; RUN: opt < %s -passes=loop-vectorize -prefer-predicate-over-epilogue=scalar-epilogue -pass-remarks=loop-vectorize -pass-remarks-analysis=loop-vectorize \
; RUN: -pass-remarks-missed=loop-vectorize -mtriple aarch64-unknown-linux-gnu -mattr=+sve,+bf16 -S 2>%t | FileCheck %s -check-prefix=CHECK
; RUN: cat %t | FileCheck %s -check-prefix=CHECK-REMARK
; Reduction can be vectorized
; ADD
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @add(ptr nocapture %a, ptr nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @add
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[ADD1:.*]] = add <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[ADD2:.*]] = add <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ADD:.*]] = add <vscale x 8 x i32> %[[ADD2]], %[[ADD1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.add.nxv8i32(<vscale x 8 x i32> %[[ADD]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %add, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%add = add nsw i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %add
}
; OR
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @or(ptr nocapture %a, ptr nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @or
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[OR1:.*]] = or <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[OR2:.*]] = or <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[OR:.*]] = or <vscale x 8 x i32> %[[OR2]], %[[OR1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.or.nxv8i32(<vscale x 8 x i32> %[[OR]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %or, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%or = or i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %or
}
; AND
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @and(ptr nocapture %a, ptr nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @and
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[AND1:.*]] = and <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[AND2:.*]] = and <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ABD:.*]] = and <vscale x 8 x i32> %[[ADD2]], %[[AND1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.and.nxv8i32(<vscale x 8 x i32> %[[ADD]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %and, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%and = and i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %and
}
; XOR
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @xor(ptr nocapture %a, ptr nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @xor
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[XOR1:.*]] = xor <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[XOR2:.*]] = xor <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[XOR:.*]] = xor <vscale x 8 x i32> %[[XOR2]], %[[XOR1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.xor.nxv8i32(<vscale x 8 x i32> %[[XOR]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %xor, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%xor = xor i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %xor
}
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
; SMIN
define i32 @smin(ptr nocapture %a, ptr nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @smin
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[ICMP1:.*]] = icmp slt <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[ICMP2:.*]] = icmp slt <vscale x 8 x i32> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[ICMP1]], <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[ICMP2]], <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[RDX:.*]] = call <vscale x 8 x i32> @llvm.smin.nxv8i32(<vscale x 8 x i32> %[[SEL1]], <vscale x 8 x i32> %[[SEL2]])
; CHECK-NEXT: call i32 @llvm.vector.reduce.smin.nxv8i32(<vscale x 8 x i32> %[[RDX]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.010 = phi i32 [ 2, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%cmp.i = icmp slt i32 %0, %sum.010
%.sroa.speculated = select i1 %cmp.i, i32 %0, i32 %sum.010
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret i32 %.sroa.speculated
}
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
; UMAX
define i32 @umax(ptr nocapture %a, ptr nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @umax
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[ICMP1:.*]] = icmp ugt <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[ICMP2:.*]] = icmp ugt <vscale x 8 x i32> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[ICMP1]], <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[ICMP2]], <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[RDX:.*]] = call <vscale x 8 x i32> @llvm.umax.nxv8i32(<vscale x 8 x i32> %[[SEL1]], <vscale x 8 x i32> %[[SEL2]])
; CHECK-NEXT: call i32 @llvm.vector.reduce.umax.nxv8i32(<vscale x 8 x i32> %[[RDX]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.010 = phi i32 [ 2, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%cmp.i = icmp ugt i32 %0, %sum.010
%.sroa.speculated = select i1 %cmp.i, i32 %0, i32 %sum.010
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret i32 %.sroa.speculated
}
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
; FADD (FAST)
define float @fadd_fast(ptr noalias nocapture readonly %a, i64 %n) {
; CHECK-LABEL: @fadd_fast
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float>
; CHECK: %[[ADD1:.*]] = fadd fast <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[ADD2:.*]] = fadd fast <vscale x 8 x float> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ADD:.*]] = fadd fast <vscale x 8 x float> %[[ADD2]], %[[ADD1]]
; CHECK-NEXT: call fast float @llvm.vector.reduce.fadd.nxv8f32(float 0.000000e+00, <vscale x 8 x float> %[[ADD]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi float [ 0.000000e+00, %entry ], [ %add, %for.body ]
%arrayidx = getelementptr inbounds float, ptr %a, i64 %iv
%0 = load float, ptr %arrayidx, align 4
%add = fadd fast float %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret float %add
}
; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop.
; CHECK-REMARK: vectorized loop (vectorization width: 8, interleaved count: 2)
define bfloat @fadd_fast_bfloat(ptr noalias nocapture readonly %a, i64 %n) {
; CHECK-LABEL: @fadd_fast_bfloat
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <8 x bfloat>
; CHECK: %[[LOAD2:.*]] = load <8 x bfloat>
; CHECK: %[[FADD1:.*]] = fadd fast <8 x bfloat> %[[LOAD1]]
; CHECK: %[[FADD2:.*]] = fadd fast <8 x bfloat> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[RDX:.*]] = fadd fast <8 x bfloat> %[[FADD2]], %[[FADD1]]
; CHECK: call fast bfloat @llvm.vector.reduce.fadd.v8bf16(bfloat 0xR0000, <8 x bfloat> %[[RDX]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi bfloat [ 0.000000e+00, %entry ], [ %add, %for.body ]
%arrayidx = getelementptr inbounds bfloat, ptr %a, i64 %iv
%0 = load bfloat, ptr %arrayidx, align 4
%add = fadd fast bfloat %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret bfloat %add
}
; FMIN (FAST)
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define float @fmin_fast(ptr noalias nocapture readonly %a, i64 %n) #0 {
; CHECK-LABEL: @fmin_fast
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float>
; CHECK: %[[FCMP1:.*]] = fcmp fast olt <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[FCMP2:.*]] = fcmp fast olt <vscale x 8 x float> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[FCMP1]], <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[FCMP2]], <vscale x 8 x float> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[FCMP:.*]] = fcmp fast olt <vscale x 8 x float> %[[SEL1]], %[[SEL2]]
; CHECK-NEXT: %[[SEL:.*]] = select fast <vscale x 8 x i1> %[[FCMP]], <vscale x 8 x float> %[[SEL1]], <vscale x 8 x float> %[[SEL2]]
; CHECK-NEXT: call fast float @llvm.vector.reduce.fmin.nxv8f32(<vscale x 8 x float> %[[SEL]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi float [ 0.000000e+00, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds float, ptr %a, i64 %iv
%0 = load float, ptr %arrayidx, align 4
%cmp.i = fcmp fast olt float %0, %sum.07
%.sroa.speculated = select i1 %cmp.i, float %0, float %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret float %.sroa.speculated
}
; FMAX (FAST)
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define float @fmax_fast(ptr noalias nocapture readonly %a, i64 %n) #0 {
; CHECK-LABEL: @fmax_fast
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float>
; CHECK: %[[FCMP1:.*]] = fcmp fast ogt <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[FCMP2:.*]] = fcmp fast ogt <vscale x 8 x float> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[FCMP1]], <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[FCMP2]], <vscale x 8 x float> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[FCMP:.*]] = fcmp fast ogt <vscale x 8 x float> %[[SEL1]], %[[SEL2]]
; CHECK-NEXT: %[[SEL:.*]] = select fast <vscale x 8 x i1> %[[FCMP]], <vscale x 8 x float> %[[SEL1]], <vscale x 8 x float> %[[SEL2]]
; CHECK-NEXT: call fast float @llvm.vector.reduce.fmax.nxv8f32(<vscale x 8 x float> %[[SEL]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi float [ 0.000000e+00, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds float, ptr %a, i64 %iv
%0 = load float, ptr %arrayidx, align 4
%cmp.i = fcmp fast ogt float %0, %sum.07
%.sroa.speculated = select i1 %cmp.i, float %0, float %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret float %.sroa.speculated
}
; ADD (with reduction stored in invariant address)
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 4, interleaved count: 2)
define void @invariant_store(ptr %dst, ptr readonly %src) {
; CHECK-LABEL: @invariant_store
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 4 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 4 x i32>
; CHECK: %[[ADD1:.*]] = add <vscale x 4 x i32> %{{.*}}, %[[LOAD1]]
; CHECK: %[[ADD2:.*]] = add <vscale x 4 x i32> %{{.*}}, %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ADD:.*]] = add <vscale x 4 x i32> %[[ADD2]], %[[ADD1]]
; CHECK-NEXT: %[[SUM:.*]] = call i32 @llvm.vector.reduce.add.nxv4i32(<vscale x 4 x i32> %[[ADD]])
; CHECK-NEXT: store i32 %[[SUM]], ptr %gep.dst, align 4
entry:
%gep.dst = getelementptr inbounds i32, ptr %dst, i64 42
store i32 0, ptr %gep.dst, align 4
br label %for.body
for.body:
%sum = phi i32 [ 0, %entry ], [ %add, %for.body ]
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%gep.src = getelementptr inbounds i32, ptr %src, i64 %indvars.iv
%0 = load i32, ptr %gep.src, align 4
%add = add nsw i32 %sum, %0
store i32 %add, ptr %gep.dst, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 1000
br i1 %exitcond, label %for.cond.cleanup, label %for.body
for.cond.cleanup:
ret void
}
; ADD (with reduction of i1)
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i1 @add_trunc_i32_i1(ptr nocapture %src, i64 %N) {
; CHECK-LABEL: @add_trunc_i32_i1
; CHECK: vector.body:
; CHECK: %[[PHI1:.*]] = phi <vscale x 8 x i1> [ zeroinitializer, %{{.*}} ], [ [[XOR1:%.+]], %vector.body ]
; CHECK: %[[PHI2:.*]] = phi <vscale x 8 x i1> [ zeroinitializer, %{{.*}} ], [ [[XOR2:%.+]], %vector.body ]
; CHECK: %[[TRUNC1:.*]] = trunc <vscale x 8 x i32> %{{.*}} to <vscale x 8 x i1>
; CHECK: %[[TRUNC2:.*]] = trunc <vscale x 8 x i32> %{{.*}} to <vscale x 8 x i1>
; CHECK: [[XOR1]] = xor <vscale x 8 x i1> %[[PHI1]], %[[TRUNC1]]
; CHECK: [[XOR2]] = xor <vscale x 8 x i1> %[[PHI2]], %[[TRUNC2]]
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%red = phi i1 [ 0, %entry ], [ %red.next, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %src, i64 %iv
%load32 = load i32, ptr %arrayidx, align 4
%trunc = trunc i32 %load32 to i1
%red.next = xor i1 %red, %trunc
%iv.next = add i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %N
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret i1 %red.next
}
; Reduction cannot be vectorized
; MUL
; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop.
; CHECK-REMARK: vectorized loop (vectorization width: 4, interleaved count: 2)
define i32 @mul(ptr nocapture %a, ptr nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @mul
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <4 x i32>
; CHECK: %[[LOAD2:.*]] = load <4 x i32>
; CHECK: %[[MUL1:.*]] = mul <4 x i32> %[[LOAD1]]
; CHECK: %[[MUL2:.*]] = mul <4 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[RDX:.*]] = mul <4 x i32> %[[MUL2]], %[[MUL1]]
; CHECK: call i32 @llvm.vector.reduce.mul.v4i32(<4 x i32> %[[RDX]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %mul, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%mul = mul nsw i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %mul
}
; Note: This test was added to ensure we always check the legality of reductions (end emit a warning if necessary) before checking for memory dependencies
; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop.
; CHECK-REMARK: vectorized loop (vectorization width: 4, interleaved count: 2)
define i32 @memory_dependence(ptr noalias nocapture %a, ptr noalias nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @memory_dependence
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <4 x i32>
; CHECK: %[[LOAD2:.*]] = load <4 x i32>
; CHECK: %[[LOAD3:.*]] = load <4 x i32>
; CHECK: %[[LOAD4:.*]] = load <4 x i32>
; CHECK: %[[ADD1:.*]] = add nsw <4 x i32> %[[LOAD3]], %[[LOAD1]]
; CHECK: %[[ADD2:.*]] = add nsw <4 x i32> %[[LOAD4]], %[[LOAD2]]
; CHECK: %[[MUL1:.*]] = mul <4 x i32> %[[LOAD3]]
; CHECK: %[[MUL2:.*]] = mul <4 x i32> %[[LOAD4]]
; CHECK: middle.block:
; CHECK: %[[RDX:.*]] = mul <4 x i32> %[[MUL2]], %[[MUL1]]
; CHECK: call i32 @llvm.vector.reduce.mul.v4i32(<4 x i32> %[[RDX]])
entry:
br label %for.body
for.body:
%i = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%sum = phi i32 [ %mul, %for.body ], [ 2, %entry ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %i
%0 = load i32, ptr %arrayidx, align 4
%arrayidx1 = getelementptr inbounds i32, ptr %b, i64 %i
%1 = load i32, ptr %arrayidx1, align 4
%add = add nsw i32 %1, %0
%add2 = add nuw nsw i64 %i, 32
%arrayidx3 = getelementptr inbounds i32, ptr %a, i64 %add2
store i32 %add, ptr %arrayidx3, align 4
%mul = mul nsw i32 %1, %sum
%inc = add nuw nsw i64 %i, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret i32 %mul
}
attributes #0 = { "no-nans-fp-math"="true" "no-signed-zeros-fp-math"="true" }
!0 = distinct !{!0, !1, !2, !3, !4}
!1 = !{!"llvm.loop.vectorize.width", i32 8}
!2 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
!3 = !{!"llvm.loop.interleave.count", i32 2}
!4 = !{!"llvm.loop.vectorize.enable", i1 true}