[R]]
;
%cmp = icmp eq i16 %shamt, 0
%sub = sub i16 16, %shamt
%shr = lshr i16 %x, %sub
%shl = shl i16 %x, %shamt
%or = or i16 %shr, %shl
%r = select i1 %cmp, i16 %x, i16 %or
ret i16 %r
}
; Convert select pattern to masked shift that ends in 'or'.
define <2 x i64> @rotl_select_commute(<2 x i64> %x, <2 x i64> %shamt) {
; CHECK-LABEL: @rotl_select_commute(
; CHECK-NEXT: [[R:%.*]] = call <2 x i64> @llvm.fshl.v2i64(<2 x i64> [[X:%.*]], <2 x i64> [[X]], <2 x i64> [[SHAMT:%.*]])
; CHECK-NEXT: ret <2 x i64> [[R]]
;
%cmp = icmp eq <2 x i64> %shamt, zeroinitializer
%sub = sub <2 x i64> <i64 64, i64 64>, %shamt
%shr = lshr <2 x i64> %x, %sub
%shl = shl <2 x i64> %x, %shamt
%or = or <2 x i64> %shl, %shr
%r = select <2 x i1> %cmp, <2 x i64> %x, <2 x i64> %or
ret <2 x i64> %r
}
; Negative test - the transform is only valid with power-of-2 types.
define i24 @rotl_select_weird_type(i24 %x, i24 %shamt) {
; CHECK-LABEL: @rotl_select_weird_type(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i24 [[SHAMT:%.*]], 0
; CHECK-NEXT: [[SUB:%.*]] = sub i24 24, [[SHAMT]]
; CHECK-NEXT: [[SHR:%.*]] = lshr i24 [[X:%.*]], [[SUB]]
; CHECK-NEXT: [[SHL:%.*]] = shl i24 [[X]], [[SHAMT]]
; CHECK-NEXT: [[OR:%.*]] = or i24 [[SHL]], [[SHR]]
; CHECK-NEXT: [[R:%.*]] = select i1 [[CMP]], i24 [[X]], i24 [[OR]]
; CHECK-NEXT: ret i24 [[R]]
;
%cmp = icmp eq i24 %shamt, 0
%sub = sub i24 24, %shamt
%shr = lshr i24 %x, %sub
%shl = shl i24 %x, %shamt
%or = or i24 %shl, %shr
%r = select i1 %cmp, i24 %x, i24 %or
ret i24 %r
}
define i32 @rotl_select_zext_shamt(i32 %x, i8 %y) {
; CHECK-LABEL: @rotl_select_zext_shamt(
; CHECK-NEXT: [[TMP1:%.*]] = zext i8 [[Y:%.*]] to i32
; CHECK-NEXT: [[R:%.*]] = call i32 @llvm.fshl.i32(i32 [[X:%.*]], i32 [[X]], i32 [[TMP1]])
; CHECK-NEXT: ret i32 [[R]]
;
%rem = and i8 %y, 31
%cmp = icmp eq i8 %rem, 0
%sh_prom = zext i8 %rem to i32
%sub = sub nuw nsw i8 32, %rem
%sh_prom1 = zext i8 %sub to i32
%shr = lshr i32 %x, %sh_prom1
%shl = shl i32 %x, %sh_prom
%or = or i32 %shl, %shr
%r = select i1 %cmp, i32 %x, i32 %or
ret i32 %r
}
define i64 @rotr_select_zext_shamt(i64 %x, i32 %y) {
; CHECK-LABEL: @rotr_select_zext_shamt(
; CHECK-NEXT: [[TMP1:%.*]] = zext i32 [[Y:%.*]] to i64
; CHECK-NEXT: [[R:%.*]] = call i64 @llvm.fshr.i64(i64 [[X:%.*]], i64 [[X]], i64 [[TMP1]])
; CHECK-NEXT: ret i64 [[R]]
;
%rem = and i32 %y, 63
%cmp = icmp eq i32 %rem, 0
%sh_prom = zext i32 %rem to i64
%shr = lshr i64 %x, %sh_prom
%sub = sub nuw nsw i32 64, %rem
%sh_prom1 = zext i32 %sub to i64
%shl = shl i64 %x, %sh_prom1
%or = or i64 %shl, %shr
%r = select i1 %cmp, i64 %x, i64 %or
ret i64 %r
}
; Test that the transform doesn't crash when there's an "or" with a ConstantExpr operand.
@external_global = external global i8
define i32 @rotl_constant_expr(i32 %shamt) {
; CHECK-LABEL: @rotl_constant_expr(
; CHECK-NEXT: [[SHR:%.*]] = lshr i32 ptrtoint (ptr @external_global to i32), [[SHAMT:%.*]]
; CHECK-NEXT: [[SHL:%.*]] = shl i32 ptrtoint (ptr @external_global to i32), 11
; CHECK-NEXT: [[R:%.*]] = or i32 [[SHR]], [[SHL]]
; CHECK-NEXT: ret i32 [[R]]
;
%shr = lshr i32 ptrtoint (ptr @external_global to i32), %shamt
%shl = shl i32 ptrtoint (ptr @external_global to i32), 11
%r = or i32 %shr, %shl
ret i32 %r
}
; PR20750 - https://bugs.llvm.org/show_bug.cgi?id=20750
; This IR corresponds to C source where the shift amount is a smaller type than the rotated value:
; unsigned int rotate32_doubleand1(unsigned int v, unsigned char r) { r = r & 31; return (v << r) | (v >> (((32 - r)) & 31)); }
define i32 @rotateleft32_doubleand1(i32 %v, i8 %r) {
; CHECK-LABEL: @rotateleft32_doubleand1(
; CHECK-NEXT: [[Z:%.*]] = zext i8 [[R:%.*]] to i32
; CHECK-NEXT: [[OR:%.*]] = call i32 @llvm.fshl.i32(i32 [[V:%.*]], i32 [[V]], i32 [[Z]])
; CHECK-NEXT: ret i32 [[OR]]
;
%m = and i8 %r, 31
%z = zext i8 %m to i32
%neg = sub nsw i32 0, %z
%and2 = and i32 %neg, 31
%shl = shl i32 %v, %z
%shr = lshr i32 %v, %and2
%or = or i32 %shr, %shl
ret i32 %or
}
define i32 @rotateright32_doubleand1(i32 %v, i16 %r) {
; CHECK-LABEL: @rotateright32_doubleand1(
; CHECK-NEXT: [[Z:%.*]] = zext i16 [[R:%.*]] to i32
; CHECK-NEXT: [[OR:%.*]] = call i32 @llvm.fshr.i32(i32 [[V:%.*]], i32 [[V]], i32 [[Z]])
; CHECK-NEXT: ret i32 [[OR]]
;
%m = and i16 %r, 31
%z = zext i16 %m to i32
%neg = sub nsw i32 0, %z
%and2 = and i32 %neg, 31
%shl = shl i32 %v, %and2
%shr = lshr i32 %v, %z
%or = or i32 %shr, %shl
ret i32 %or
}
; TODO: This should be a rotate (funnel-shift).
define i8 @unmasked_shlop_unmasked_shift_amount(i32 %x, i32 %shamt) {
; CHECK-LABEL: @unmasked_shlop_unmasked_shift_amount(
; CHECK-NEXT: [[MASKX:%.*]] = and i32 [[X:%.*]], 255
; CHECK-NEXT: [[T4:%.*]] = sub i32 8, [[SHAMT:%.*]]
; CHECK-NEXT: [[T5:%.*]] = shl i32 [[X]], [[T4]]
; CHECK-NEXT: [[T6:%.*]] = lshr i32 [[MASKX]], [[SHAMT]]
; CHECK-NEXT: [[T7:%.*]] = or i32 [[T5]], [[T6]]
; CHECK-NEXT: [[T8:%.*]] = trunc i32 [[T7]] to i8
; CHECK-NEXT: ret i8 [[T8]]
;
%maskx = and i32 %x, 255
%t4 = sub i32 8, %shamt
%t5 = shl i32 %x, %t4
%t6 = lshr i32 %maskx, %shamt
%t7 = or i32 %t5, %t6
%t8 = trunc i32 %t7 to i8
ret i8 %t8
}
define i16 @check_rotate_masked_16bit(i8 %shamt, i32 %cond) {
; CHECK-LABEL: @check_rotate_masked_16bit(
; CHECK-NEXT: [[TMP1:%.*]] = zext i8 [[SHAMT:%.*]] to i16
; CHECK-NEXT: [[TMP2:%.*]] = trunc i32 [[COND:%.*]] to i16
; CHECK-NEXT: [[TMP3:%.*]] = and i16 [[TMP2]], 1
; CHECK-NEXT: [[TRUNC:%.*]] = call i16 @llvm.fshr.i16(i16 [[TMP3]], i16 [[TMP3]], i16 [[TMP1]])
; CHECK-NEXT: ret i16 [[TRUNC]]
;
%maskx = and i32 %cond, 1
%masky = and i8 %shamt, 15
%z = zext i8 %masky to i32
%shr = lshr i32 %maskx, %z
%sub = sub i8 0, %shamt
%maskw = and i8 %sub, 15
%z2 = zext i8 %maskw to i32
%shl = shl nuw nsw i32 %maskx, %z2
%or = or i32 %shr, %shl
%trunc = trunc i32 %or to i16
ret i16 %trunc
}