; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -aarch64-sve-vector-bits-min=256 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_256
; RUN: llc -aarch64-sve-vector-bits-min=512 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512
; RUN: llc -aarch64-sve-vector-bits-min=2048 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512
target triple = "aarch64-unknown-linux-gnu"
;
; ASHR
;
; Don't use SVE for 64-bit vectors.
define <8 x i8> @ashr_v8i8(<8 x i8> %op1, <8 x i8> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v8i8:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.8b, v1.8b
; CHECK-NEXT: sshl v0.8b, v0.8b, v1.8b
; CHECK-NEXT: ret
%res = ashr <8 x i8> %op1, %op2
ret <8 x i8> %res
}
; Don't use SVE for 128-bit vectors.
define <16 x i8> @ashr_v16i8(<16 x i8> %op1, <16 x i8> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v16i8:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.16b, v1.16b
; CHECK-NEXT: sshl v0.16b, v0.16b, v1.16b
; CHECK-NEXT: ret
%res = ashr <16 x i8> %op1, %op2
ret <16 x i8> %res
}
define void @ashr_v32i8(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v32i8:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.b, vl32
; CHECK-NEXT: ld1b { z0.b }, p0/z, [x0]
; CHECK-NEXT: ld1b { z1.b }, p0/z, [x1]
; CHECK-NEXT: asr z0.b, p0/m, z0.b, z1.b
; CHECK-NEXT: st1b { z0.b }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <32 x i8>, ptr %a
%op2 = load <32 x i8>, ptr %b
%res = ashr <32 x i8> %op1, %op2
store <32 x i8> %res, ptr %a
ret void
}
define void @ashr_v64i8(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: ashr_v64i8:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.b, vl32
; VBITS_GE_256-NEXT: mov w8, #32 // =0x20
; VBITS_GE_256-NEXT: ld1b { z0.b }, p0/z, [x0, x8]
; VBITS_GE_256-NEXT: ld1b { z1.b }, p0/z, [x1, x8]
; VBITS_GE_256-NEXT: ld1b { z2.b }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1b { z3.b }, p0/z, [x1]
; VBITS_GE_256-NEXT: asr z0.b, p0/m, z0.b, z1.b
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: asr z1.b, p0/m, z1.b, z3.b
; VBITS_GE_256-NEXT: st1b { z0.b }, p0, [x0, x8]
; VBITS_GE_256-NEXT: st1b { z1.b }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: ashr_v64i8:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.b, vl64
; VBITS_GE_512-NEXT: ld1b { z0.b }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1b { z1.b }, p0/z, [x1]
; VBITS_GE_512-NEXT: asr z0.b, p0/m, z0.b, z1.b
; VBITS_GE_512-NEXT: st1b { z0.b }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <64 x i8>, ptr %a
%op2 = load <64 x i8>, ptr %b
%res = ashr <64 x i8> %op1, %op2
store <64 x i8> %res, ptr %a
ret void
}
define void @ashr_v128i8(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: ashr_v128i8:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.b, vl128
; CHECK-NEXT: ld1b { z0.b }, p0/z, [x0]
; CHECK-NEXT: ld1b { z1.b }, p0/z, [x1]
; CHECK-NEXT: asr z0.b, p0/m, z0.b, z1.b
; CHECK-NEXT: st1b { z0.b }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <128 x i8>, ptr %a
%op2 = load <128 x i8>, ptr %b
%res = ashr <128 x i8> %op1, %op2
store <128 x i8> %res, ptr %a
ret void
}
define void @ashr_v256i8(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: ashr_v256i8:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.b, vl256
; CHECK-NEXT: ld1b { z0.b }, p0/z, [x0]
; CHECK-NEXT: ld1b { z1.b }, p0/z, [x1]
; CHECK-NEXT: asr z0.b, p0/m, z0.b, z1.b
; CHECK-NEXT: st1b { z0.b }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <256 x i8>, ptr %a
%op2 = load <256 x i8>, ptr %b
%res = ashr <256 x i8> %op1, %op2
store <256 x i8> %res, ptr %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <4 x i16> @ashr_v4i16(<4 x i16> %op1, <4 x i16> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v4i16:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.4h, v1.4h
; CHECK-NEXT: sshl v0.4h, v0.4h, v1.4h
; CHECK-NEXT: ret
%res = ashr <4 x i16> %op1, %op2
ret <4 x i16> %res
}
; Don't use SVE for 128-bit vectors.
define <8 x i16> @ashr_v8i16(<8 x i16> %op1, <8 x i16> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v8i16:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.8h, v1.8h
; CHECK-NEXT: sshl v0.8h, v0.8h, v1.8h
; CHECK-NEXT: ret
%res = ashr <8 x i16> %op1, %op2
ret <8 x i16> %res
}
define void @ashr_v16i16(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v16i16:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.h, vl16
; CHECK-NEXT: ld1h { z0.h }, p0/z, [x0]
; CHECK-NEXT: ld1h { z1.h }, p0/z, [x1]
; CHECK-NEXT: asr z0.h, p0/m, z0.h, z1.h
; CHECK-NEXT: st1h { z0.h }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <16 x i16>, ptr %a
%op2 = load <16 x i16>, ptr %b
%res = ashr <16 x i16> %op1, %op2
store <16 x i16> %res, ptr %a
ret void
}
define void @ashr_v32i16(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: ashr_v32i16:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.h, vl16
; VBITS_GE_256-NEXT: mov x8, #16 // =0x10
; VBITS_GE_256-NEXT: ld1h { z0.h }, p0/z, [x0, x8, lsl #1]
; VBITS_GE_256-NEXT: ld1h { z1.h }, p0/z, [x1, x8, lsl #1]
; VBITS_GE_256-NEXT: ld1h { z2.h }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1h { z3.h }, p0/z, [x1]
; VBITS_GE_256-NEXT: asr z0.h, p0/m, z0.h, z1.h
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: asr z1.h, p0/m, z1.h, z3.h
; VBITS_GE_256-NEXT: st1h { z0.h }, p0, [x0, x8, lsl #1]
; VBITS_GE_256-NEXT: st1h { z1.h }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: ashr_v32i16:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.h, vl32
; VBITS_GE_512-NEXT: ld1h { z0.h }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1h { z1.h }, p0/z, [x1]
; VBITS_GE_512-NEXT: asr z0.h, p0/m, z0.h, z1.h
; VBITS_GE_512-NEXT: st1h { z0.h }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <32 x i16>, ptr %a
%op2 = load <32 x i16>, ptr %b
%res = ashr <32 x i16> %op1, %op2
store <32 x i16> %res, ptr %a
ret void
}
define void @ashr_v64i16(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: ashr_v64i16:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.h, vl64
; CHECK-NEXT: ld1h { z0.h }, p0/z, [x0]
; CHECK-NEXT: ld1h { z1.h }, p0/z, [x1]
; CHECK-NEXT: asr z0.h, p0/m, z0.h, z1.h
; CHECK-NEXT: st1h { z0.h }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <64 x i16>, ptr %a
%op2 = load <64 x i16>, ptr %b
%res = ashr <64 x i16> %op1, %op2
store <64 x i16> %res, ptr %a
ret void
}
define void @ashr_v128i16(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: ashr_v128i16:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.h, vl128
; CHECK-NEXT: ld1h { z0.h }, p0/z, [x0]
; CHECK-NEXT: ld1h { z1.h }, p0/z, [x1]
; CHECK-NEXT: asr z0.h, p0/m, z0.h, z1.h
; CHECK-NEXT: st1h { z0.h }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <128 x i16>, ptr %a
%op2 = load <128 x i16>, ptr %b
%res = ashr <128 x i16> %op1, %op2
store <128 x i16> %res, ptr %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <2 x i32> @ashr_v2i32(<2 x i32> %op1, <2 x i32> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v2i32:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.2s, v1.2s
; CHECK-NEXT: sshl v0.2s, v0.2s, v1.2s
; CHECK-NEXT: ret
%res = ashr <2 x i32> %op1, %op2
ret <2 x i32> %res
}
; Don't use SVE for 128-bit vectors.
define <4 x i32> @ashr_v4i32(<4 x i32> %op1, <4 x i32> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v4i32:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.4s, v1.4s
; CHECK-NEXT: sshl v0.4s, v0.4s, v1.4s
; CHECK-NEXT: ret
%res = ashr <4 x i32> %op1, %op2
ret <4 x i32> %res
}
define void @ashr_v8i32(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v8i32:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl8
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-NEXT: asr z0.s, p0/m, z0.s, z1.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <8 x i32>, ptr %a
%op2 = load <8 x i32>, ptr %b
%res = ashr <8 x i32> %op1, %op2
store <8 x i32> %res, ptr %a
ret void
}
define void @ashr_v16i32(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: ashr_v16i32:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.s, vl8
; VBITS_GE_256-NEXT: mov x8, #8 // =0x8
; VBITS_GE_256-NEXT: ld1w { z0.s }, p0/z, [x0, x8, lsl #2]
; VBITS_GE_256-NEXT: ld1w { z1.s }, p0/z, [x1, x8, lsl #2]
; VBITS_GE_256-NEXT: ld1w { z2.s }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1w { z3.s }, p0/z, [x1]
; VBITS_GE_256-NEXT: asr z0.s, p0/m, z0.s, z1.s
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: asr z1.s, p0/m, z1.s, z3.s
; VBITS_GE_256-NEXT: st1w { z0.s }, p0, [x0, x8, lsl #2]
; VBITS_GE_256-NEXT: st1w { z1.s }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: ashr_v16i32:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.s, vl16
; VBITS_GE_512-NEXT: ld1w { z0.s }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1w { z1.s }, p0/z, [x1]
; VBITS_GE_512-NEXT: asr z0.s, p0/m, z0.s, z1.s
; VBITS_GE_512-NEXT: st1w { z0.s }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <16 x i32>, ptr %a
%op2 = load <16 x i32>, ptr %b
%res = ashr <16 x i32> %op1, %op2
store <16 x i32> %res, ptr %a
ret void
}
define void @ashr_v32i32(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: ashr_v32i32:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl32
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-NEXT: asr z0.s, p0/m, z0.s, z1.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <32 x i32>, ptr %a
%op2 = load <32 x i32>, ptr %b
%res = ashr <32 x i32> %op1, %op2
store <32 x i32> %res, ptr %a
ret void
}
define void @ashr_v64i32(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: ashr_v64i32:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl64
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-NEXT: asr z0.s, p0/m, z0.s, z1.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <64 x i32>, ptr %a
%op2 = load <64 x i32>, ptr %b
%res = ashr <64 x i32> %op1, %op2
store <64 x i32> %res, ptr %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <1 x i64> @ashr_v1i64(<1 x i64> %op1, <1 x i64> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v1i64:
; CHECK: // %bb.0:
; CHECK-NEXT: neg d1, d1
; CHECK-NEXT: sshl d0, d0, d1
; CHECK-NEXT: ret
%res = ashr <1 x i64> %op1, %op2
ret <1 x i64> %res
}
; Don't use SVE for 128-bit vectors.
define <2 x i64> @ashr_v2i64(<2 x i64> %op1, <2 x i64> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v2i64:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.2d, v1.2d
; CHECK-NEXT: sshl v0.2d, v0.2d, v1.2d
; CHECK-NEXT: ret
%res = ashr <2 x i64> %op1, %op2
ret <2 x i64> %res
}
define void @ashr_v4i64(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: ashr_v4i64:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.d, vl4
; CHECK-NEXT: ld1d { z0.d }, p0/z, [x0]
; CHECK-NEXT: ld1d { z1.d }, p0/z, [x1]
; CHECK-NEXT: asr z0.d, p0/m, z0.d, z1.d
; CHECK-NEXT: st1d { z0.d }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <4 x i64>, ptr %a
%op2 = load <4 x i64>, ptr %b
%res = ashr <4 x i64> %op1, %op2
store <4 x i64> %res, ptr %a
ret void
}
define void @ashr_v8i64(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: ashr_v8i64:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.d, vl4
; VBITS_GE_256-NEXT: mov x8, #4 // =0x4
; VBITS_GE_256-NEXT: ld1d { z0.d }, p0/z, [x0, x8, lsl #3]
; VBITS_GE_256-NEXT: ld1d { z1.d }, p0/z, [x1, x8, lsl #3]
; VBITS_GE_256-NEXT: ld1d { z2.d }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1d { z3.d }, p0/z, [x1]
; VBITS_GE_256-NEXT: asr z0.d, p0/m, z0.d, z1.d
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: asr z1.d, p0/m, z1.d, z3.d
; VBITS_GE_256-NEXT: st1d { z0.d }, p0, [x0, x8, lsl #3]
; VBITS_GE_256-NEXT: st1d { z1.d }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: ashr_v8i64:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.d, vl8
; VBITS_GE_512-NEXT: ld1d { z0.d }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1d { z1.d }, p0/z, [x1]
; VBITS_GE_512-NEXT: asr z0.d, p0/m, z0.d, z1.d
; VBITS_GE_512-NEXT: st1d { z0.d }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <8 x i64>, ptr %a
%op2 = load <8 x i64>, ptr %b
%res = ashr <8 x i64> %op1, %op2
store <8 x i64> %res, ptr %a
ret void
}
define void @ashr_v16i64(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: ashr_v16i64:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.d, vl16
; CHECK-NEXT: ld1d { z0.d }, p0/z, [x0]
; CHECK-NEXT: ld1d { z1.d }, p0/z, [x1]
; CHECK-NEXT: asr z0.d, p0/m, z0.d, z1.d
; CHECK-NEXT: st1d { z0.d }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <16 x i64>, ptr %a
%op2 = load <16 x i64>, ptr %b
%res = ashr <16 x i64> %op1, %op2
store <16 x i64> %res, ptr %a
ret void
}
define void @ashr_v32i64(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: ashr_v32i64:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.d, vl32
; CHECK-NEXT: ld1d { z0.d }, p0/z, [x0]
; CHECK-NEXT: ld1d { z1.d }, p0/z, [x1]
; CHECK-NEXT: asr z0.d, p0/m, z0.d, z1.d
; CHECK-NEXT: st1d { z0.d }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <32 x i64>, ptr %a
%op2 = load <32 x i64>, ptr %b
%res = ashr <32 x i64> %op1, %op2
store <32 x i64> %res, ptr %a
ret void
}
;
; LSHR
;
; Don't use SVE for 64-bit vectors.
define <8 x i8> @lshr_v8i8(<8 x i8> %op1, <8 x i8> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v8i8:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.8b, v1.8b
; CHECK-NEXT: ushl v0.8b, v0.8b, v1.8b
; CHECK-NEXT: ret
%res = lshr <8 x i8> %op1, %op2
ret <8 x i8> %res
}
; Don't use SVE for 128-bit vectors.
define <16 x i8> @lshr_v16i8(<16 x i8> %op1, <16 x i8> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v16i8:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.16b, v1.16b
; CHECK-NEXT: ushl v0.16b, v0.16b, v1.16b
; CHECK-NEXT: ret
%res = lshr <16 x i8> %op1, %op2
ret <16 x i8> %res
}
define void @lshr_v32i8(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v32i8:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.b, vl32
; CHECK-NEXT: ld1b { z0.b }, p0/z, [x0]
; CHECK-NEXT: ld1b { z1.b }, p0/z, [x1]
; CHECK-NEXT: lsr z0.b, p0/m, z0.b, z1.b
; CHECK-NEXT: st1b { z0.b }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <32 x i8>, ptr %a
%op2 = load <32 x i8>, ptr %b
%res = lshr <32 x i8> %op1, %op2
store <32 x i8> %res, ptr %a
ret void
}
define void @lshr_v64i8(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: lshr_v64i8:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.b, vl32
; VBITS_GE_256-NEXT: mov w8, #32 // =0x20
; VBITS_GE_256-NEXT: ld1b { z0.b }, p0/z, [x0, x8]
; VBITS_GE_256-NEXT: ld1b { z1.b }, p0/z, [x1, x8]
; VBITS_GE_256-NEXT: ld1b { z2.b }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1b { z3.b }, p0/z, [x1]
; VBITS_GE_256-NEXT: lsr z0.b, p0/m, z0.b, z1.b
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: lsr z1.b, p0/m, z1.b, z3.b
; VBITS_GE_256-NEXT: st1b { z0.b }, p0, [x0, x8]
; VBITS_GE_256-NEXT: st1b { z1.b }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: lshr_v64i8:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.b, vl64
; VBITS_GE_512-NEXT: ld1b { z0.b }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1b { z1.b }, p0/z, [x1]
; VBITS_GE_512-NEXT: lsr z0.b, p0/m, z0.b, z1.b
; VBITS_GE_512-NEXT: st1b { z0.b }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <64 x i8>, ptr %a
%op2 = load <64 x i8>, ptr %b
%res = lshr <64 x i8> %op1, %op2
store <64 x i8> %res, ptr %a
ret void
}
define void @lshr_v128i8(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: lshr_v128i8:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.b, vl128
; CHECK-NEXT: ld1b { z0.b }, p0/z, [x0]
; CHECK-NEXT: ld1b { z1.b }, p0/z, [x1]
; CHECK-NEXT: lsr z0.b, p0/m, z0.b, z1.b
; CHECK-NEXT: st1b { z0.b }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <128 x i8>, ptr %a
%op2 = load <128 x i8>, ptr %b
%res = lshr <128 x i8> %op1, %op2
store <128 x i8> %res, ptr %a
ret void
}
define void @lshr_v256i8(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: lshr_v256i8:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.b, vl256
; CHECK-NEXT: ld1b { z0.b }, p0/z, [x0]
; CHECK-NEXT: ld1b { z1.b }, p0/z, [x1]
; CHECK-NEXT: lsr z0.b, p0/m, z0.b, z1.b
; CHECK-NEXT: st1b { z0.b }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <256 x i8>, ptr %a
%op2 = load <256 x i8>, ptr %b
%res = lshr <256 x i8> %op1, %op2
store <256 x i8> %res, ptr %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <4 x i16> @lshr_v4i16(<4 x i16> %op1, <4 x i16> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v4i16:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.4h, v1.4h
; CHECK-NEXT: ushl v0.4h, v0.4h, v1.4h
; CHECK-NEXT: ret
%res = lshr <4 x i16> %op1, %op2
ret <4 x i16> %res
}
; Don't use SVE for 128-bit vectors.
define <8 x i16> @lshr_v8i16(<8 x i16> %op1, <8 x i16> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v8i16:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.8h, v1.8h
; CHECK-NEXT: ushl v0.8h, v0.8h, v1.8h
; CHECK-NEXT: ret
%res = lshr <8 x i16> %op1, %op2
ret <8 x i16> %res
}
define void @lshr_v16i16(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v16i16:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.h, vl16
; CHECK-NEXT: ld1h { z0.h }, p0/z, [x0]
; CHECK-NEXT: ld1h { z1.h }, p0/z, [x1]
; CHECK-NEXT: lsr z0.h, p0/m, z0.h, z1.h
; CHECK-NEXT: st1h { z0.h }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <16 x i16>, ptr %a
%op2 = load <16 x i16>, ptr %b
%res = lshr <16 x i16> %op1, %op2
store <16 x i16> %res, ptr %a
ret void
}
define void @lshr_v32i16(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: lshr_v32i16:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.h, vl16
; VBITS_GE_256-NEXT: mov x8, #16 // =0x10
; VBITS_GE_256-NEXT: ld1h { z0.h }, p0/z, [x0, x8, lsl #1]
; VBITS_GE_256-NEXT: ld1h { z1.h }, p0/z, [x1, x8, lsl #1]
; VBITS_GE_256-NEXT: ld1h { z2.h }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1h { z3.h }, p0/z, [x1]
; VBITS_GE_256-NEXT: lsr z0.h, p0/m, z0.h, z1.h
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: lsr z1.h, p0/m, z1.h, z3.h
; VBITS_GE_256-NEXT: st1h { z0.h }, p0, [x0, x8, lsl #1]
; VBITS_GE_256-NEXT: st1h { z1.h }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: lshr_v32i16:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.h, vl32
; VBITS_GE_512-NEXT: ld1h { z0.h }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1h { z1.h }, p0/z, [x1]
; VBITS_GE_512-NEXT: lsr z0.h, p0/m, z0.h, z1.h
; VBITS_GE_512-NEXT: st1h { z0.h }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <32 x i16>, ptr %a
%op2 = load <32 x i16>, ptr %b
%res = lshr <32 x i16> %op1, %op2
store <32 x i16> %res, ptr %a
ret void
}
define void @lshr_v64i16(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: lshr_v64i16:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.h, vl64
; CHECK-NEXT: ld1h { z0.h }, p0/z, [x0]
; CHECK-NEXT: ld1h { z1.h }, p0/z, [x1]
; CHECK-NEXT: lsr z0.h, p0/m, z0.h, z1.h
; CHECK-NEXT: st1h { z0.h }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <64 x i16>, ptr %a
%op2 = load <64 x i16>, ptr %b
%res = lshr <64 x i16> %op1, %op2
store <64 x i16> %res, ptr %a
ret void
}
define void @lshr_v128i16(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: lshr_v128i16:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.h, vl128
; CHECK-NEXT: ld1h { z0.h }, p0/z, [x0]
; CHECK-NEXT: ld1h { z1.h }, p0/z, [x1]
; CHECK-NEXT: lsr z0.h, p0/m, z0.h, z1.h
; CHECK-NEXT: st1h { z0.h }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <128 x i16>, ptr %a
%op2 = load <128 x i16>, ptr %b
%res = lshr <128 x i16> %op1, %op2
store <128 x i16> %res, ptr %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <2 x i32> @lshr_v2i32(<2 x i32> %op1, <2 x i32> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v2i32:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.2s, v1.2s
; CHECK-NEXT: ushl v0.2s, v0.2s, v1.2s
; CHECK-NEXT: ret
%res = lshr <2 x i32> %op1, %op2
ret <2 x i32> %res
}
; Don't use SVE for 128-bit vectors.
define <4 x i32> @lshr_v4i32(<4 x i32> %op1, <4 x i32> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v4i32:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.4s, v1.4s
; CHECK-NEXT: ushl v0.4s, v0.4s, v1.4s
; CHECK-NEXT: ret
%res = lshr <4 x i32> %op1, %op2
ret <4 x i32> %res
}
define void @lshr_v8i32(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v8i32:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl8
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-NEXT: lsr z0.s, p0/m, z0.s, z1.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <8 x i32>, ptr %a
%op2 = load <8 x i32>, ptr %b
%res = lshr <8 x i32> %op1, %op2
store <8 x i32> %res, ptr %a
ret void
}
define void @lshr_v16i32(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: lshr_v16i32:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.s, vl8
; VBITS_GE_256-NEXT: mov x8, #8 // =0x8
; VBITS_GE_256-NEXT: ld1w { z0.s }, p0/z, [x0, x8, lsl #2]
; VBITS_GE_256-NEXT: ld1w { z1.s }, p0/z, [x1, x8, lsl #2]
; VBITS_GE_256-NEXT: ld1w { z2.s }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1w { z3.s }, p0/z, [x1]
; VBITS_GE_256-NEXT: lsr z0.s, p0/m, z0.s, z1.s
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: lsr z1.s, p0/m, z1.s, z3.s
; VBITS_GE_256-NEXT: st1w { z0.s }, p0, [x0, x8, lsl #2]
; VBITS_GE_256-NEXT: st1w { z1.s }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: lshr_v16i32:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.s, vl16
; VBITS_GE_512-NEXT: ld1w { z0.s }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1w { z1.s }, p0/z, [x1]
; VBITS_GE_512-NEXT: lsr z0.s, p0/m, z0.s, z1.s
; VBITS_GE_512-NEXT: st1w { z0.s }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <16 x i32>, ptr %a
%op2 = load <16 x i32>, ptr %b
%res = lshr <16 x i32> %op1, %op2
store <16 x i32> %res, ptr %a
ret void
}
define void @lshr_v32i32(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: lshr_v32i32:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl32
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-NEXT: lsr z0.s, p0/m, z0.s, z1.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <32 x i32>, ptr %a
%op2 = load <32 x i32>, ptr %b
%res = lshr <32 x i32> %op1, %op2
store <32 x i32> %res, ptr %a
ret void
}
define void @lshr_v64i32(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: lshr_v64i32:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl64
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-NEXT: lsr z0.s, p0/m, z0.s, z1.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <64 x i32>, ptr %a
%op2 = load <64 x i32>, ptr %b
%res = lshr <64 x i32> %op1, %op2
store <64 x i32> %res, ptr %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <1 x i64> @lshr_v1i64(<1 x i64> %op1, <1 x i64> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v1i64:
; CHECK: // %bb.0:
; CHECK-NEXT: neg d1, d1
; CHECK-NEXT: ushl d0, d0, d1
; CHECK-NEXT: ret
%res = lshr <1 x i64> %op1, %op2
ret <1 x i64> %res
}
; Don't use SVE for 128-bit vectors.
define <2 x i64> @lshr_v2i64(<2 x i64> %op1, <2 x i64> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v2i64:
; CHECK: // %bb.0:
; CHECK-NEXT: neg v1.2d, v1.2d
; CHECK-NEXT: ushl v0.2d, v0.2d, v1.2d
; CHECK-NEXT: ret
%res = lshr <2 x i64> %op1, %op2
ret <2 x i64> %res
}
define void @lshr_v4i64(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: lshr_v4i64:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.d, vl4
; CHECK-NEXT: ld1d { z0.d }, p0/z, [x0]
; CHECK-NEXT: ld1d { z1.d }, p0/z, [x1]
; CHECK-NEXT: lsr z0.d, p0/m, z0.d, z1.d
; CHECK-NEXT: st1d { z0.d }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <4 x i64>, ptr %a
%op2 = load <4 x i64>, ptr %b
%res = lshr <4 x i64> %op1, %op2
store <4 x i64> %res, ptr %a
ret void
}
define void @lshr_v8i64(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: lshr_v8i64:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.d, vl4
; VBITS_GE_256-NEXT: mov x8, #4 // =0x4
; VBITS_GE_256-NEXT: ld1d { z0.d }, p0/z, [x0, x8, lsl #3]
; VBITS_GE_256-NEXT: ld1d { z1.d }, p0/z, [x1, x8, lsl #3]
; VBITS_GE_256-NEXT: ld1d { z2.d }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1d { z3.d }, p0/z, [x1]
; VBITS_GE_256-NEXT: lsr z0.d, p0/m, z0.d, z1.d
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: lsr z1.d, p0/m, z1.d, z3.d
; VBITS_GE_256-NEXT: st1d { z0.d }, p0, [x0, x8, lsl #3]
; VBITS_GE_256-NEXT: st1d { z1.d }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: lshr_v8i64:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.d, vl8
; VBITS_GE_512-NEXT: ld1d { z0.d }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1d { z1.d }, p0/z, [x1]
; VBITS_GE_512-NEXT: lsr z0.d, p0/m, z0.d, z1.d
; VBITS_GE_512-NEXT: st1d { z0.d }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <8 x i64>, ptr %a
%op2 = load <8 x i64>, ptr %b
%res = lshr <8 x i64> %op1, %op2
store <8 x i64> %res, ptr %a
ret void
}
define void @lshr_v16i64(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: lshr_v16i64:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.d, vl16
; CHECK-NEXT: ld1d { z0.d }, p0/z, [x0]
; CHECK-NEXT: ld1d { z1.d }, p0/z, [x1]
; CHECK-NEXT: lsr z0.d, p0/m, z0.d, z1.d
; CHECK-NEXT: st1d { z0.d }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <16 x i64>, ptr %a
%op2 = load <16 x i64>, ptr %b
%res = lshr <16 x i64> %op1, %op2
store <16 x i64> %res, ptr %a
ret void
}
define void @lshr_v32i64(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: lshr_v32i64:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.d, vl32
; CHECK-NEXT: ld1d { z0.d }, p0/z, [x0]
; CHECK-NEXT: ld1d { z1.d }, p0/z, [x1]
; CHECK-NEXT: lsr z0.d, p0/m, z0.d, z1.d
; CHECK-NEXT: st1d { z0.d }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <32 x i64>, ptr %a
%op2 = load <32 x i64>, ptr %b
%res = lshr <32 x i64> %op1, %op2
store <32 x i64> %res, ptr %a
ret void
}
;
; SHL
;
; Don't use SVE for 64-bit vectors.
define <8 x i8> @shl_v8i8(<8 x i8> %op1, <8 x i8> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v8i8:
; CHECK: // %bb.0:
; CHECK-NEXT: ushl v0.8b, v0.8b, v1.8b
; CHECK-NEXT: ret
%res = shl <8 x i8> %op1, %op2
ret <8 x i8> %res
}
; Don't use SVE for 128-bit vectors.
define <16 x i8> @shl_v16i8(<16 x i8> %op1, <16 x i8> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v16i8:
; CHECK: // %bb.0:
; CHECK-NEXT: ushl v0.16b, v0.16b, v1.16b
; CHECK-NEXT: ret
%res = shl <16 x i8> %op1, %op2
ret <16 x i8> %res
}
define void @shl_v32i8(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v32i8:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.b, vl32
; CHECK-NEXT: ld1b { z0.b }, p0/z, [x0]
; CHECK-NEXT: ld1b { z1.b }, p0/z, [x1]
; CHECK-NEXT: lsl z0.b, p0/m, z0.b, z1.b
; CHECK-NEXT: st1b { z0.b }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <32 x i8>, ptr %a
%op2 = load <32 x i8>, ptr %b
%res = shl <32 x i8> %op1, %op2
store <32 x i8> %res, ptr %a
ret void
}
define void @shl_v64i8(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: shl_v64i8:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.b, vl32
; VBITS_GE_256-NEXT: mov w8, #32 // =0x20
; VBITS_GE_256-NEXT: ld1b { z0.b }, p0/z, [x0, x8]
; VBITS_GE_256-NEXT: ld1b { z1.b }, p0/z, [x1, x8]
; VBITS_GE_256-NEXT: ld1b { z2.b }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1b { z3.b }, p0/z, [x1]
; VBITS_GE_256-NEXT: lsl z0.b, p0/m, z0.b, z1.b
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: lsl z1.b, p0/m, z1.b, z3.b
; VBITS_GE_256-NEXT: st1b { z0.b }, p0, [x0, x8]
; VBITS_GE_256-NEXT: st1b { z1.b }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: shl_v64i8:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.b, vl64
; VBITS_GE_512-NEXT: ld1b { z0.b }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1b { z1.b }, p0/z, [x1]
; VBITS_GE_512-NEXT: lsl z0.b, p0/m, z0.b, z1.b
; VBITS_GE_512-NEXT: st1b { z0.b }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <64 x i8>, ptr %a
%op2 = load <64 x i8>, ptr %b
%res = shl <64 x i8> %op1, %op2
store <64 x i8> %res, ptr %a
ret void
}
define void @shl_v128i8(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: shl_v128i8:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.b, vl128
; CHECK-NEXT: ld1b { z0.b }, p0/z, [x0]
; CHECK-NEXT: ld1b { z1.b }, p0/z, [x1]
; CHECK-NEXT: lsl z0.b, p0/m, z0.b, z1.b
; CHECK-NEXT: st1b { z0.b }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <128 x i8>, ptr %a
%op2 = load <128 x i8>, ptr %b
%res = shl <128 x i8> %op1, %op2
store <128 x i8> %res, ptr %a
ret void
}
define void @shl_v256i8(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: shl_v256i8:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.b, vl256
; CHECK-NEXT: ld1b { z0.b }, p0/z, [x0]
; CHECK-NEXT: ld1b { z1.b }, p0/z, [x1]
; CHECK-NEXT: lsl z0.b, p0/m, z0.b, z1.b
; CHECK-NEXT: st1b { z0.b }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <256 x i8>, ptr %a
%op2 = load <256 x i8>, ptr %b
%res = shl <256 x i8> %op1, %op2
store <256 x i8> %res, ptr %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <4 x i16> @shl_v4i16(<4 x i16> %op1, <4 x i16> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v4i16:
; CHECK: // %bb.0:
; CHECK-NEXT: ushl v0.4h, v0.4h, v1.4h
; CHECK-NEXT: ret
%res = shl <4 x i16> %op1, %op2
ret <4 x i16> %res
}
; Don't use SVE for 128-bit vectors.
define <8 x i16> @shl_v8i16(<8 x i16> %op1, <8 x i16> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v8i16:
; CHECK: // %bb.0:
; CHECK-NEXT: ushl v0.8h, v0.8h, v1.8h
; CHECK-NEXT: ret
%res = shl <8 x i16> %op1, %op2
ret <8 x i16> %res
}
define void @shl_v16i16(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v16i16:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.h, vl16
; CHECK-NEXT: ld1h { z0.h }, p0/z, [x0]
; CHECK-NEXT: ld1h { z1.h }, p0/z, [x1]
; CHECK-NEXT: lsl z0.h, p0/m, z0.h, z1.h
; CHECK-NEXT: st1h { z0.h }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <16 x i16>, ptr %a
%op2 = load <16 x i16>, ptr %b
%res = shl <16 x i16> %op1, %op2
store <16 x i16> %res, ptr %a
ret void
}
define void @shl_v32i16(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: shl_v32i16:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.h, vl16
; VBITS_GE_256-NEXT: mov x8, #16 // =0x10
; VBITS_GE_256-NEXT: ld1h { z0.h }, p0/z, [x0, x8, lsl #1]
; VBITS_GE_256-NEXT: ld1h { z1.h }, p0/z, [x1, x8, lsl #1]
; VBITS_GE_256-NEXT: ld1h { z2.h }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1h { z3.h }, p0/z, [x1]
; VBITS_GE_256-NEXT: lsl z0.h, p0/m, z0.h, z1.h
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: lsl z1.h, p0/m, z1.h, z3.h
; VBITS_GE_256-NEXT: st1h { z0.h }, p0, [x0, x8, lsl #1]
; VBITS_GE_256-NEXT: st1h { z1.h }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: shl_v32i16:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.h, vl32
; VBITS_GE_512-NEXT: ld1h { z0.h }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1h { z1.h }, p0/z, [x1]
; VBITS_GE_512-NEXT: lsl z0.h, p0/m, z0.h, z1.h
; VBITS_GE_512-NEXT: st1h { z0.h }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <32 x i16>, ptr %a
%op2 = load <32 x i16>, ptr %b
%res = shl <32 x i16> %op1, %op2
store <32 x i16> %res, ptr %a
ret void
}
define void @shl_v64i16(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: shl_v64i16:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.h, vl64
; CHECK-NEXT: ld1h { z0.h }, p0/z, [x0]
; CHECK-NEXT: ld1h { z1.h }, p0/z, [x1]
; CHECK-NEXT: lsl z0.h, p0/m, z0.h, z1.h
; CHECK-NEXT: st1h { z0.h }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <64 x i16>, ptr %a
%op2 = load <64 x i16>, ptr %b
%res = shl <64 x i16> %op1, %op2
store <64 x i16> %res, ptr %a
ret void
}
define void @shl_v128i16(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: shl_v128i16:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.h, vl128
; CHECK-NEXT: ld1h { z0.h }, p0/z, [x0]
; CHECK-NEXT: ld1h { z1.h }, p0/z, [x1]
; CHECK-NEXT: lsl z0.h, p0/m, z0.h, z1.h
; CHECK-NEXT: st1h { z0.h }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <128 x i16>, ptr %a
%op2 = load <128 x i16>, ptr %b
%res = shl <128 x i16> %op1, %op2
store <128 x i16> %res, ptr %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <2 x i32> @shl_v2i32(<2 x i32> %op1, <2 x i32> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v2i32:
; CHECK: // %bb.0:
; CHECK-NEXT: ushl v0.2s, v0.2s, v1.2s
; CHECK-NEXT: ret
%res = shl <2 x i32> %op1, %op2
ret <2 x i32> %res
}
; Don't use SVE for 128-bit vectors.
define <4 x i32> @shl_v4i32(<4 x i32> %op1, <4 x i32> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v4i32:
; CHECK: // %bb.0:
; CHECK-NEXT: ushl v0.4s, v0.4s, v1.4s
; CHECK-NEXT: ret
%res = shl <4 x i32> %op1, %op2
ret <4 x i32> %res
}
define void @shl_v8i32(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v8i32:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl8
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-NEXT: lsl z0.s, p0/m, z0.s, z1.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <8 x i32>, ptr %a
%op2 = load <8 x i32>, ptr %b
%res = shl <8 x i32> %op1, %op2
store <8 x i32> %res, ptr %a
ret void
}
define void @shl_v16i32(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: shl_v16i32:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.s, vl8
; VBITS_GE_256-NEXT: mov x8, #8 // =0x8
; VBITS_GE_256-NEXT: ld1w { z0.s }, p0/z, [x0, x8, lsl #2]
; VBITS_GE_256-NEXT: ld1w { z1.s }, p0/z, [x1, x8, lsl #2]
; VBITS_GE_256-NEXT: ld1w { z2.s }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1w { z3.s }, p0/z, [x1]
; VBITS_GE_256-NEXT: lsl z0.s, p0/m, z0.s, z1.s
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: lsl z1.s, p0/m, z1.s, z3.s
; VBITS_GE_256-NEXT: st1w { z0.s }, p0, [x0, x8, lsl #2]
; VBITS_GE_256-NEXT: st1w { z1.s }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: shl_v16i32:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.s, vl16
; VBITS_GE_512-NEXT: ld1w { z0.s }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1w { z1.s }, p0/z, [x1]
; VBITS_GE_512-NEXT: lsl z0.s, p0/m, z0.s, z1.s
; VBITS_GE_512-NEXT: st1w { z0.s }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <16 x i32>, ptr %a
%op2 = load <16 x i32>, ptr %b
%res = shl <16 x i32> %op1, %op2
store <16 x i32> %res, ptr %a
ret void
}
define void @shl_v32i32(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: shl_v32i32:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl32
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-NEXT: lsl z0.s, p0/m, z0.s, z1.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <32 x i32>, ptr %a
%op2 = load <32 x i32>, ptr %b
%res = shl <32 x i32> %op1, %op2
store <32 x i32> %res, ptr %a
ret void
}
define void @shl_v64i32(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: shl_v64i32:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl64
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-NEXT: lsl z0.s, p0/m, z0.s, z1.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <64 x i32>, ptr %a
%op2 = load <64 x i32>, ptr %b
%res = shl <64 x i32> %op1, %op2
store <64 x i32> %res, ptr %a
ret void
}
; Don't use SVE for 64-bit vectors.
define <1 x i64> @shl_v1i64(<1 x i64> %op1, <1 x i64> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v1i64:
; CHECK: // %bb.0:
; CHECK-NEXT: ushl d0, d0, d1
; CHECK-NEXT: ret
%res = shl <1 x i64> %op1, %op2
ret <1 x i64> %res
}
; Don't use SVE for 128-bit vectors.
define <2 x i64> @shl_v2i64(<2 x i64> %op1, <2 x i64> %op2) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v2i64:
; CHECK: // %bb.0:
; CHECK-NEXT: ushl v0.2d, v0.2d, v1.2d
; CHECK-NEXT: ret
%res = shl <2 x i64> %op1, %op2
ret <2 x i64> %res
}
define void @shl_v4i64(ptr %a, ptr %b) vscale_range(2,0) #0 {
; CHECK-LABEL: shl_v4i64:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.d, vl4
; CHECK-NEXT: ld1d { z0.d }, p0/z, [x0]
; CHECK-NEXT: ld1d { z1.d }, p0/z, [x1]
; CHECK-NEXT: lsl z0.d, p0/m, z0.d, z1.d
; CHECK-NEXT: st1d { z0.d }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <4 x i64>, ptr %a
%op2 = load <4 x i64>, ptr %b
%res = shl <4 x i64> %op1, %op2
store <4 x i64> %res, ptr %a
ret void
}
define void @shl_v8i64(ptr %a, ptr %b) #0 {
; VBITS_GE_256-LABEL: shl_v8i64:
; VBITS_GE_256: // %bb.0:
; VBITS_GE_256-NEXT: ptrue p0.d, vl4
; VBITS_GE_256-NEXT: mov x8, #4 // =0x4
; VBITS_GE_256-NEXT: ld1d { z0.d }, p0/z, [x0, x8, lsl #3]
; VBITS_GE_256-NEXT: ld1d { z1.d }, p0/z, [x1, x8, lsl #3]
; VBITS_GE_256-NEXT: ld1d { z2.d }, p0/z, [x0]
; VBITS_GE_256-NEXT: ld1d { z3.d }, p0/z, [x1]
; VBITS_GE_256-NEXT: lsl z0.d, p0/m, z0.d, z1.d
; VBITS_GE_256-NEXT: movprfx z1, z2
; VBITS_GE_256-NEXT: lsl z1.d, p0/m, z1.d, z3.d
; VBITS_GE_256-NEXT: st1d { z0.d }, p0, [x0, x8, lsl #3]
; VBITS_GE_256-NEXT: st1d { z1.d }, p0, [x0]
; VBITS_GE_256-NEXT: ret
;
; VBITS_GE_512-LABEL: shl_v8i64:
; VBITS_GE_512: // %bb.0:
; VBITS_GE_512-NEXT: ptrue p0.d, vl8
; VBITS_GE_512-NEXT: ld1d { z0.d }, p0/z, [x0]
; VBITS_GE_512-NEXT: ld1d { z1.d }, p0/z, [x1]
; VBITS_GE_512-NEXT: lsl z0.d, p0/m, z0.d, z1.d
; VBITS_GE_512-NEXT: st1d { z0.d }, p0, [x0]
; VBITS_GE_512-NEXT: ret
%op1 = load <8 x i64>, ptr %a
%op2 = load <8 x i64>, ptr %b
%res = shl <8 x i64> %op1, %op2
store <8 x i64> %res, ptr %a
ret void
}
define void @shl_v16i64(ptr %a, ptr %b) vscale_range(8,0) #0 {
; CHECK-LABEL: shl_v16i64:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.d, vl16
; CHECK-NEXT: ld1d { z0.d }, p0/z, [x0]
; CHECK-NEXT: ld1d { z1.d }, p0/z, [x1]
; CHECK-NEXT: lsl z0.d, p0/m, z0.d, z1.d
; CHECK-NEXT: st1d { z0.d }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <16 x i64>, ptr %a
%op2 = load <16 x i64>, ptr %b
%res = shl <16 x i64> %op1, %op2
store <16 x i64> %res, ptr %a
ret void
}
define void @shl_v32i64(ptr %a, ptr %b) vscale_range(16,0) #0 {
; CHECK-LABEL: shl_v32i64:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.d, vl32
; CHECK-NEXT: ld1d { z0.d }, p0/z, [x0]
; CHECK-NEXT: ld1d { z1.d }, p0/z, [x1]
; CHECK-NEXT: lsl z0.d, p0/m, z0.d, z1.d
; CHECK-NEXT: st1d { z0.d }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <32 x i64>, ptr %a
%op2 = load <32 x i64>, ptr %b
%res = shl <32 x i64> %op1, %op2
store <32 x i64> %res, ptr %a
ret void
}
attributes #0 = { "target-features"="+sve" }