; REQUIRES: asserts
; RUN: opt < %s -passes=loop-vectorize -force-vector-width=2 -force-vector-interleave=1 -force-widen-divrem-via-safe-divisor=0 -disable-output -debug-only=loop-vectorize 2>&1 | FileCheck %s
target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
; Test cases for PR50009, which require sinking a replicate-region due to a
; first-order recurrence.
define void @sink_replicate_region_1(i32 %x, ptr %ptr, ptr noalias %dst) optsize {
; CHECK-LABEL: sink_replicate_region_1
; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
; CHECK-NEXT: Live-in ir<20001> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%0> = phi ir<0>, ir<%conv>
; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1>, vp<[[VF]]>
; CHECK-NEXT: vp<[[STEPS:%.]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
; CHECK-NEXT: Successor(s): pred.load
; CHECK-EMPTY:
; CHECK-NEXT: <xVFxUF> pred.load: {
; CHECK-NEXT: pred.load.entry:
; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
; CHECK-NEXT: Successor(s): pred.load.if, pred.load.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.load.if:
; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
; CHECK-NEXT: REPLICATE ir<%lv> = load ir<%gep> (S->V)
; CHECK-NEXT: Successor(s): pred.load.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.load.continue:
; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED1:%.+]]> = ir<%lv>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): loop.0
; CHECK-EMPTY:
; CHECK-NEXT: loop.0:
; CHECK-NEXT: WIDEN-CAST ir<%conv> = sext vp<[[PRED1]]> to i32
; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%0>, ir<%conv>
; CHECK-NEXT: Successor(s): pred.store
; CHECK-EMPTY:
; CHECK-NEXT: <xVFxUF> pred.store: {
; CHECK-NEXT: pred.store.entry:
; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.store.if:
; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
; CHECK-NEXT: REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[STEPS]]>
; CHECK-NEXT: REPLICATE ir<%add> = add ir<%conv>, ir<%rem>
; CHECK-NEXT: REPLICATE store ir<%add>, ir<%gep.dst>
; CHECK-NEXT: Successor(s): pred.store.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.store.continue:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): loop.1
; CHECK-EMPTY:
; CHECK-NEXT: loop.1:
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%conv>, ir<1>
; CHECK-NEXT: EMIT branch-on-cond ir<true>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph
; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: Live-out i32 %0 = vp<[[RESUME_1_P]]>
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%0 = phi i32 [ 0, %entry ], [ %conv, %loop ]
%iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
%rem = srem i32 %0, %x
%gep = getelementptr i8, ptr %ptr, i32 %iv
%lv = load i8, ptr %gep
%conv = sext i8 %lv to i32
%add = add i32 %conv, %rem
%gep.dst = getelementptr i32, ptr %dst, i32 %iv
store i32 %add, ptr %gep.dst
%iv.next = add nsw i32 %iv, 1
%ec = icmp eq i32 %iv.next, 20001
br i1 %ec, label %exit, label %loop
exit:
ret void
}
define void @sink_replicate_region_2(i32 %x, i8 %y, ptr %ptr) optsize {
; CHECK-LABEL: sink_replicate_region_2
; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
; CHECK-NEXT: Live-in ir<20001> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1>, vp<[[VF]]>
; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
; CHECK-NEXT: Successor(s): pred.store
; CHECK-EMPTY:
; CHECK-NEXT: <xVFxUF> pred.store: {
; CHECK-NEXT: pred.store.entry:
; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.store.if:
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
; CHECK-NEXT: REPLICATE ir<%add> = add ir<%rem>, ir<%recur.next>
; CHECK-NEXT: REPLICATE store ir<%add>, ir<%gep>
; CHECK-NEXT: Successor(s): pred.store.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.store.continue:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): loop.0
; CHECK-EMPTY:
; CHECK-NEXT: loop.0:
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%recur.next>, ir<1>
; CHECK-NEXT: EMIT branch-on-cond ir<true>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph
; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: Live-out i32 %recur = vp<[[RESUME_1_P]]>
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
%iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
%rem = srem i32 %recur, %x
%recur.next = sext i8 %y to i32
%add = add i32 %rem, %recur.next
%gep = getelementptr i32, ptr %ptr, i32 %iv
store i32 %add, ptr %gep
%iv.next = add nsw i32 %iv, 1
%ec = icmp eq i32 %iv.next, 20001
br i1 %ec, label %exit, label %loop
exit:
ret void
}
define i32 @sink_replicate_region_3_reduction(i32 %x, i8 %y, ptr %ptr) optsize {
; CHECK-LABEL: sink_replicate_region_3_reduction
; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
; CHECK-NEXT: Live-in ir<20001> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%and.red> = phi ir<1234>, ir<%and.red.next>
; CHECK-NEXT: EMIT vp<[[WIDEN_CAN:%.+]]> = WIDEN-CANONICAL-INDUCTION vp<[[CAN_IV]]>
; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule vp<[[WIDEN_CAN]]>, vp<[[BTC]]>
; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
; CHECK-NEXT: WIDEN ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
; CHECK-NEXT: WIDEN ir<%add> = add ir<%rem>, ir<%recur.next>
; CHECK-NEXT: WIDEN ir<%and.red.next> = and ir<%and.red>, ir<%add>
; CHECK-NEXT: EMIT vp<[[SEL:%.+]]> = select vp<[[MASK]]>, ir<%and.red.next>, ir<%and.red>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[RED_RES:%.+]]> = compute-reduction-result ir<%and.red>, vp<[[SEL]]>
; CHECK-NEXT: EMIT vp<[[RED_EX:%.+]]> = extract-from-end vp<[[RED_RES]]>, ir<1>
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%recur.next>, ir<1>
; CHECK-NEXT: EMIT branch-on-cond ir<true>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>
; CHECK-NEXT: IR %res = phi i32 [ %and.red.next, %loop ] (extra operand: vp<[[RED_EX]]>)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph
; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: Live-out i32 %recur = vp<[[RESUME_1_P]]>
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
%iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
%and.red = phi i32 [ 1234, %entry ], [ %and.red.next, %loop ]
%rem = srem i32 %recur, %x
%recur.next = sext i8 %y to i32
%add = add i32 %rem, %recur.next
%and.red.next = and i32 %and.red, %add
%iv.next = add nsw i32 %iv, 1
%ec = icmp eq i32 %iv.next, 20001
br i1 %ec, label %exit, label %loop
exit:
%res = phi i32 [ %and.red.next, %loop ]
ret i32 %res
}
; To sink the replicate region containing %rem, we need to split the block
; containing %conv at the end, because %conv is the last recipe in the block.
define void @sink_replicate_region_4_requires_split_at_end_of_block(i32 %x, ptr %ptr, ptr noalias %dst) optsize {
; CHECK-LABEL: sink_replicate_region_4_requires_split_at_end_of_block
; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
; CHECK-NEXT: Live-in ir<20001> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%0> = phi ir<0>, ir<%conv>
; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1>, vp<[[VF]]>
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
; CHECK-NEXT: Successor(s): pred.load
; CHECK-EMPTY:
; CHECK-NEXT: <xVFxUF> pred.load: {
; CHECK-NEXT: pred.load.entry:
; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
; CHECK-NEXT: Successor(s): pred.load.if, pred.load.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.load.if:
; CHECK-NEXT: REPLICATE ir<%lv> = load ir<%gep> (S->V)
; CHECK-NEXT: Successor(s): pred.load.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.load.continue:
; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED:%.+]]> = ir<%lv>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): loop.0
; CHECK-EMPTY:
; CHECK-NEXT: loop.0:
; CHECK-NEXT: WIDEN-CAST ir<%conv> = sext vp<[[PRED]]> to i32
; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%0>, ir<%conv>
; CHECK-NEXT: Successor(s): pred.store
; CHECK-EMPTY:
; CHECK: <xVFxUF> pred.store: {
; CHECK-NEXT: pred.store.entry:
; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
; CHECK-EMPTY:
; CHECK: pred.store.if:
; CHECK-NEXT: REPLICATE ir<%lv.2> = load ir<%gep>
; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
; CHECK-NEXT: REPLICATE ir<%conv.lv.2> = sext ir<%lv.2>
; CHECK-NEXT: REPLICATE ir<%add.1> = add ir<%conv>, ir<%rem>
; CHECK-NEXT: REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[STEPS]]>
; CHECK-NEXT: REPLICATE ir<%add> = add ir<%add.1>, ir<%conv.lv.2>
; CHECK-NEXT: REPLICATE store ir<%add>, ir<%gep.dst>
; CHECK-NEXT: Successor(s): pred.store.continue
; CHECK-EMPTY:
; CHECK: pred.store.continue:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): loop.2
; CHECK-EMPTY:
; CHECK: loop.2:
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%conv>, ir<1>
; CHECK-NEXT: EMIT branch-on-cond ir<true>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph
; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: Live-out i32 %0 = vp<[[RESUME_1_P]]>
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%0 = phi i32 [ 0, %entry ], [ %conv, %loop ]
%iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
%gep = getelementptr i8, ptr %ptr, i32 %iv
%rem = srem i32 %0, %x
%lv = load i8, ptr %gep
%conv = sext i8 %lv to i32
%lv.2 = load i8, ptr %gep
%add.1 = add i32 %conv, %rem
%conv.lv.2 = sext i8 %lv.2 to i32
%add = add i32 %add.1, %conv.lv.2
%gep.dst = getelementptr i32, ptr %dst, i32 %iv
store i32 %add, ptr %gep.dst
%iv.next = add nsw i32 %iv, 1
%ec = icmp eq i32 %iv.next, 20001
br i1 %ec, label %exit, label %loop
exit:
ret void
}
; Test case that requires sinking a recipe in a replicate region after another replicate region.
define void @sink_replicate_region_after_replicate_region(ptr %ptr, ptr noalias %dst.2, i32 %x, i8 %y) optsize {
; CHECK-LABEL: sink_replicate_region_after_replicate_region
; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
; CHECK-NEXT: vp<[[TC:%.+]]> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: EMIT vp<[[TC]]> = EXPAND SCEV (1 smax (1 + (sext i8 %y to i32))<nsw>)
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
; CHECK-NEXT: WIDEN-INDUCTION %iv = phi 0, %iv.next, ir<1>, vp<[[VF]]>
; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
; CHECK-NEXT: Successor(s): pred.store
; CHECK-EMPTY:
; CHECK-NEXT: <xVFxUF> pred.store: {
; CHECK-NEXT: pred.store.entry:
; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.store.if:
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
; CHECK-NEXT: REPLICATE ir<%rem.div> = sdiv ir<20>, ir<%rem>
; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
; CHECK-NEXT: REPLICATE store ir<%rem.div>, ir<%gep>
; CHECK-NEXT: REPLICATE ir<%gep.2> = getelementptr ir<%dst.2>, vp<[[STEPS]]>
; CHECK-NEXT: REPLICATE store ir<%rem.div>, ir<%gep.2>
; CHECK-NEXT: Successor(s): pred.store.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.store.continue:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): loop.2
; CHECK-EMPTY:
; CHECK-NEXT: loop.2:
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%recur.next>, ir<1>
; CHECK-NEXT: EMIT branch-on-cond ir<true>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph
; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: Live-out i32 %recur = vp<[[RESUME_1_P]]>
; CHECK-NEXT: }
;
entry:
br label %loop
loop: ; preds = %loop, %entry
%recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
%iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
%rem = srem i32 %recur, %x
%rem.div = sdiv i32 20, %rem
%recur.next = sext i8 %y to i32
%gep = getelementptr i32, ptr %ptr, i32 %iv
store i32 %rem.div, ptr %gep
%gep.2 = getelementptr i32, ptr %dst.2, i32 %iv
store i32 %rem.div, ptr %gep.2
%iv.next = add nsw i32 %iv, 1
%C = icmp sgt i32 %iv.next, %recur.next
br i1 %C, label %exit, label %loop
exit: ; preds = %loop
ret void
}
define void @need_new_block_after_sinking_pr56146(i32 %x, ptr %src, ptr noalias %dst) {
; CHECK-LABEL: need_new_block_after_sinking_pr56146
; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
; CHECK-NEXT: Live-in ir<3> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%.pn> = phi ir<0>, ir<[[L:%.+]]>
; CHECK-NEXT: vp<[[DERIVED_IV:%.+]]> = DERIVED-IV ir<2> + vp<[[CAN_IV]]> * ir<1>
; CHECK-NEXT: EMIT vp<[[WIDE_IV:%.+]]> = WIDEN-CANONICAL-INDUCTION vp<[[CAN_IV]]>
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp ule vp<[[WIDE_IV]]>, vp<[[BTC]]>
; CHECK-NEXT: CLONE ir<[[L]]> = load ir<%src>
; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%.pn>, ir<[[L]]>
; CHECK-NEXT: Successor(s): pred.store
; CHECK-EMPTY:
; CHECK-NEXT: <xVFxUF> pred.store: {
; CHECK-NEXT: pred.store.entry:
; CHECK-NEXT: BRANCH-ON-MASK vp<[[CMP]]>
; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.store.if:
; CHECK-NEXT: vp<[[SCALAR_STEPS:%.+]]> = SCALAR-STEPS vp<[[DERIVED_IV]]>, ir<1>
; CHECK-NEXT: REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[SCALAR_STEPS]]>
; CHECK-NEXT: REPLICATE ir<%val> = sdiv vp<[[SPLICE]]>, ir<%x>
; CHECK-NEXT: REPLICATE store ir<%val>, ir<%gep.dst>
; CHECK-NEXT: Successor(s): pred.store.continue
; CHECK-EMPTY:
; CHECK-NEXT: pred.store.continue:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): loop.0
; CHECK-EMPTY:
; CHECK-NEXT: loop.0:
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%l>, ir<1>
; CHECK-NEXT: EMIT branch-on-cond ir<true>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph
; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: Live-out i32 %.pn = vp<[[RESUME_1_P]]>
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i64 [ 2, %entry ], [ %iv.next, %loop ]
%.pn = phi i32 [ 0, %entry ], [ %l, %loop ]
%val = sdiv i32 %.pn, %x
%l = load i32, ptr %src, align 4
%gep.dst = getelementptr i32, ptr %dst, i64 %iv
store i32 %val, ptr %gep.dst
%iv.next = add nuw nsw i64 %iv, 1
%ec = icmp ugt i64 %iv, 3
br i1 %ec, label %exit, label %loop
exit:
ret void
}