//===- CudaRuntimeWrappers.cpp - MLIR CUDA API wrapper library ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements C wrappers around the CUDA library for easy linking in ORC jit.
// Also adds some debugging helpers that are helpful when writing MLIR code to
// run on GPUs.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/CRunnerUtils.h"
#include <stdio.h>
#include "cuda.h"
#include "cuda_bf16.h"
#include "cuda_fp16.h"
#ifdef MLIR_ENABLE_CUDA_CUSPARSE
#include "cusparse.h"
#ifdef MLIR_ENABLE_CUDA_CUSPARSELT
#include "cusparseLt.h"
#endif // MLIR_ENABLE_CUDA_CUSPARSELT
#endif // MLIR_ENABLE_CUDA_CUSPARSE
#ifdef _WIN32
#include <malloc.h>
#define MLIR_CUDA_WRAPPERS_EXPORT __declspec(dllexport)
#else
#define MLIR_CUDA_WRAPPERS_EXPORT __attribute__((visibility("default")))
#endif // _WIN32
#define CUDA_REPORT_IF_ERROR(expr) \
[](CUresult result) { \
if (!result) \
return; \
const char *name = nullptr; \
cuGetErrorName(result, &name); \
if (!name) \
name = "<unknown>"; \
fprintf(stderr, "'%s' failed with '%s'\n", #expr, name); \
}(expr)
#define CUSPARSE_REPORT_IF_ERROR(expr) \
{ \
cusparseStatus_t status = (expr); \
if (status != CUSPARSE_STATUS_SUCCESS) { \
fprintf(stderr, "cuSPARSE '%s' failed with '%s'\n", #expr, \
cusparseGetErrorString(status)); \
} \
}
thread_local static int32_t defaultDevice = 0;
const char *kDebugEnvironmentVariable = "MLIR_CUDA_DEBUG";
/// Helper method that checks environment value for debugging.
bool isDebugEnabled() {
static bool isInitialized = false;
static bool isEnabled = false;
if (!isInitialized)
isEnabled = getenv(kDebugEnvironmentVariable) != nullptr;
return isEnabled;
}
#define debug_print(fmt, ...) \
do { \
if (isDebugEnabled()) \
fprintf(stderr, "%s:%d:%s(): " fmt, "CudaRuntimeWrappers.cpp", __LINE__, \
__func__, __VA_ARGS__); \
} while (0)
// Returns default CUdevice
CUdevice getDefaultCuDevice() {
CUdevice device;
CUDA_REPORT_IF_ERROR(cuDeviceGet(&device, /*ordinal=*/defaultDevice));
return device;
}
// Make the primary context of the current default device current for the
// duration
// of the instance and restore the previous context on destruction.
class ScopedContext {
public:
ScopedContext() {
// Static reference to CUDA primary context for device ordinal
// defaultDevice.
static CUcontext context = [] {
CUDA_REPORT_IF_ERROR(cuInit(/*flags=*/0));
CUcontext ctx;
// Note: this does not affect the current context.
CUDA_REPORT_IF_ERROR(
cuDevicePrimaryCtxRetain(&ctx, getDefaultCuDevice()));
return ctx;
}();
CUDA_REPORT_IF_ERROR(cuCtxPushCurrent(context));
}
~ScopedContext() { CUDA_REPORT_IF_ERROR(cuCtxPopCurrent(nullptr)); }
};
#ifdef MLIR_ENABLE_CUDA_CUSPARSE
// Note that (1) Nvidia confirms the safety to share handle across multiple
// instances, and streams. (2) Clients are responsible to call the @mgpu
// environment initialization/destruction in a thread-safe manner, e.g.,
// at the beginning of the program before multi-threads are created.
static cusparseHandle_t cusparse_env = nullptr;
#ifdef MLIR_ENABLE_CUDA_CUSPARSELT
// cusparseLtHandle_t is not a pointer type, so we need an additional flag to
// indicate whether it is initialized.
static cusparseLtHandle_t cusparseLt_env;
static bool cusparseLt_initiated = false;
#endif // MLIR_ENABLE_CUDA_CUSPARSELT
#endif // MLIR_ENABLE_CUDA_CUSPARSE
extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUmodule
mgpuModuleLoad(void *data, size_t /*gpuBlobSize*/) {
ScopedContext scopedContext;
CUmodule module = nullptr;
CUDA_REPORT_IF_ERROR(cuModuleLoadData(&module, data));
return module;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUmodule mgpuModuleLoadJIT(void *data,
int optLevel) {
ScopedContext scopedContext;
CUmodule module = nullptr;
char jitErrorBuffer[4096] = {0};
CUjit_option jitOptions[] = {CU_JIT_ERROR_LOG_BUFFER,
CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES,
CU_JIT_OPTIMIZATION_LEVEL};
void *jitOptionsVals[] = {jitErrorBuffer,
reinterpret_cast<void *>(sizeof(jitErrorBuffer)),
reinterpret_cast<void *>(optLevel)};
CUresult result =
cuModuleLoadDataEx(&module, data, 3, jitOptions, jitOptionsVals);
if (result) {
fprintf(stderr, "JIT compilation failed with: '%s'\n", jitErrorBuffer);
CUDA_REPORT_IF_ERROR(result);
}
return module;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuModuleUnload(CUmodule module) {
CUDA_REPORT_IF_ERROR(cuModuleUnload(module));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUfunction
mgpuModuleGetFunction(CUmodule module, const char *name) {
CUfunction function = nullptr;
CUDA_REPORT_IF_ERROR(cuModuleGetFunction(&function, module, name));
return function;
}
// The wrapper uses intptr_t instead of CUDA's unsigned int to match
// the type of MLIR's index type. This avoids the need for casts in the
// generated MLIR code.
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuLaunchKernel(CUfunction function, intptr_t gridX, intptr_t gridY,
intptr_t gridZ, intptr_t blockX, intptr_t blockY,
intptr_t blockZ, int32_t smem, CUstream stream, void **params,
void **extra, size_t /*paramsCount*/) {
ScopedContext scopedContext;
if (smem > 0) {
// Avoid checking driver as it's more expensive than if statement
int32_t maxShmem = 0;
CUdevice device = getDefaultCuDevice();
CUDA_REPORT_IF_ERROR(cuDeviceGet(&device, /*ordinal=*/defaultDevice));
CUDA_REPORT_IF_ERROR(cuDeviceGetAttribute(
&maxShmem, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN,
device));
if (maxShmem < smem) {
fprintf(stderr,
"Requested shared memory (%dkb) is larger than maximum allowed "
"shared memory (%dkb) for this device\n",
smem, maxShmem);
}
CUDA_REPORT_IF_ERROR(cuFuncSetAttribute(
function, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, smem));
}
debug_print("Launching kernel, grid=%ld,%ld,%ld, "
"threads: %ld, %ld, %ld, "
"smem: %dkb\n",
gridX, gridY, gridZ, blockX, blockY, blockZ, smem);
CUDA_REPORT_IF_ERROR(cuLaunchKernel(function, gridX, gridY, gridZ, blockX,
blockY, blockZ, smem, stream, params,
extra));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUstream mgpuStreamCreate() {
ScopedContext scopedContext;
CUstream stream = nullptr;
CUDA_REPORT_IF_ERROR(cuStreamCreate(&stream, CU_STREAM_NON_BLOCKING));
return stream;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamDestroy(CUstream stream) {
CUDA_REPORT_IF_ERROR(cuStreamDestroy(stream));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuStreamSynchronize(CUstream stream) {
CUDA_REPORT_IF_ERROR(cuStreamSynchronize(stream));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamWaitEvent(CUstream stream,
CUevent event) {
CUDA_REPORT_IF_ERROR(cuStreamWaitEvent(stream, event, /*flags=*/0));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUevent mgpuEventCreate() {
ScopedContext scopedContext;
CUevent event = nullptr;
CUDA_REPORT_IF_ERROR(cuEventCreate(&event, CU_EVENT_DISABLE_TIMING));
return event;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventDestroy(CUevent event) {
CUDA_REPORT_IF_ERROR(cuEventDestroy(event));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventSynchronize(CUevent event) {
CUDA_REPORT_IF_ERROR(cuEventSynchronize(event));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventRecord(CUevent event,
CUstream stream) {
CUDA_REPORT_IF_ERROR(cuEventRecord(event, stream));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
mgpuMemAlloc(uint64_t sizeBytes, CUstream stream, bool isHostShared) {
ScopedContext scopedContext;
CUdeviceptr ptr = 0;
if (sizeBytes == 0)
return reinterpret_cast<void *>(ptr);
if (isHostShared) {
CUDA_REPORT_IF_ERROR(
cuMemAllocManaged(&ptr, sizeBytes, CU_MEM_ATTACH_GLOBAL));
return reinterpret_cast<void *>(ptr);
}
CUDA_REPORT_IF_ERROR(cuMemAlloc(&ptr, sizeBytes));
return reinterpret_cast<void *>(ptr);
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemFree(void *ptr,
CUstream /*stream*/) {
CUDA_REPORT_IF_ERROR(cuMemFree(reinterpret_cast<CUdeviceptr>(ptr)));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuMemcpy(void *dst, void *src, size_t sizeBytes, CUstream stream) {
CUDA_REPORT_IF_ERROR(cuMemcpyAsync(reinterpret_cast<CUdeviceptr>(dst),
reinterpret_cast<CUdeviceptr>(src),
sizeBytes, stream));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuMemset32(void *dst, unsigned int value, size_t count, CUstream stream) {
CUDA_REPORT_IF_ERROR(cuMemsetD32Async(reinterpret_cast<CUdeviceptr>(dst),
value, count, stream));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuMemset16(void *dst, unsigned short value, size_t count, CUstream stream) {
CUDA_REPORT_IF_ERROR(cuMemsetD16Async(reinterpret_cast<CUdeviceptr>(dst),
value, count, stream));
}
///
/// Helper functions for writing mlir example code
///
// Allows to register byte array with the CUDA runtime. Helpful until we have
// transfer functions implemented.
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuMemHostRegister(void *ptr, uint64_t sizeBytes) {
ScopedContext scopedContext;
CUDA_REPORT_IF_ERROR(cuMemHostRegister(ptr, sizeBytes, /*flags=*/0));
}
/// Registers a memref with the CUDA runtime. `descriptor` is a pointer to a
/// ranked memref descriptor struct of rank `rank`. Helpful until we have
/// transfer functions implemented.
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuMemHostRegisterMemRef(int64_t rank, StridedMemRefType<char, 1> *descriptor,
int64_t elementSizeBytes) {
// Only densely packed tensors are currently supported.
#ifdef _WIN32
int64_t *denseStrides = (int64_t *)_alloca(rank * sizeof(int64_t));
#else
int64_t *denseStrides = (int64_t *)alloca(rank * sizeof(int64_t));
#endif // _WIN32
int64_t *sizes = descriptor->sizes;
for (int64_t i = rank - 1, runningStride = 1; i >= 0; i--) {
denseStrides[i] = runningStride;
runningStride *= sizes[i];
}
uint64_t sizeBytes = sizes[0] * denseStrides[0] * elementSizeBytes;
int64_t *strides = &sizes[rank];
(void)strides;
for (unsigned i = 0; i < rank; ++i)
assert(strides[i] == denseStrides[i] &&
"Mismatch in computed dense strides");
auto *ptr = descriptor->data + descriptor->offset * elementSizeBytes;
mgpuMemHostRegister(ptr, sizeBytes);
}
// Allows to unregister byte array with the CUDA runtime.
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemHostUnregister(void *ptr) {
ScopedContext scopedContext;
CUDA_REPORT_IF_ERROR(cuMemHostUnregister(ptr));
}
/// Unregisters a memref with the CUDA runtime. `descriptor` is a pointer to a
/// ranked memref descriptor struct of rank `rank`
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuMemHostUnregisterMemRef(int64_t rank,
StridedMemRefType<char, 1> *descriptor,
int64_t elementSizeBytes) {
auto *ptr = descriptor->data + descriptor->offset * elementSizeBytes;
mgpuMemHostUnregister(ptr);
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSetDefaultDevice(int32_t device) {
defaultDevice = device;
}
///
/// Runtime methods using CUDA 12.0+ driver
///
#if (CUDA_VERSION >= 12000)
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuLaunchClusterKernel(
CUfunction function, intptr_t clusterX, intptr_t clusterY,
intptr_t clusterZ, intptr_t gridX, intptr_t gridY, intptr_t gridZ,
intptr_t blockX, intptr_t blockY, intptr_t blockZ, int32_t smem,
CUstream stream, void **params, void **extra, size_t /*paramsCount*/) {
ScopedContext scopedContext;
if (smem > 0) {
// Avoid checking driver as it's more expensive than if statement
int32_t maxShmem = 0;
CUdevice device = getDefaultCuDevice();
CUDA_REPORT_IF_ERROR(cuDeviceGet(&device, /*ordinal=*/defaultDevice));
CUDA_REPORT_IF_ERROR(cuDeviceGetAttribute(
&maxShmem, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN,
device));
if (maxShmem < smem) {
fprintf(stderr,
"Requested shared memory (%dkb) is larger than maximum allowed "
"shared memory (%dkb) for this device\n",
smem, maxShmem);
}
CUDA_REPORT_IF_ERROR(cuFuncSetAttribute(
function, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, smem));
}
CUlaunchConfig config;
config.gridDimX = gridX;
config.gridDimY = gridY;
config.gridDimZ = gridZ;
config.blockDimX = blockX;
config.blockDimY = blockY;
config.blockDimZ = blockZ;
config.sharedMemBytes = smem;
config.hStream = stream;
CUlaunchAttribute launchAttr[2];
launchAttr[0].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION;
launchAttr[0].value.clusterDim.x = clusterX;
launchAttr[0].value.clusterDim.y = clusterY;
launchAttr[0].value.clusterDim.z = clusterZ;
launchAttr[1].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE;
launchAttr[1].value.clusterSchedulingPolicyPreference =
CU_CLUSTER_SCHEDULING_POLICY_SPREAD;
config.numAttrs = 2;
config.attrs = launchAttr;
debug_print("Launching kernel,"
"cluster: %ld, %ld, %ld, "
"grid=%ld,%ld,%ld, "
"threads: %ld, %ld, %ld, "
"smem: %dkb\n",
clusterX, clusterY, clusterZ, gridX, gridY, gridZ, blockX, blockY,
blockZ, smem);
CUDA_REPORT_IF_ERROR(cuLaunchKernelEx(&config, function, params, extra));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuTensorMapEncodeTiled(
CUtensorMap *tensorMap, // Tensor map object
CUtensorMapDataType tensorDataType, // Tensor data type
cuuint32_t tensorRank, // Dimensionality of tensor
void *globalAddress, // Starting address
const cuuint64_t *globalDim, // Tensor size (number of elements)
const cuuint64_t *globalStrides, // Stride size (in bytes)
const cuuint32_t *boxDim, // Traversal box (number of elments)
const cuuint32_t *elementStrides, // Traversal stride
CUtensorMapInterleave interleave, // Type of interleaved layout
CUtensorMapSwizzle swizzle, // Bank swizzling pattern
CUtensorMapL2promotion l2Promotion, // L2 promotion size
CUtensorMapFloatOOBfill oobFill // Padding zfill or NaN fill
) {
ScopedContext scopedContext;
CUDA_REPORT_IF_ERROR(cuTensorMapEncodeTiled(
tensorMap, tensorDataType, tensorRank, globalAddress, globalDim,
globalStrides, boxDim, elementStrides, interleave, swizzle, l2Promotion,
oobFill));
debug_print("Created TMA descriptor\n Addr: %p\n"
"data type : %d\n"
"rank : %d\n"
"globalDim[5]: %zu, %zu, %zu, %zu, %zu\n"
"globalStrides[5]: %zu, %zu, %zu, %zu, %zu\n"
"boxDim[5]: %u, %u, %u, %u, %u\n"
"elementStrides[5]: %u, %u, %u, %u, %u\n"
"interleave: %u \n"
"swizzle: %u \n"
"l2Promotion: %u \n"
"oobFill: %u \n",
(void *)&tensorMap, tensorDataType, tensorRank, globalDim[0],
globalDim[1], globalDim[2], globalDim[3], globalDim[4],
globalStrides[0], globalStrides[1], globalStrides[2],
globalStrides[3], globalStrides[4], boxDim[0], boxDim[1],
boxDim[2], boxDim[3], boxDim[4], elementStrides[0],
elementStrides[1], elementStrides[2], elementStrides[3],
elementStrides[4], interleave, swizzle, l2Promotion, oobFill);
}
template <int Rank>
void mgpuGetMemRefDataAndShape(void *rawDescriptor, char **addr,
uint64_t *globalDim, uint64_t *globalStrides,
const CUtensorMapDataType tensorDataType) {
auto descriptor =
reinterpret_cast<StridedMemRefType<char, Rank> *>(rawDescriptor);
*addr = descriptor->data;
for (int i = 0; i < Rank; ++i) {
globalDim[i] = static_cast<uint64_t>(descriptor->sizes[Rank - i - 1]);
}
static constexpr int elementSizeInBytes[] = {1, 2, 4, 4, 8, 8, 2,
4, 8, 2, 4, 4, 4};
for (int i = 0; i < Rank - 1; ++i) {
globalStrides[i] = static_cast<uint64_t>(
descriptor->strides[Rank - i - 2] * elementSizeInBytes[tensorDataType]);
}
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *mgpuTensorMapEncodeTiledMemref(
int64_t tensorRank, // Dimensionality of tensor
void *rankedDescriptor, // Ranked MemRef descriptor
const CUtensorMapDataType tensorDataType, // Stride size (in bytes)
CUtensorMapInterleave interleave, // Type of interleaved layout
CUtensorMapSwizzle swizzle, // Bank swizzling pattern
CUtensorMapL2promotion l2Promotion, // L2 promotion size
CUtensorMapFloatOOBfill oobFill, // Padding zfill or NaN fill
int64_t *inputBoxDims // Tensor size (number of elements)
) {
CUtensorMap tensorMap;
uint32_t boxDim[5] = {1, 1, 1, 1, 1}, elementStrides[5] = {1, 1, 1, 1, 1};
uint64_t globalDim[5] = {1, 1, 1, 1, 1}, globalStrides[5] = {0};
uint32_t tensorRank32 = uint32_t(tensorRank);
char *globalAddress = nullptr;
switch (tensorRank) {
case 1:
mgpuGetMemRefDataAndShape<1>(rankedDescriptor, &globalAddress, globalDim,
globalStrides, tensorDataType);
break;
case 2:
mgpuGetMemRefDataAndShape<2>(rankedDescriptor, &globalAddress, globalDim,
globalStrides, tensorDataType);
break;
case 3:
mgpuGetMemRefDataAndShape<3>(rankedDescriptor, &globalAddress, globalDim,
globalStrides, tensorDataType);
break;
case 4:
mgpuGetMemRefDataAndShape<4>(rankedDescriptor, &globalAddress, globalDim,
globalStrides, tensorDataType);
break;
case 5:
mgpuGetMemRefDataAndShape<5>(rankedDescriptor, &globalAddress, globalDim,
globalStrides, tensorDataType);
break;
default:
fprintf(
stderr,
"'mgpuTensorMapEncodeTiledMemref' failed with 'rank is too high'\n");
return nullptr;
}
for (int64_t r = 0; r < tensorRank; ++r) {
boxDim[r] = static_cast<uint32_t>(inputBoxDims[tensorRank - r - 1]);
}
ScopedContext scopedContext;
mgpuTensorMapEncodeTiled(&tensorMap, tensorDataType, tensorRank32,
globalAddress, globalDim, globalStrides, boxDim,
elementStrides, interleave, swizzle, l2Promotion,
oobFill);
// Copy created tensor map to device
CUdeviceptr dTensorMap;
CUDA_REPORT_IF_ERROR(cuMemAlloc(&dTensorMap, sizeof(CUtensorMap)));
CUDA_REPORT_IF_ERROR(cuMemcpy(dTensorMap,
reinterpret_cast<CUdeviceptr>(&tensorMap),
sizeof(CUtensorMap)));
return reinterpret_cast<void *>(dTensorMap);
}
#endif
#ifdef MLIR_ENABLE_CUDA_CUSPARSE
///
/// Wrapper methods for the cuSparse library.
///
// Some macro magic to get float/double alpha and beta on host.
// TODO: add support to passing alpha and beta as arguments
#define ALPHABETA(dtp, alpha, beta) \
__nv_bfloat16(alpha##16bf) = 1.0f; \
__nv_bfloat16(beta##16bf) = 1.0f; \
__half(alpha##16f) = 1.0f; \
__half(beta##16f) = 1.0f; \
float(alpha##f) = 1.0f; \
float(beta##f) = 1.0f; \
double(alpha##d) = 1.0; \
double(beta##d) = 1.0; \
const void *(alpha##p) = nullptr; \
const void *(beta##p) = nullptr; \
if (dtp == CUDA_R_16BF || dtp == CUDA_C_16BF) { \
(alpha##p) = reinterpret_cast<void *>(&(alpha##16bf)); \
(beta##p) = reinterpret_cast<void *>(&(beta##16bf)); \
} else if (dtp == CUDA_R_16F || dtp == CUDA_C_16F) { \
(alpha##p) = reinterpret_cast<void *>(&(alpha##16f)); \
(beta##p) = reinterpret_cast<void *>(&(beta##16f)); \
} else if (dtp == CUDA_R_32F || dtp == CUDA_C_32F) { \
(alpha##p) = reinterpret_cast<void *>(&(alpha##f)); \
(beta##p) = reinterpret_cast<void *>(&(beta##f)); \
} else { \
(alpha##p) = reinterpret_cast<void *>(&(alpha##d)); \
(beta##p) = reinterpret_cast<void *>(&(beta##d)); \
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuCreateSparseEnv() {
// ScopedContext is for cuda initialization.
ScopedContext scopedContext;
assert(!cusparse_env && "client called mgpuCreateSparseEnv() twice");
CUSPARSE_REPORT_IF_ERROR(cusparseCreate(&cusparse_env));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuDestroySparseEnv() {
assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
CUSPARSE_REPORT_IF_ERROR(cusparseDestroy(cusparse_env));
cusparse_env = nullptr;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
mgpuCreateDnVec(intptr_t size, void *values, int32_t dtp, CUstream /*stream*/) {
cusparseDnVecDescr_t vec = nullptr;
auto dTp = static_cast<cudaDataType_t>(dtp);
CUSPARSE_REPORT_IF_ERROR(cusparseCreateDnVec(&vec, size, values, dTp))
return reinterpret_cast<void *>(vec);
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuDestroyDnVec(void *v, CUstream /*stream*/) {
cusparseDnVecDescr_t vec = reinterpret_cast<cusparseDnVecDescr_t>(v);
CUSPARSE_REPORT_IF_ERROR(cusparseDestroyDnVec(vec))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
mgpuCreateDnMat(intptr_t rows, intptr_t cols, void *values, int32_t dtp,
CUstream /*stream*/) {
cusparseDnMatDescr_t mat = nullptr;
auto dTp = static_cast<cudaDataType_t>(dtp);
CUSPARSE_REPORT_IF_ERROR(cusparseCreateDnMat(&mat, rows, cols, /*ld=*/cols,
values, dTp, CUSPARSE_ORDER_ROW))
return reinterpret_cast<void *>(mat);
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuDestroyDnMat(void *m, CUstream /*stream*/) {
cusparseDnMatDescr_t mat = reinterpret_cast<cusparseDnMatDescr_t>(m);
CUSPARSE_REPORT_IF_ERROR(cusparseDestroyDnMat(mat))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
mgpuCreateCoo(intptr_t rows, intptr_t cols, intptr_t nnz, void *rowIdxs,
void *colIdxs, void *values, int32_t itp, int32_t dtp,
CUstream /*stream*/) {
cusparseSpMatDescr_t mat = nullptr;
auto iTp = static_cast<cusparseIndexType_t>(itp);
auto dTp = static_cast<cudaDataType_t>(dtp);
CUSPARSE_REPORT_IF_ERROR(cusparseCreateCoo(&mat, rows, cols, nnz, rowIdxs,
colIdxs, values, iTp,
CUSPARSE_INDEX_BASE_ZERO, dTp))
return reinterpret_cast<void *>(mat);
}
#ifdef CUSPARSE_COO_AOS // deprecated in cuSPARSE 11.2
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
mgpuCreateCooAoS(intptr_t rows, intptr_t cols, intptr_t nnz, void *idxs,
void *values, int32_t itp, int32_t dtp, CUstream /*stream*/) {
cusparseSpMatDescr_t mat = nullptr;
auto iTp = static_cast<cusparseIndexType_t>(itp);
auto dTp = static_cast<cudaDataType_t>(dtp);
CUSPARSE_REPORT_IF_ERROR(cusparseCreateCooAoS(
&mat, rows, cols, nnz, idxs, values, iTp, CUSPARSE_INDEX_BASE_ZERO, dTp))
return reinterpret_cast<void *>(mat);
}
#endif // CUSPARSE_COO_AOS
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
mgpuCreateCsr(intptr_t rows, intptr_t cols, intptr_t nnz, void *rowPos,
void *colIdxs, void *values, int32_t ptp, int32_t itp,
int32_t dtp, CUstream /*stream*/) {
cusparseSpMatDescr_t mat = nullptr;
auto pTp = static_cast<cusparseIndexType_t>(ptp);
auto iTp = static_cast<cusparseIndexType_t>(itp);
auto dTp = static_cast<cudaDataType_t>(dtp);
CUSPARSE_REPORT_IF_ERROR(cusparseCreateCsr(&mat, rows, cols, nnz, rowPos,
colIdxs, values, pTp, iTp,
CUSPARSE_INDEX_BASE_ZERO, dTp))
return reinterpret_cast<void *>(mat);
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
mgpuCreateCsc(intptr_t rows, intptr_t cols, intptr_t nnz, void *colPos,
void *rowIdxs, void *values, int32_t ptp, int32_t itp,
int32_t dtp, CUstream /*stream*/) {
cusparseSpMatDescr_t mat = nullptr;
auto pTp = static_cast<cusparseIndexType_t>(ptp);
auto iTp = static_cast<cusparseIndexType_t>(itp);
auto dTp = static_cast<cudaDataType_t>(dtp);
CUSPARSE_REPORT_IF_ERROR(cusparseCreateCsc(&mat, rows, cols, nnz, colPos,
rowIdxs, values, pTp, iTp,
CUSPARSE_INDEX_BASE_ZERO, dTp))
return reinterpret_cast<void *>(mat);
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
mgpuCreateBsr(intptr_t brows, intptr_t bcols, intptr_t bnnz, intptr_t rBsz,
intptr_t cBsz, void *rowPos, void *colIdxs, void *values,
int32_t ptp, int32_t itp, int32_t dtp, CUstream /*stream*/) {
cusparseSpMatDescr_t mat = nullptr;
#if CUSPARSE_VERSION >= 12100
auto pTp = static_cast<cusparseIndexType_t>(ptp);
auto iTp = static_cast<cusparseIndexType_t>(itp);
auto dTp = static_cast<cudaDataType_t>(dtp);
CUSPARSE_REPORT_IF_ERROR(cusparseCreateBsr(
&mat, brows, bcols, bnnz, rBsz, cBsz, rowPos, colIdxs, values, pTp, iTp,
CUSPARSE_INDEX_BASE_ZERO, dTp, CUSPARSE_ORDER_ROW))
#endif
return reinterpret_cast<void *>(mat);
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuDestroySpMat(void *m, CUstream /*stream*/) {
cusparseSpMatDescr_t mat = reinterpret_cast<cusparseSpMatDescr_t>(m);
CUSPARSE_REPORT_IF_ERROR(cusparseDestroySpMat(mat))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t mgpuSpMVBufferSize(
int32_t ma, void *a, void *x, void *y, int32_t ctp, CUstream /*stream*/) {
assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
cusparseDnVecDescr_t vecX = reinterpret_cast<cusparseDnVecDescr_t>(x);
cusparseDnVecDescr_t vecY = reinterpret_cast<cusparseDnVecDescr_t>(y);
cudaDataType_t cTp = static_cast<cudaDataType_t>(ctp);
ALPHABETA(cTp, alpha, beta)
size_t bufferSize = 0;
CUSPARSE_REPORT_IF_ERROR(cusparseSpMV_bufferSize(
cusparse_env, modeA, alphap, matA, vecX, betap, vecY, cTp,
CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize))
return bufferSize;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSpMV(int32_t ma, void *a, void *x,
void *y, int32_t ctp,
void *buf,
CUstream /*stream*/) {
assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
cusparseDnVecDescr_t vecX = reinterpret_cast<cusparseDnVecDescr_t>(x);
cusparseDnVecDescr_t vecY = reinterpret_cast<cusparseDnVecDescr_t>(y);
cudaDataType_t cTp = static_cast<cudaDataType_t>(ctp);
ALPHABETA(cTp, alpha, beta)
CUSPARSE_REPORT_IF_ERROR(cusparseSpMV(cusparse_env, modeA, alphap, matA, vecX,
betap, vecY, cTp,
CUSPARSE_SPMV_ALG_DEFAULT, buf))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t
mgpuSpMMBufferSize(int32_t ma, int32_t mb, void *a, void *b, void *c,
int32_t ctp, CUstream /*stream*/) {
assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
cusparseDnMatDescr_t matB = reinterpret_cast<cusparseDnMatDescr_t>(b);
cusparseDnMatDescr_t matC = reinterpret_cast<cusparseDnMatDescr_t>(c);
cudaDataType_t cTp = static_cast<cudaDataType_t>(ctp);
ALPHABETA(cTp, alpha, beta)
size_t bufferSize = 0;
CUSPARSE_REPORT_IF_ERROR(cusparseSpMM_bufferSize(
cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp,
CUSPARSE_SPMM_ALG_DEFAULT, &bufferSize))
return bufferSize;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSpMM(int32_t ma, int32_t mb,
void *a, void *b, void *c,
int32_t ctp, void *buf,
CUstream /*stream*/) {
assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
cusparseDnMatDescr_t matB = reinterpret_cast<cusparseDnMatDescr_t>(b);
cusparseDnMatDescr_t matC = reinterpret_cast<cusparseDnMatDescr_t>(c);
cudaDataType_t cTp = static_cast<cudaDataType_t>(ctp);
ALPHABETA(cTp, alpha, beta)
CUSPARSE_REPORT_IF_ERROR(cusparseSpMM(cusparse_env, modeA, modeB, alphap,
matA, matB, betap, matC, cTp,
CUSPARSE_SPMM_ALG_DEFAULT, buf))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t
mgpuSDDMMBufferSize(int32_t ma, int32_t mb, void *a, void *b, void *c,
int32_t ctp, CUstream /*stream*/) {
assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
cusparseDnMatDescr_t matA = reinterpret_cast<cusparseDnMatDescr_t>(a);
cusparseDnMatDescr_t matB = reinterpret_cast<cusparseDnMatDescr_t>(b);
cusparseSpMatDescr_t matC = reinterpret_cast<cusparseSpMatDescr_t>(c);
auto cTp = static_cast<cudaDataType_t>(ctp);
ALPHABETA(cTp, alpha, beta)
size_t bufferSize = 0;
CUSPARSE_REPORT_IF_ERROR(cusparseSDDMM_bufferSize(
cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp,
CUSPARSE_SDDMM_ALG_DEFAULT, &bufferSize))
return bufferSize;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSDDMM(int32_t ma, int32_t mb,
void *a, void *b, void *c,
int32_t ctp, void *buf,
CUstream /*stream*/) {
assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
cusparseDnMatDescr_t matA = reinterpret_cast<cusparseDnMatDescr_t>(a);
cusparseDnMatDescr_t matB = reinterpret_cast<cusparseDnMatDescr_t>(b);
cusparseSpMatDescr_t matC = reinterpret_cast<cusparseSpMatDescr_t>(c);
auto cTp = static_cast<cudaDataType_t>(ctp);
ALPHABETA(cTp, alpha, beta)
CUSPARSE_REPORT_IF_ERROR(cusparseSDDMM(cusparse_env, modeA, modeB, alphap,
matA, matB, betap, matC, cTp,
CUSPARSE_SDDMM_ALG_DEFAULT, buf))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
mgpuSpGEMMCreateDescr(CUstream /*stream*/) {
cusparseSpGEMMDescr_t spgemmDesc = nullptr;
CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_createDescr(&spgemmDesc))
return reinterpret_cast<void *>(spgemmDesc);
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuSpGEMMDestroyDescr(void *s, CUstream /*stream*/) {
cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast<cusparseSpGEMMDescr_t>(s);
CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_destroyDescr(spgemmDesc))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t mgpuSpGEMMWorkEstimation(
void *s, int32_t ma, int32_t mb, void *a, void *b, void *c, int32_t ctp,
intptr_t bs, void *buf, CUstream /*stream*/) {
cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast<cusparseSpGEMMDescr_t>(s);
cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
cusparseSpMatDescr_t matB = reinterpret_cast<cusparseSpMatDescr_t>(b);
cusparseSpMatDescr_t matC = reinterpret_cast<cusparseSpMatDescr_t>(c);
auto cTp = static_cast<cudaDataType_t>(ctp);
ALPHABETA(cTp, alpha, beta)
size_t newBufferSize = bs;
CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_workEstimation(
cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp,
CUSPARSE_SPGEMM_DEFAULT, spgemmDesc, &newBufferSize, buf))
return newBufferSize;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t
mgpuSpGEMMCompute(void *s, int32_t ma, int32_t mb, void *a, void *b, void *c,
int32_t ctp, intptr_t bsz2, void *buf2, CUstream /*stream*/) {
cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast<cusparseSpGEMMDescr_t>(s);
cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
cusparseSpMatDescr_t matB = reinterpret_cast<cusparseSpMatDescr_t>(b);
cusparseSpMatDescr_t matC = reinterpret_cast<cusparseSpMatDescr_t>(c);
auto cTp = static_cast<cudaDataType_t>(ctp);
ALPHABETA(cTp, alpha, beta)
size_t newBufferSize2 = bsz2;
CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_compute(
cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp,
CUSPARSE_SPGEMM_DEFAULT, spgemmDesc, &newBufferSize2, buf2))
return newBufferSize2;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuSpGEMMCopy(void *s, int32_t ma, int32_t mb, void *a, void *b, void *c,
int32_t ctp, CUstream /*stream*/) {
cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast<cusparseSpGEMMDescr_t>(s);
cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
cusparseSpMatDescr_t matB = reinterpret_cast<cusparseSpMatDescr_t>(b);
cusparseSpMatDescr_t matC = reinterpret_cast<cusparseSpMatDescr_t>(c);
auto cTp = static_cast<cudaDataType_t>(ctp);
ALPHABETA(cTp, alpha, beta)
CUSPARSE_REPORT_IF_ERROR(
cusparseSpGEMM_copy(cusparse_env, modeA, modeB, alphap, matA, matB, betap,
matC, cTp, CUSPARSE_SPGEMM_DEFAULT, spgemmDesc))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuSpMatGetSize(void *m, void *r, void *c, void *n, CUstream /*stream*/) {
cusparseConstSpMatDescr_t matDescr =
reinterpret_cast<cusparseConstSpMatDescr_t>(m);
int64_t *rows = reinterpret_cast<int64_t *>(r);
int64_t *cols = reinterpret_cast<int64_t *>(c);
int64_t *nnz = reinterpret_cast<int64_t *>(n);
CUSPARSE_REPORT_IF_ERROR(cusparseSpMatGetSize(matDescr, rows, cols, nnz));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuSetCsrPointers(void *m, void *p, void *c, void *v, CUstream /*stream*/) {
cusparseSpMatDescr_t matDescr = reinterpret_cast<cusparseSpMatDescr_t>(m);
CUSPARSE_REPORT_IF_ERROR(cusparseCsrSetPointers(matDescr, p, c, v));
}
#ifdef MLIR_ENABLE_CUDA_CUSPARSELT
///
/// Wrapper methods for the cuSparseLt library.
///
struct cusparseLtSpMatHandleAndData {
cusparseLtMatDescriptor_t mat;
// TODO: the following three are associated with the SpMM operator rather than
// the sparse matrix. Create workspace buffers and pass them to the SpMM
// execution.
cusparseLtMatmulAlgSelection_t alg_sel;
cusparseLtMatmulPlan_t plan;
cusparseLtMatmulDescriptor_t matmul;
void *values{nullptr};
};
struct cusparseLtDnMatHandleAndData {
cusparseLtMatDescriptor_t mat;
void *values{nullptr};
};
static_assert(sizeof(cusparseLtHandle_t) == 11024,
"Unexpected cusparseLt handle size");
static_assert(sizeof(cusparseLtSpMatHandleAndData) == 44104,
"Unexpected cusparseLt sparse matrix handle size");
static_assert(sizeof(cusparseLtDnMatHandleAndData) == 11032,
"Unexpected cusparseLt dense matrix handle size");
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuCreateSparseLtEnv() {
// ScopedContext is for cuda initialization.
ScopedContext scopedContext;
assert(!cusparseLt_initiated &&
"client called mgpuCreateSparseLtEnv() twice");
// Note that cuSparseLt still uses cusparseStatus_t.
CUSPARSE_REPORT_IF_ERROR(cusparseLtInit(&cusparseLt_env));
cusparseLt_initiated = true;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuDestroySparseLtEnv() {
assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()");
CUSPARSE_REPORT_IF_ERROR(cusparseLtDestroy(&cusparseLt_env));
cusparseLt_initiated = false;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuCreateCuSparseLtDnMat(void *dh, intptr_t rows, intptr_t cols, void *values,
int32_t dtp, CUstream /*stream*/) {
assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()");
auto dnmat_handle = reinterpret_cast<cusparseLtDnMatHandleAndData *>(dh);
dnmat_handle->values = values;
auto dTp = static_cast<cudaDataType_t>(dtp);
// Assume row-major when deciding lda.
const uint32_t alignment = 16;
CUSPARSE_REPORT_IF_ERROR(cusparseLtDenseDescriptorInit(
&cusparseLt_env, &(dnmat_handle->mat), rows, cols, /*lda=*/cols,
alignment, dTp, CUSPARSE_ORDER_ROW))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuDestroyCuSparseLtDnMat(void *dh, CUstream /*stream*/) {
auto dnmat_handle = reinterpret_cast<cusparseLtDnMatHandleAndData *>(dh);
CUSPARSE_REPORT_IF_ERROR(cusparseLtMatDescriptorDestroy(&(dnmat_handle->mat)))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuCusparseLtCreate2To4SpMat(void *sh, intptr_t rows, intptr_t cols,
void *values, int32_t dtp, CUstream /*stream*/) {
assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()");
auto spmat_handle = reinterpret_cast<cusparseLtSpMatHandleAndData *>(sh);
spmat_handle->values = values;
auto dTp = static_cast<cudaDataType_t>(dtp);
// Assume row-major when deciding lda.
const uint32_t alignment = 16;
CUSPARSE_REPORT_IF_ERROR(cusparseLtStructuredDescriptorInit(
&cusparseLt_env, &(spmat_handle->mat), rows, cols, /*ld=*/cols, alignment,
dTp, CUSPARSE_ORDER_ROW, CUSPARSELT_SPARSITY_50_PERCENT))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuDestroyCuSparseLtSpMat(void *sh, CUstream /*stream*/) {
auto spmat_handle = reinterpret_cast<cusparseLtSpMatHandleAndData *>(sh);
CUSPARSE_REPORT_IF_ERROR(cusparseLtMatDescriptorDestroy(&(spmat_handle->mat)))
}
// Several things are being done in this stage, algorithm selection, planning,
// and returning workspace and compressed matrices data buffer sizes.
// The parameter prune_flag is used to indicate whether pruning and pruning
// check will happen 0 means not prune or prune check, 1 means prune, 2 means
// prune & prune check
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuCuSparseLtSpMMBufferSize(void *bs, int32_t ma, int32_t mb, void *a, void *b,
void *c, int32_t ctp, int32_t prune_flag,
CUstream stream) {
assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()");
// TODO: support more advanced settings, e.g., the input right operand is a
// sparse matrix assuming matA is the sparse matrix
auto matA = reinterpret_cast<cusparseLtSpMatHandleAndData *>(a);
auto matB = reinterpret_cast<cusparseLtDnMatHandleAndData *>(b);
auto matC = reinterpret_cast<cusparseLtDnMatHandleAndData *>(c);
auto workspace_size = reinterpret_cast<size_t *>(bs);
auto compressed_size = &(reinterpret_cast<size_t *>(bs)[1]);
auto compressed_buffer_size = &(reinterpret_cast<size_t *>(bs)[2]);
auto cTp = static_cast<cusparseComputeType>(ctp);
cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulDescriptorInit(
&cusparseLt_env, &(matA->matmul), modeA, modeB, &(matA->mat),
&(matB->mat), &(matC->mat), &(matC->mat), cTp))
CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulAlgSelectionInit(
&cusparseLt_env, &(matA->alg_sel), &(matA->matmul),
CUSPARSELT_MATMUL_ALG_DEFAULT))
int alg = 0;
CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulAlgSetAttribute(
&cusparseLt_env, &(matA->alg_sel), CUSPARSELT_MATMUL_ALG_CONFIG_ID, &alg,
sizeof(alg)))
CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulPlanInit(
&cusparseLt_env, &(matA->plan), &(matA->matmul), &(matA->alg_sel)))
// Pruning step (in-place).
if (prune_flag > 0)
CUSPARSE_REPORT_IF_ERROR(cusparseLtSpMMAPrune(
&cusparseLt_env, &(matA->matmul), matA->values, matA->values,
CUSPARSELT_PRUNE_SPMMA_STRIP, stream))
// Check structure of A.
// Note that this adds a synchronization on the stream.
// TODO: Do we want that?
if (prune_flag == 2) {
int *dvalid = (int *)mgpuMemAlloc(sizeof(int), stream, false);
CUSPARSE_REPORT_IF_ERROR(cusparseLtSpMMAPruneCheck(
&cusparseLt_env, &(matA->matmul), matA->values, dvalid, stream))
int valid = 0;
mgpuMemcpy(&valid, dvalid, sizeof(int), stream);
mgpuStreamSynchronize(stream);
mgpuMemFree(dvalid, stream);
if (valid != 0)
fprintf(stderr, "CUPARSE-LT: sparse matrix is not 2:4; computed results "
"will be invalid\n");
}
CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulGetWorkspace(
&cusparseLt_env, &(matA->plan), workspace_size))
CUSPARSE_REPORT_IF_ERROR(cusparseLtSpMMACompressedSize(
&cusparseLt_env, &(matA->plan), compressed_size, compressed_buffer_size))
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuCuSparseLtSpMM(void *a, void *b, void *c, void *d_workspace,
void *dA_compressed, void *dA_compressedBuffer,
CUstream stream) {
assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()");
auto matA = reinterpret_cast<cusparseLtSpMatHandleAndData *>(a);
auto matB = reinterpret_cast<cusparseLtDnMatHandleAndData *>(b);
auto matC = reinterpret_cast<cusparseLtDnMatHandleAndData *>(c);
ALPHABETA(CUDA_R_32F, alpha, beta)
CUSPARSE_REPORT_IF_ERROR(
cusparseLtSpMMACompress(&cusparseLt_env, &(matA->plan), (matA->values),
dA_compressed, dA_compressedBuffer, stream))
// TODO: add support to multi-stream execution
// Perform the matrix multiplication. D = A*B+C using C==D for now
CUSPARSE_REPORT_IF_ERROR(
cusparseLtMatmul(&cusparseLt_env, &(matA->plan), alphap, dA_compressed,
matB->values, betap, matC->values,
/*dD*/ matC->values, d_workspace, nullptr, 0))
CUSPARSE_REPORT_IF_ERROR(cusparseLtMatDescriptorDestroy(&(matA->mat)))
// destroy the plan associated with the sparse matrix
CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulPlanDestroy(&(matA->plan)))
}
#endif // MLIR_ENABLE_CUDA_CUSPARSELT
#endif // MLIR_ENABLE_CUDA_CUSPARSE