; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -aa-pipeline=basic-aa -passes='loop-mssa(licm)' -S | FileCheck %s
@X = global i32 0 ; <ptr> [#uses=1]
declare void @foo()
declare i32 @llvm.bitreverse.i32(i32)
; This testcase tests for a problem where LICM hoists
; potentially trapping instructions when they are not guaranteed to execute.
define i32 @test1(i1 %c) {
; CHECK-LABEL: @test1(
; CHECK-NEXT: [[A:%.*]] = load i32, ptr @X, align 4
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: call void @foo()
; CHECK-NEXT: br i1 [[C:%.*]], label [[LOOPTAIL:%.*]], label [[IFUNEQUAL:%.*]]
; CHECK: IfUnEqual:
; CHECK-NEXT: [[B1:%.*]] = sdiv i32 4, [[A]]
; CHECK-NEXT: br label [[LOOPTAIL]]
; CHECK: LoopTail:
; CHECK-NEXT: [[B:%.*]] = phi i32 [ 0, [[LOOP]] ], [ [[B1]], [[IFUNEQUAL]] ]
; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[B_LCSSA:%.*]] = phi i32 [ [[B]], [[LOOPTAIL]] ]
; CHECK-NEXT: [[C:%.*]] = sub i32 [[A]], [[B_LCSSA]]
; CHECK-NEXT: ret i32 [[C]]
;
%A = load i32, ptr @X ; <i32> [#uses=2]
br label %Loop
Loop: ; preds = %LoopTail, %0
call void @foo( )
br i1 %c, label %LoopTail, label %IfUnEqual
IfUnEqual: ; preds = %Loop
%B1 = sdiv i32 4, %A ; <i32> [#uses=1]
br label %LoopTail
LoopTail: ; preds = %IfUnEqual, %Loop
%B = phi i32 [ 0, %Loop ], [ %B1, %IfUnEqual ] ; <i32> [#uses=1]
br i1 %c, label %Loop, label %Out
Out: ; preds = %LoopTail
%C = sub i32 %A, %B ; <i32> [#uses=1]
ret i32 %C
}
declare void @foo2(i32) nounwind
;; It is ok and desirable to hoist this potentially trapping instruction.
define i32 @test2(i1 %c) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: [[A:%.*]] = load i32, ptr @X, align 4
; CHECK-NEXT: [[B:%.*]] = sdiv i32 4, [[A]]
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: br label [[LOOP2:%.*]]
; CHECK: loop2:
; CHECK-NEXT: call void @foo2(i32 [[B]])
; CHECK-NEXT: br i1 [[C:%.*]], label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[B_LCSSA:%.*]] = phi i32 [ [[B]], [[LOOP2]] ]
; CHECK-NEXT: [[C:%.*]] = sub i32 [[A]], [[B_LCSSA]]
; CHECK-NEXT: ret i32 [[C]]
;
%A = load i32, ptr @X
br label %Loop
Loop:
;; Should have hoisted this div!
%B = sdiv i32 4, %A
br label %loop2
loop2:
call void @foo2( i32 %B )
br i1 %c, label %Loop, label %Out
Out:
%C = sub i32 %A, %B
ret i32 %C
}
; Don't bother constant folding the add, just hoist it.
define i32 @test3(i1 %c) {
; CHECK-LABEL: @test3(
; CHECK-NEXT: [[A:%.*]] = load i32, ptr @X, align 4
; CHECK-NEXT: [[B:%.*]] = add i32 4, 2
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: call void @foo2(i32 [[B]])
; CHECK-NEXT: br i1 [[C:%.*]], label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[B_LCSSA:%.*]] = phi i32 [ [[B]], [[LOOP]] ]
; CHECK-NEXT: [[C:%.*]] = sub i32 [[A]], [[B_LCSSA]]
; CHECK-NEXT: ret i32 [[C]]
;
%A = load i32, ptr @X ; <i32> [#uses=2]
br label %Loop
Loop:
%B = add i32 4, 2 ; <i32> [#uses=2]
call void @foo2( i32 %B )
br i1 %c, label %Loop, label %Out
Out: ; preds = %Loop
%C = sub i32 %A, %B ; <i32> [#uses=1]
ret i32 %C
}
define i32 @test4(i32 %x, i32 %y) nounwind uwtable ssp {
; CHECK-LABEL: @test4(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I_02:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[N_01:%.*]] = phi i32 [ 0, [[ENTRY]] ], [ [[ADD:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: call void @foo_may_call_exit(i32 0)
; CHECK-NEXT: [[DIV:%.*]] = sdiv i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[ADD]] = add nsw i32 [[N_01]], [[DIV]]
; CHECK-NEXT: [[INC]] = add nsw i32 [[I_02]], 1
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[INC]], 10000
; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_END:%.*]]
; CHECK: for.end:
; CHECK-NEXT: [[N_0_LCSSA:%.*]] = phi i32 [ [[ADD]], [[FOR_BODY]] ]
; CHECK-NEXT: ret i32 [[N_0_LCSSA]]
;
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.02 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%n.01 = phi i32 [ 0, %entry ], [ %add, %for.body ]
call void @foo_may_call_exit(i32 0)
%div = sdiv i32 %x, %y
%add = add nsw i32 %n.01, %div
%inc = add nsw i32 %i.02, 1
%cmp = icmp slt i32 %inc, 10000
br i1 %cmp, label %for.body, label %for.end
for.end: ; preds = %for.body
%n.0.lcssa = phi i32 [ %add, %for.body ]
ret i32 %n.0.lcssa
}
declare void @foo_may_call_exit(i32)
; PR14854
define { ptr, i32 } @test5(i32 %i, { ptr, i32 } %e) {
; CHECK-LABEL: @test5(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[OUT:%.*]] = extractvalue { ptr, i32 } [[E:%.*]], 1
; CHECK-NEXT: br label [[TAILRECURSE:%.*]]
; CHECK: tailrecurse:
; CHECK-NEXT: [[I_TR:%.*]] = phi i32 [ [[I:%.*]], [[ENTRY:%.*]] ], [ [[CMP2:%.*]], [[THEN:%.*]] ]
; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i32 [[OUT]], [[I_TR]]
; CHECK-NEXT: br i1 [[CMP1]], label [[THEN]], label [[IFEND:%.*]]
; CHECK: then:
; CHECK-NEXT: call void @foo()
; CHECK-NEXT: [[CMP2]] = add i32 [[I_TR]], 1
; CHECK-NEXT: br label [[TAILRECURSE]]
; CHECK: ifend:
; CHECK-NEXT: [[D_LE:%.*]] = insertvalue { ptr, i32 } [[E]], ptr null, 0
; CHECK-NEXT: ret { ptr, i32 } [[D_LE]]
;
entry:
br label %tailrecurse
tailrecurse: ; preds = %then, %entry
%i.tr = phi i32 [ %i, %entry ], [ %cmp2, %then ]
%out = extractvalue { ptr, i32 } %e, 1
%d = insertvalue { ptr, i32 } %e, ptr null, 0
%cmp1 = icmp sgt i32 %out, %i.tr
br i1 %cmp1, label %then, label %ifend
then: ; preds = %tailrecurse
call void @foo()
%cmp2 = add i32 %i.tr, 1
br label %tailrecurse
ifend: ; preds = %tailrecurse
ret { ptr, i32 } %d
}
define void @test6(float %f) #2 {
; CHECK-LABEL: @test6(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[NEG:%.*]] = fneg float [[F:%.*]]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: call void @foo_may_call_exit(i32 0)
; CHECK-NEXT: call void @use(float [[NEG]])
; CHECK-NEXT: [[INC]] = add nsw i32 [[I]], 1
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[INC]], 10000
; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_END:%.*]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
call void @foo_may_call_exit(i32 0)
%neg = fneg float %f
call void @use(float %neg)
%inc = add nsw i32 %i, 1
%cmp = icmp slt i32 %inc, 10000
br i1 %cmp, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
declare void @use(float)
define i32 @hoist_bitreverse(i32 %0) {
; CHECK-LABEL: @hoist_bitreverse(
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @llvm.bitreverse.i32(i32 [[TMP0:%.*]])
; CHECK-NEXT: br label [[HEADER:%.*]]
; CHECK: header:
; CHECK-NEXT: [[SUM:%.*]] = phi i32 [ 0, [[TMP1:%.*]] ], [ [[TMP5:%.*]], [[LATCH:%.*]] ]
; CHECK-NEXT: [[TMP3:%.*]] = phi i32 [ 0, [[TMP1]] ], [ [[TMP6:%.*]], [[LATCH]] ]
; CHECK-NEXT: [[TMP4:%.*]] = icmp slt i32 [[TMP3]], 1024
; CHECK-NEXT: br i1 [[TMP4]], label [[BODY:%.*]], label [[RETURN:%.*]]
; CHECK: body:
; CHECK-NEXT: [[TMP5]] = add i32 [[SUM]], [[TMP2]]
; CHECK-NEXT: br label [[LATCH]]
; CHECK: latch:
; CHECK-NEXT: [[TMP6]] = add nsw i32 [[TMP3]], 1
; CHECK-NEXT: br label [[HEADER]]
; CHECK: return:
; CHECK-NEXT: [[SUM_LCSSA:%.*]] = phi i32 [ [[SUM]], [[HEADER]] ]
; CHECK-NEXT: ret i32 [[SUM_LCSSA]]
;
br label %header
header:
%sum = phi i32 [ 0, %1 ], [ %5, %latch ]
%2 = phi i32 [ 0, %1 ], [ %6, %latch ]
%3 = icmp slt i32 %2, 1024
br i1 %3, label %body, label %return
body:
%4 = call i32 @llvm.bitreverse.i32(i32 %0)
%5 = add i32 %sum, %4
br label %latch
latch:
%6 = add nsw i32 %2, 1
br label %header
return:
ret i32 %sum
}
; Can neither sink nor hoist
define i32 @test_volatile(i1 %c) {
; CHECK-LABEL: @test_volatile(
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: [[A:%.*]] = load volatile i32, ptr @X, align 4
; CHECK-NEXT: br i1 [[C:%.*]], label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[A_LCSSA:%.*]] = phi i32 [ [[A]], [[LOOP]] ]
; CHECK-NEXT: ret i32 [[A_LCSSA]]
;
br label %Loop
Loop:
%A = load volatile i32, ptr @X
br i1 %c, label %Loop, label %Out
Out:
ret i32 %A
}
declare ptr @llvm.invariant.start.p0(i64, ptr nocapture) nounwind readonly
declare void @llvm.invariant.end.p0(ptr, i64, ptr nocapture) nounwind
declare void @escaping.invariant.start(ptr) nounwind
; invariant.start dominates the load, and in this scope, the
; load is invariant. So, we can hoist the `addrld` load out of the loop.
define i32 @test_fence(ptr %addr, i32 %n, ptr %volatile) {
; CHECK-LABEL: @test_fence(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[GEP:%.*]] = getelementptr inbounds i8, ptr [[ADDR:%.*]], i64 8
; CHECK-NEXT: store atomic i32 5, ptr [[GEP]] unordered, align 8
; CHECK-NEXT: fence release
; CHECK-NEXT: [[INVST:%.*]] = call ptr @llvm.invariant.start.p0(i64 4, ptr [[GEP]])
; CHECK-NEXT: [[ADDRLD:%.*]] = load atomic i32, ptr [[GEP]] unordered, align 8
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVAR:%.*]] = phi i32 [ [[INDVAR_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[SUM:%.*]] = phi i32 [ [[SUM_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY]] ]
; CHECK-NEXT: [[VOLLOAD:%.*]] = load atomic i8, ptr [[VOLATILE:%.*]] unordered, align 8
; CHECK-NEXT: fence acquire
; CHECK-NEXT: [[VOLCHK:%.*]] = icmp eq i8 [[VOLLOAD]], 0
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[VOLCHK]], i32 0, i32 [[ADDRLD]]
; CHECK-NEXT: [[SUM_NEXT]] = add i32 [[SEL]], [[SUM]]
; CHECK-NEXT: [[INDVAR_NEXT]] = add i32 [[INDVAR]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i32 [[INDVAR_NEXT]], [[N:%.*]]
; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[LOOPEXIT:%.*]]
; CHECK: loopexit:
; CHECK-NEXT: [[SUM_LCSSA:%.*]] = phi i32 [ [[SUM]], [[LOOP]] ]
; CHECK-NEXT: ret i32 [[SUM_LCSSA]]
;
entry:
%gep = getelementptr inbounds i8, ptr %addr, i64 8
store atomic i32 5, ptr %gep unordered, align 8
fence release
%invst = call ptr @llvm.invariant.start.p0(i64 4, ptr %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, ptr %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, ptr %gep unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; Same as test above, but the load is no longer invariant (presence of
; invariant.end). We cannot hoist the addrld out of loop.
define i32 @test_fence1(ptr %addr, i32 %n, ptr %volatile) {
; CHECK-LABEL: @test_fence1(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[GEP:%.*]] = getelementptr inbounds i8, ptr [[ADDR:%.*]], i64 8
; CHECK-NEXT: store atomic i32 5, ptr [[GEP]] unordered, align 8
; CHECK-NEXT: fence release
; CHECK-NEXT: [[INVST:%.*]] = call ptr @llvm.invariant.start.p0(i64 4, ptr [[GEP]])
; CHECK-NEXT: call void @llvm.invariant.end.p0(ptr [[INVST]], i64 4, ptr [[GEP]])
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVAR:%.*]] = phi i32 [ [[INDVAR_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[SUM:%.*]] = phi i32 [ [[SUM_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY]] ]
; CHECK-NEXT: [[VOLLOAD:%.*]] = load atomic i8, ptr [[VOLATILE:%.*]] unordered, align 8
; CHECK-NEXT: fence acquire
; CHECK-NEXT: [[VOLCHK:%.*]] = icmp eq i8 [[VOLLOAD]], 0
; CHECK-NEXT: [[ADDRLD:%.*]] = load atomic i32, ptr [[GEP]] unordered, align 8
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[VOLCHK]], i32 0, i32 [[ADDRLD]]
; CHECK-NEXT: [[SUM_NEXT]] = add i32 [[SEL]], [[SUM]]
; CHECK-NEXT: [[INDVAR_NEXT]] = add i32 [[INDVAR]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i32 [[INDVAR_NEXT]], [[N:%.*]]
; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[LOOPEXIT:%.*]]
; CHECK: loopexit:
; CHECK-NEXT: [[SUM_LCSSA:%.*]] = phi i32 [ [[SUM]], [[LOOP]] ]
; CHECK-NEXT: ret i32 [[SUM_LCSSA]]
;
entry:
%gep = getelementptr inbounds i8, ptr %addr, i64 8
store atomic i32 5, ptr %gep unordered, align 8
fence release
%invst = call ptr @llvm.invariant.start.p0(i64 4, ptr %gep)
call void @llvm.invariant.end.p0(ptr %invst, i64 4, ptr %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, ptr %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, ptr %gep unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; same as test above, but instead of invariant.end, we have the result of
; invariant.start escaping through a call. We cannot hoist the load.
define i32 @test_fence2(ptr %addr, i32 %n, ptr %volatile) {
; CHECK-LABEL: @test_fence2(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[GEP:%.*]] = getelementptr inbounds i8, ptr [[ADDR:%.*]], i64 8
; CHECK-NEXT: store atomic i32 5, ptr [[GEP]] unordered, align 8
; CHECK-NEXT: fence release
; CHECK-NEXT: [[INVST:%.*]] = call ptr @llvm.invariant.start.p0(i64 4, ptr [[GEP]])
; CHECK-NEXT: call void @escaping.invariant.start(ptr [[INVST]])
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVAR:%.*]] = phi i32 [ [[INDVAR_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[SUM:%.*]] = phi i32 [ [[SUM_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY]] ]
; CHECK-NEXT: [[VOLLOAD:%.*]] = load atomic i8, ptr [[VOLATILE:%.*]] unordered, align 8
; CHECK-NEXT: fence acquire
; CHECK-NEXT: [[VOLCHK:%.*]] = icmp eq i8 [[VOLLOAD]], 0
; CHECK-NEXT: [[ADDRLD:%.*]] = load atomic i32, ptr [[GEP]] unordered, align 8
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[VOLCHK]], i32 0, i32 [[ADDRLD]]
; CHECK-NEXT: [[SUM_NEXT]] = add i32 [[SEL]], [[SUM]]
; CHECK-NEXT: [[INDVAR_NEXT]] = add i32 [[INDVAR]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i32 [[INDVAR_NEXT]], [[N:%.*]]
; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[LOOPEXIT:%.*]]
; CHECK: loopexit:
; CHECK-NEXT: [[SUM_LCSSA:%.*]] = phi i32 [ [[SUM]], [[LOOP]] ]
; CHECK-NEXT: ret i32 [[SUM_LCSSA]]
;
entry:
%gep = getelementptr inbounds i8, ptr %addr, i64 8
store atomic i32 5, ptr %gep unordered, align 8
fence release
%invst = call ptr @llvm.invariant.start.p0(i64 4, ptr %gep)
call void @escaping.invariant.start(ptr %invst)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, ptr %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, ptr %gep unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; Consider the loadoperand addr.i bitcasted before being passed to
; invariant.start
define i32 @test_fence3(ptr %addr, i32 %n, ptr %volatile) {
; CHECK-LABEL: @test_fence3(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[ADDR_I:%.*]] = getelementptr inbounds i32, ptr [[ADDR:%.*]], i64 8
; CHECK-NEXT: store atomic i32 5, ptr [[ADDR_I]] unordered, align 8
; CHECK-NEXT: fence release
; CHECK-NEXT: [[INVST:%.*]] = call ptr @llvm.invariant.start.p0(i64 4, ptr [[ADDR_I]])
; CHECK-NEXT: [[ADDRLD:%.*]] = load atomic i32, ptr [[ADDR_I]] unordered, align 8
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVAR:%.*]] = phi i32 [ [[INDVAR_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[SUM:%.*]] = phi i32 [ [[SUM_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY]] ]
; CHECK-NEXT: [[VOLLOAD:%.*]] = load atomic i8, ptr [[VOLATILE:%.*]] unordered, align 8
; CHECK-NEXT: fence acquire
; CHECK-NEXT: [[VOLCHK:%.*]] = icmp eq i8 [[VOLLOAD]], 0
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[VOLCHK]], i32 0, i32 [[ADDRLD]]
; CHECK-NEXT: [[SUM_NEXT]] = add i32 [[SEL]], [[SUM]]
; CHECK-NEXT: [[INDVAR_NEXT]] = add i32 [[INDVAR]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i32 [[INDVAR_NEXT]], [[N:%.*]]
; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[LOOPEXIT:%.*]]
; CHECK: loopexit:
; CHECK-NEXT: [[SUM_LCSSA:%.*]] = phi i32 [ [[SUM]], [[LOOP]] ]
; CHECK-NEXT: ret i32 [[SUM_LCSSA]]
;
entry:
%addr.i = getelementptr inbounds i32, ptr %addr, i64 8
store atomic i32 5, ptr %addr.i unordered, align 8
fence release
%invst = call ptr @llvm.invariant.start.p0(i64 4, ptr %addr.i)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, ptr %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, ptr %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; We should not hoist the addrld out of the loop.
define i32 @test_fence4(ptr %addr, i32 %n, ptr %volatile) {
; CHECK-LABEL: @test_fence4(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[ADDR_I:%.*]] = getelementptr inbounds i32, ptr [[ADDR:%.*]], i64 8
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVAR:%.*]] = phi i32 [ [[INDVAR_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[SUM:%.*]] = phi i32 [ [[SUM_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY]] ]
; CHECK-NEXT: store atomic i32 5, ptr [[ADDR_I]] unordered, align 8
; CHECK-NEXT: fence release
; CHECK-NEXT: [[INVST:%.*]] = call ptr @llvm.invariant.start.p0(i64 4, ptr [[ADDR_I]])
; CHECK-NEXT: [[VOLLOAD:%.*]] = load atomic i8, ptr [[VOLATILE:%.*]] unordered, align 8
; CHECK-NEXT: fence acquire
; CHECK-NEXT: [[VOLCHK:%.*]] = icmp eq i8 [[VOLLOAD]], 0
; CHECK-NEXT: [[ADDRLD:%.*]] = load atomic i32, ptr [[ADDR_I]] unordered, align 8
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[VOLCHK]], i32 0, i32 [[ADDRLD]]
; CHECK-NEXT: [[SUM_NEXT]] = add i32 [[SEL]], [[SUM]]
; CHECK-NEXT: [[INDVAR_NEXT]] = add i32 [[INDVAR]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i32 [[INDVAR_NEXT]], [[N:%.*]]
; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[LOOPEXIT:%.*]]
; CHECK: loopexit:
; CHECK-NEXT: [[SUM_LCSSA:%.*]] = phi i32 [ [[SUM]], [[LOOP]] ]
; CHECK-NEXT: ret i32 [[SUM_LCSSA]]
;
entry:
%addr.i = getelementptr inbounds i32, ptr %addr, i64 8
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
store atomic i32 5, ptr %addr.i unordered, align 8
fence release
%invst = call ptr @llvm.invariant.start.p0(i64 4, ptr %addr.i)
%volload = load atomic i8, ptr %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, ptr %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; We can't hoist the invariant load out of the loop because
; the marker is given a variable size (-1).
define i32 @test_fence5(ptr %addr, i32 %n, ptr %volatile) {
; CHECK-LABEL: @test_fence5(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[GEP:%.*]] = getelementptr inbounds i8, ptr [[ADDR:%.*]], i64 8
; CHECK-NEXT: store atomic i32 5, ptr [[GEP]] unordered, align 8
; CHECK-NEXT: fence release
; CHECK-NEXT: [[INVST:%.*]] = call ptr @llvm.invariant.start.p0(i64 -1, ptr [[GEP]])
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVAR:%.*]] = phi i32 [ [[INDVAR_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[SUM:%.*]] = phi i32 [ [[SUM_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY]] ]
; CHECK-NEXT: [[VOLLOAD:%.*]] = load atomic i8, ptr [[VOLATILE:%.*]] unordered, align 8
; CHECK-NEXT: fence acquire
; CHECK-NEXT: [[VOLCHK:%.*]] = icmp eq i8 [[VOLLOAD]], 0
; CHECK-NEXT: [[ADDRLD:%.*]] = load atomic i32, ptr [[GEP]] unordered, align 8
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[VOLCHK]], i32 0, i32 [[ADDRLD]]
; CHECK-NEXT: [[SUM_NEXT]] = add i32 [[SEL]], [[SUM]]
; CHECK-NEXT: [[INDVAR_NEXT]] = add i32 [[INDVAR]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i32 [[INDVAR_NEXT]], [[N:%.*]]
; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[LOOPEXIT:%.*]]
; CHECK: loopexit:
; CHECK-NEXT: [[SUM_LCSSA:%.*]] = phi i32 [ [[SUM]], [[LOOP]] ]
; CHECK-NEXT: ret i32 [[SUM_LCSSA]]
;
entry:
%gep = getelementptr inbounds i8, ptr %addr, i64 8
store atomic i32 5, ptr %gep unordered, align 8
fence release
%invst = call ptr @llvm.invariant.start.p0(i64 -1, ptr %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, ptr %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, ptr %gep unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
declare void @g(i1)
@a = external global i8
; FIXME: Support hoisting invariant loads of globals.
define void @test_fence6() {
; CHECK-LABEL: @test_fence6(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[I:%.*]] = call ptr @llvm.invariant.start.p0(i64 1, ptr @a)
; CHECK-NEXT: br label [[F:%.*]]
; CHECK: f:
; CHECK-NEXT: [[TMP0:%.*]] = load i8, ptr @a, align 1
; CHECK-NEXT: [[TMP1:%.*]] = and i8 [[TMP0]], 0
; CHECK-NEXT: [[T:%.*]] = icmp eq i8 [[TMP1]], 0
; CHECK-NEXT: tail call void @g(i1 [[T]])
; CHECK-NEXT: br label [[F]]
;
entry:
%i = call ptr @llvm.invariant.start.p0(i64 1, ptr @a)
br label %f
f:
%0 = load i8, ptr @a
%1 = and i8 %0, 0
%t = icmp eq i8 %1, 0
tail call void @g(i1 %t)
br label %f
}