; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; RUN: opt "-passes=print<scalar-evolution>" -disable-output < %s 2>&1 | FileCheck %s
;
; This checks if the min and max expressions are properly recognized by
; ScalarEvolution even though they the ICmpInst and SelectInst have different
; types.
;
; #define max(a, b) (a > b ? a : b)
; #define min(a, b) (a < b ? a : b)
;
; void f(int *A, int N) {
; for (int i = 0; i < N; i++) {
; A[max(0, i - 3)] = Aptr 2;
; }
; }
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
define void @f(ptr %A, i32 %N) {
; CHECK-LABEL: 'f'
; CHECK-NEXT: Classifying expressions for: @f
; CHECK-NEXT: %i.0 = phi i32 [ 0, %bb ], [ %tmp23, %bb2 ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb1> U: [0,-2147483648) S: [0,-2147483648) Exits: (0 smax %N) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %i.0.1 = sext i32 %i.0 to i64
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb1> U: [0,2147483648) S: [0,2147483648) Exits: (zext i32 (0 smax %N) to i64) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp3 = add nuw nsw i32 %i.0, 3
; CHECK-NEXT: --> {3,+,1}<nuw><%bb1> U: [3,-2147483645) S: [3,-2147483645) Exits: (3 + (0 smax %N))<nuw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp5 = sext i32 %tmp3 to i64
; CHECK-NEXT: --> (sext i32 {3,+,1}<nuw><%bb1> to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 (3 + (0 smax %N))<nuw> to i64) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp6 = sext i32 %N to i64
; CHECK-NEXT: --> (sext i32 %N to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 %N to i64) LoopDispositions: { %bb1: Invariant }
; CHECK-NEXT: %tmp9 = select i1 %tmp4, i64 %tmp5, i64 %tmp6
; CHECK-NEXT: --> ((sext i32 {3,+,1}<nuw><%bb1> to i64) smin (sext i32 %N to i64)) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: ((sext i32 (3 + (0 smax %N))<nuw> to i64) smin (sext i32 %N to i64)) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp11 = getelementptr inbounds i32, ptr %A, i64 %tmp9
; CHECK-NEXT: --> ((4 * ((sext i32 {3,+,1}<nuw><%bb1> to i64) smin (sext i32 %N to i64)))<nsw> + %A) U: full-set S: full-set Exits: ((4 * ((sext i32 (3 + (0 smax %N))<nuw> to i64) smin (sext i32 %N to i64)))<nsw> + %A) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp12 = load i32, ptr %tmp11, align 4
; CHECK-NEXT: --> %tmp12 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb1: Variant }
; CHECK-NEXT: %tmp13 = shl nsw i32 %tmp12, 1
; CHECK-NEXT: --> (2 * %tmp12) U: [0,-1) S: [-2147483648,2147483647) Exits: <<Unknown>> LoopDispositions: { %bb1: Variant }
; CHECK-NEXT: %tmp17 = add nsw i64 %i.0.1, -3
; CHECK-NEXT: --> {-3,+,1}<nsw><%bb1> U: [-3,2147483645) S: [-3,2147483645) Exits: (-3 + (zext i32 (0 smax %N) to i64))<nsw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp19 = select i1 %tmp14, i64 0, i64 %tmp17
; CHECK-NEXT: --> (-3 + (3 smax {0,+,1}<nuw><nsw><%bb1>))<nsw> U: [0,2147483645) S: [0,2147483645) Exits: (-3 + (3 smax (zext i32 (0 smax %N) to i64)))<nsw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp21 = getelementptr inbounds i32, ptr %A, i64 %tmp19
; CHECK-NEXT: --> (-12 + (4 * (3 smax {0,+,1}<nuw><nsw><%bb1>))<nuw><nsw> + %A) U: full-set S: full-set Exits: (-12 + (4 * (3 smax (zext i32 (0 smax %N) to i64)))<nuw><nsw> + %A) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp23 = add nuw nsw i32 %i.0, 1
; CHECK-NEXT: --> {1,+,1}<nuw><%bb1> U: [1,-2147483647) S: [1,-2147483647) Exits: (1 + (0 smax %N))<nuw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: Determining loop execution counts for: @f
; CHECK-NEXT: Loop %bb1: backedge-taken count is (0 smax %N)
; CHECK-NEXT: Loop %bb1: constant max backedge-taken count is i32 2147483647
; CHECK-NEXT: Loop %bb1: symbolic max backedge-taken count is (0 smax %N)
; CHECK-NEXT: Loop %bb1: Trip multiple is 1
;
bb:
br label %bb1
bb1: ; preds = %bb2, %bb
%i.0 = phi i32 [ 0, %bb ], [ %tmp23, %bb2 ]
%i.0.1 = sext i32 %i.0 to i64
%tmp = icmp slt i32 %i.0, %N
br i1 %tmp, label %bb2, label %bb24
bb2: ; preds = %bb1
%tmp3 = add nuw nsw i32 %i.0, 3
%tmp4 = icmp slt i32 %tmp3, %N
%tmp5 = sext i32 %tmp3 to i64
%tmp6 = sext i32 %N to i64
%tmp9 = select i1 %tmp4, i64 %tmp5, i64 %tmp6
; min(N, i+3)
%tmp11 = getelementptr inbounds i32, ptr %A, i64 %tmp9
%tmp12 = load i32, ptr %tmp11, align 4
%tmp13 = shl nsw i32 %tmp12, 1
%tmp14 = icmp sge i32 3, %i.0
%tmp17 = add nsw i64 %i.0.1, -3
%tmp19 = select i1 %tmp14, i64 0, i64 %tmp17
; max(0, i - 3)
%tmp21 = getelementptr inbounds i32, ptr %A, i64 %tmp19
store i32 %tmp13, ptr %tmp21, align 4
%tmp23 = add nuw nsw i32 %i.0, 1
br label %bb1
bb24: ; preds = %bb1
ret void
}
define i8 @umax_basic_eq_off1(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_off1'
; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off1
; CHECK-NEXT: %lhs = add i8 %y, 1
; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT: --> ((1 umax %x) + %y) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off1
;
%x.is.zero = icmp eq i8 %x, 0
%lhs = add i8 %y, 1
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
ret i8 %r
}
define i8 @umax_basic_ne_off1(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_ne_off1'
; CHECK-NEXT: Classifying expressions for: @umax_basic_ne_off1
; CHECK-NEXT: %lhs = add i8 %y, 1
; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
; CHECK-NEXT: --> ((1 umax %x) + %y) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_ne_off1
;
%x.is.zero = icmp ne i8 %x, 0
%lhs = add i8 %y, 1
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
ret i8 %r
}
define i8 @umax_basic_eq_off0(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_off0'
; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off0
; CHECK-NEXT: %lhs = add i8 %y, 0
; CHECK-NEXT: --> %y U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off0
;
%x.is.zero = icmp eq i8 %x, 0
%lhs = add i8 %y, 0
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
ret i8 %r
}
define i8 @umax_basic_eq_off2(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_off2'
; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off2
; CHECK-NEXT: %lhs = add i8 %y, 2
; CHECK-NEXT: --> (2 + %y) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT: --> %r U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off2
;
%x.is.zero = icmp eq i8 %x, 0
%lhs = add i8 %y, 2
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
ret i8 %r
}
define i8 @umax_basic_eq_var_off(i8 %x, i8 %y, i8 %c) {
; CHECK-LABEL: 'umax_basic_eq_var_off'
; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_var_off
; CHECK-NEXT: %lhs = add i8 %y, %c
; CHECK-NEXT: --> (%y + %c) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT: --> %r U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_var_off
;
%x.is.zero = icmp eq i8 %x, 0
%lhs = add i8 %y, %c
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
ret i8 %r
}
define i8 @umax_basic_eq_narrow(i4 %x.narrow, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_narrow'
; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_narrow
; CHECK-NEXT: %x = zext i4 %x.narrow to i8
; CHECK-NEXT: --> (zext i4 %x.narrow to i8) U: [0,16) S: [0,16)
; CHECK-NEXT: %lhs = add i8 %y, 1
; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> ((zext i4 %x.narrow to i8) + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT: --> ((1 umax (zext i4 %x.narrow to i8)) + %y) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_narrow
;
%x = zext i4 %x.narrow to i8
%x.is.zero = icmp eq i4 %x.narrow, 0
%lhs = add i8 %y, 1
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
ret i8 %r
}
define i8 @umax_basic_ne_narrow(i4 %x.narrow, i8 %y) {
; CHECK-LABEL: 'umax_basic_ne_narrow'
; CHECK-NEXT: Classifying expressions for: @umax_basic_ne_narrow
; CHECK-NEXT: %x = zext i4 %x.narrow to i8
; CHECK-NEXT: --> (zext i4 %x.narrow to i8) U: [0,16) S: [0,16)
; CHECK-NEXT: %lhs = add i8 %y, 1
; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> ((zext i4 %x.narrow to i8) + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
; CHECK-NEXT: --> ((1 umax (zext i4 %x.narrow to i8)) + %y) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_ne_narrow
;
%x = zext i4 %x.narrow to i8
%x.is.zero = icmp ne i4 %x.narrow, 0
%lhs = add i8 %y, 1
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
ret i8 %r
}