//===-- TosaOps.td - TOSA dialect operation definitions ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the operation set for the TOSA dialect as defined in
// the TOSA specfication (https://developer.mlplatform.org/w/tosa/).
//
//===----------------------------------------------------------------------===//
#ifndef TOSA_OPS
#define TOSA_OPS
include "mlir/IR/OpBase.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
include "mlir/Interfaces/InferTypeOpInterface.td"
include "mlir/Interfaces/LoopLikeInterface.td"
include "mlir/Dialect/Tosa/IR/TosaInterfaces.td"
include "mlir/Dialect/Tosa/IR/TosaTypesBase.td"
include "mlir/Dialect/Tosa/IR/TosaOpBase.td"
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.2
// Operator Class: Tensor Data Engine Operators.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: argmax
//===----------------------------------------------------------------------===//
def Tosa_ArgMaxOp : Tosa_InferShapedTypeOp<"argmax"> {
let summary = "Perform argmax on the input.";
let description = [{
This returns the index with the largest value across the given axis of the
input tensor.
}];
let arguments = (ins
Tosa_Tensor: $input,
I32Attr: $axis
);
let results = (outs
Tosa_Tensor: $output
);
let hasFolder = 1;
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Accumulator types.
//===----------------------------------------------------------------------===//
def Tosa_AccType : AnyTypeOf<[I<32>, SI<32>, F16, F32]>;
//===----------------------------------------------------------------------===//
// Operator: avg_pool2d
//===----------------------------------------------------------------------===//
def Tosa_AvgPool2dOp : Tosa_InferShapedTypeOp<"avg_pool2d"> {
let summary = "Performs max pooling on the input.";
let description = [{
This performs an average pooling over the given input tensor. A sliding
window of size given by <kernel size> is passed over the input tensor, with
the mean value being placed in the output tensor.
}];
let arguments = (ins
Tosa_Tensor4D:$input,
Tosa_IntArrayAttr2:$kernel,
Tosa_IntArrayAttr2:$stride,
Tosa_IntArrayAttr4:$pad,
TypeAttrOf<Tosa_AccType>:$acc_type,
OptionalAttr<Tosa_UnaryOpQuantizationAttr>:$quantization_info
);
let results = (outs
Tosa_Tensor4D:$output
);
let builders = [Tosa_AvgPool2dOpQuantInfoBuilder];
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Operator: conv2d
//===----------------------------------------------------------------------===//
def Tosa_Conv2DOp : Tosa_InferShapedTypeOp<"conv2d"> {
let summary = "2D Convolution Operator";
let description = [{
Performs a 2D convolution over the given tensor input, using the weight
tensor.
}];
let arguments = (ins
Tosa_Tensor4D:$input,
TosaTensorRankOf<[Tosa_Weight], [4]>:$weight,
Tosa_Tensor1D:$bias,
Tosa_IntArrayAttr4:$pad,
Tosa_IntArrayAttr2:$stride,
Tosa_IntArrayAttr2:$dilation,
OptionalAttr<Tosa_ConvOpQuantizationAttr>:$quantization_info,
DefaultValuedOptionalAttr<BoolAttr, "false">:$local_bound
);
let results = (outs
Tosa_Tensor4D:$output
);
let builders = [Tosa_ConvOpQuantInfoBuilder];
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Operator: conv3d
//===----------------------------------------------------------------------===//
def Tosa_Conv3DOp : Tosa_InferShapedTypeOp<"conv3d"> {
let summary = "3D Convolution operator";
let description = [{
Performs a 3D convolution over the given input tensor.
}];
let arguments = (ins
Tosa_Tensor5D:$input,
TosaTensorRankOf<[Tosa_Weight], [5]>:$weight,
Tosa_Tensor1D:$bias,
Tosa_IntArrayAttr6:$pad,
Tosa_IntArrayAttr3:$stride,
Tosa_IntArrayAttr3:$dilation,
OptionalAttr<Tosa_ConvOpQuantizationAttr>:$quantization_info,
DefaultValuedOptionalAttr<BoolAttr, "false">:$local_bound
);
let results = (outs
Tosa_Tensor5D:$output
);
let builders = [Tosa_ConvOpQuantInfoBuilder];
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Operator: depthwise_conv2d
//===----------------------------------------------------------------------===//
def Tosa_DepthwiseConv2DOp : Tosa_InferShapedTypeOp<"depthwise_conv2d"> {
let summary = "Depthwise 2D Convolution operator";
let description = [{
Performs 2D convolutions separately over each channel of the given tensor
input, using the weight tensor.
}];
let arguments = (ins
Tosa_Tensor4D:$input,
TosaTensorRankOf<[Tosa_Weight], [4]>:$weight,
Tosa_Tensor1D:$bias,
Tosa_IntArrayAttr4:$pad,
Tosa_IntArrayAttr2:$stride,
Tosa_IntArrayAttr2:$dilation,
OptionalAttr<Tosa_ConvOpQuantizationAttr>:$quantization_info,
DefaultValuedOptionalAttr<BoolAttr, "false">:$local_bound
);
let results = (outs
Tosa_Tensor4D:$output
);
let builders = [Tosa_ConvOpQuantInfoBuilder];
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Operator: fft2d
//===----------------------------------------------------------------------===//
def Tosa_FFT2dOp : Tosa_InferShapedTypeOp<"fft2d"> {
let summary = "Performs FFT2D operation on the input.";
let description = [{
Performs a batched complex 2D Fast Fourier Transform over the input. The
complex input values are constructed from the corresponding values in the
input_real and input_imag tensors. The resulting values in the output are
split into the output_real and output_imag tensors. No normalization is
applied on either the forward or inverse versions of the operation.
Example:
```mlir
%out_real, %out_imag = tosa.fft2d %in_real, %in_imag : (tensor<8x9xf32>, tensor<8x9xf32>) -> (tensor<8x9xf32>, tensor<8x9xf32>)
```
}];
let arguments = (ins
Tosa_Tensor3D:$input_real,
Tosa_Tensor3D:$input_imag,
BoolAttr:$inverse,
DefaultValuedOptionalAttr<BoolAttr, "false">:$local_bound
);
let results = (outs
Tosa_Tensor3D:$output_real,
Tosa_Tensor3D:$output_imag
);
let assemblyFormat = [{
$input_real `,` $input_imag attr-dict `:` `(` type($input_real) `,`
type($input_imag) `)` `->` `(` type($output_real) `,` type($output_imag) `)`
}];
}
//===----------------------------------------------------------------------===//
// Operator: fully_connected
//===----------------------------------------------------------------------===//
def Tosa_FullyConnectedOp : Tosa_InferShapedTypeOp<"fully_connected"> {
let summary = "Fully Connected operator";
let description = [{
Performs a fully connected network.
}];
let arguments = (ins
Tosa_Tensor2D:$input,
TosaTensorRankOf<[Tosa_Weight], [2]>:$weight,
Tosa_Tensor1D:$bias,
OptionalAttr<Tosa_ConvOpQuantizationAttr>:$quantization_info
);
let results = (outs
Tosa_Tensor2D:$output
);
let builders = [Tosa_FCOpQuantInfoBuilder];
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Operator: matmul
//===----------------------------------------------------------------------===//
def Tosa_MatMulOp : Tosa_InferShapedTypeOp<"matmul"> {
let summary = "Matrix multiplication with bias";
let description = [{
Performs a two dimensional matrix multiplication. This allows both inputs to
be activations, rather than reserving weights as an attribute in the
FULLY_CONNECTED operator.
}];
let arguments = (ins
Tosa_Tensor3D:$a,
Tosa_Tensor3D:$b,
OptionalAttr<Tosa_MatMulOpQuantizationAttr>:$quantization_info
);
let results = (outs
Tosa_Tensor3D:$c
);
let builders = [Tosa_MatMulOpQuantInfoBuilder];
}
//===----------------------------------------------------------------------===//
// Operator: max_pool2d
//===----------------------------------------------------------------------===//
def Tosa_MaxPool2dOp : Tosa_InferShapedTypeOp<"max_pool2d"> {
let summary = "Performs max pooling on the input.";
let description = [{
This performs a max pooling over the given input tensor. A sliding window of
size given by <kernel size> is passed over the input tensor, with the
maximum value being placed in the
output tensor.
}];
let arguments = (ins
Tosa_Tensor4D:$input,
Tosa_IntArrayAttr2:$kernel,
Tosa_IntArrayAttr2:$stride,
Tosa_IntArrayAttr4:$pad
);
let results = (outs
Tosa_Tensor4D:$output
);
let hasCanonicalizer = 1;
}
//===----------------------------------------------------------------------===//
// Operator: rfft2d
//===----------------------------------------------------------------------===//
def Tosa_RFFT2dOp : Tosa_InferShapedTypeOp<"rfft2d"> {
let summary = "Performs RFFT2D operation on the input.";
let description = [{
Performs a batched 2D real-valued Fast Fourier Transform over the input where
the input tensor consists of real values producing complex valued output. The
complex output values will be split into the output_real and output_imag
tensor arguments. RFFT2D takes advantage of Hermitian symmetry to only
calculate the first half of the final output axis. Imaginary values with
locations (0,0), (0,W/2), (H/2,0) and (H/2,W/2) are zero.
Example:
```mlir
%real, %imag = tosa.rfft2d %in : (tensor<8x16xf32>) -> (tensor<8x9xf32>, tensor<8x9xf32>)
```
}];
let arguments = (ins
Tosa_Tensor3D:$input,
DefaultValuedOptionalAttr<BoolAttr, "false">:$local_bound
);
let results = (outs
Tosa_Tensor3D:$output_real,
Tosa_Tensor3D:$output_imag
);
let assemblyFormat = [{
$input attr-dict `:` `(` type($input) `)` `->` `(` type($output_real) `,` type($output_imag) `)`
}];
}
//===----------------------------------------------------------------------===//
// Operator: transpose_conv2d
//===----------------------------------------------------------------------===//
def Tosa_TransposeConv2DOp : Tosa_InferShapedTypeOp<"transpose_conv2d"> {
let summary = "Transpose 2D Convolution operator.";
let description = [{
Performs a 2D transposed convolution over the given tensor input, using the
weights tensor.
}];
let arguments = (ins
Tosa_Tensor4D:$input,
TosaTensorRankOf<[Tosa_Weight], [4]>:$filter,
Tosa_Tensor1D:$bias,
Tosa_IntArrayAttr4:$out_pad,
Tosa_IntArrayAttr2:$stride,
Tosa_IntArrayAttr4:$out_shape,
OptionalAttr<Tosa_ConvOpQuantizationAttr>:$quantization_info,
DefaultValuedOptionalAttr<BoolAttr, "false">:$local_bound
);
let results = (outs
Tosa_Tensor4D:$output
);
let builders = [Tosa_TransConvOpQuantInfoBuilder];
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.3
// Operator Class: Activation Functions.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: clamp
//===----------------------------------------------------------------------===//
def Tosa_ClampOp : Tosa_ElementwiseOp<"clamp"> {
let summary = "Computes clamp(features, min, max).";
let description = [{
Clamp to an arbitrary minimum and maximum value.
Maximum and minimum values are specified as values in the range of the
input type.
No zero point subtraction is done to the values, thus to clamp to the zero
point value, the zero point itself should be supplied as the minimum value.
}];
let arguments = (ins
Tosa_Tensor:$input,
I64Attr:$min_int,
I64Attr:$max_int,
Tosa_FloatAttr:$min_fp,
Tosa_FloatAttr:$max_fp
);
let results = (outs
Tosa_Tensor:$output
);
let hasCanonicalizer = 1;
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Operator: sigmoid
//===----------------------------------------------------------------------===//
def Tosa_SigmoidOp : Tosa_ElementwiseOp<"sigmoid"> {
let summary = "Computes elementwise sigmoid of input.";
let description = [{
Sigmoid function: output = 1 / (1 + exp(-input))
For quantized integer data types, the TABLE operator should be used instead
with the following definition. The sigmoid table has 513 entries each of
16-bit precision and covering the input range -16.0 to +16.0
in steps of 1/16.
}];
let arguments = (ins
Tosa_Tensor:$input
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: tanh
//===----------------------------------------------------------------------===//
def Tosa_TanhOp : Tosa_ElementwiseOp<"tanh", [SameOperandsAndResultElementType]> {
let summary = "Computes elementwise hyperbolic tangent of input";
let description = [{
Parameterized hyperbolic tangent.
For quantized integer data types, the TABLE operator should be used instead
with the following definition. The tanh_table has 513 entries each of
16-bit precision and covering the input range -8.0 to +8.0 in steps of 1/32.
}];
let arguments = (ins
Tosa_Tensor:$input
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: erf
//===----------------------------------------------------------------------===//
def Tosa_ErfOp : Tosa_Op<"erf", [
DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
["inferReturnTypeComponents"]>,
Pure]> {
let summary = "Computes gauss error function of input";
let description = [{
Gauss error function: $ erf(x) = \frac{2}{\sqrt(\pi)} \int_{0}^{x} e^{-t^2} \,dt $
For quantized integer data types, the TABLE operator should be used instead
with the following definition. The erf_table has 513 entries each of
16-bit/8-bit precision and covering the input range -4.0 to +4.0 in steps of 1/64.
}];
let arguments = (ins
Tosa_Tensor:$input
);
let results = (outs
Tosa_Tensor:$output
);
let assemblyFormat = "operands attr-dict `:` functional-type(operands, results)";
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.4
// Operator Class: Elementwise unary/binary/ternary operators.
// Operator Subclass: Elementwise binary ops.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: add
//===----------------------------------------------------------------------===//
def Tosa_AddOp : Tosa_ElementwiseOp<"add", [
Commutative,
SameOperandsAndResultElementType]> {
let summary = "Elementwise addition operator";
let description = [{
Elementwise addition of input1 and input2. Axis of size 1 will be broadcast,
as necessary.
Example:
```mlir
// Elementwise addition.
%out = tosa.add %in1, %in2 : tensor<12x6xf32>, tensor<12x6xf32> -> tensor<12x6xf32>
// Elementwise addition with broadcasting.
%out = tosa.add %in1, %in2 : tensor<12x6xsi32>, tensor<1x1xsi32> -> tensor<12x6xsi32>
```
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: arithmetic_right_shift
//===----------------------------------------------------------------------===//
def Tosa_ArithmeticRightShiftOp : Tosa_ElementwiseOp<"arithmetic_right_shift",
[SameOperandsAndResultElementType]> {
let summary = "Elementwise Arithmetic Right Shift";
let description = [{
Elementwise arithmetic right shift of input1 by the amount specified in
input2. Axis of size 1 will be broadcast, as necessary.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2,
BoolAttr:$round
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: bitwise_and
//===----------------------------------------------------------------------===//
def Tosa_BitwiseAndOp : Tosa_ElementwiseOp<"bitwise_and", [
Commutative,
SameOperandsAndResultElementType]> {
let summary = "Bitwise AND operator";
let description = [{
Elementwise bitwise AND of input1 and input2. Axis of size 1
will be broadcast as necessary.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: bitwise_or
//===----------------------------------------------------------------------===//
def Tosa_BitwiseOrOp : Tosa_ElementwiseOp<"bitwise_or", [
Commutative,
SameOperandsAndResultElementType]> {
let summary = "Bitwise OR operator";
let description = [{
Elementwise bitwise OR of input1 and input2. Axis of size 1 will be
broadcast as necessary.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: bitwise_xor
//===----------------------------------------------------------------------===//
def Tosa_BitwiseXorOp : Tosa_ElementwiseOp<"bitwise_xor", [
Commutative,
SameOperandsAndResultElementType]> {
let summary = "Bitwise XOR operator";
let description = [{
Elementwise bitwise XOR of input1 and input2. Axis of size 1 will be
broadcast as necessary.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: int_div
//===----------------------------------------------------------------------===//
def Tosa_IntDivOp : Tosa_ElementwiseOp<"int_div", [SameOperandsAndResultElementType]> {
let summary = "Integer divide operator";
let description = [{
Elementwise integer divide operator of input1 by input2. Axis of size 1
will be broadcast, as necessary.
}];
let arguments = (ins
Tosa_Int32Tensor:$input1,
Tosa_Int32Tensor:$input2
);
let results = (outs
Tosa_Int32Tensor:$output
);
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: logical_and
//===----------------------------------------------------------------------===//
def Tosa_LogicalAndOp : Tosa_ElementwiseOp<"logical_and", [
Commutative,
SameOperandsAndResultElementType]> {
let summary = "Returns the truth value of x AND y element-wise.";
let description = [{
Elementwise logical AND of input1 and input2. Axis of size 1 will be
broadcast, as necessary.
}];
let arguments = (ins
Tosa_I1Tensor:$input1,
Tosa_I1Tensor:$input2
);
let results = (outs
Tosa_I1Tensor:$z
);
}
//===----------------------------------------------------------------------===//
// Operator: logical_left_shift
//===----------------------------------------------------------------------===//
def Tosa_LogicalLeftShiftOp : Tosa_ElementwiseOp<"logical_left_shift",
[SameOperandsAndResultElementType]> {
let summary = "Elementwise Logical Left Shift";
let description = [{
Elementwise left shift of input1 and input2. Axis of size 1 will be
broadcast, as necessary.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: logical_right_shift
//===----------------------------------------------------------------------===//
def Tosa_LogicalRightShiftOp : Tosa_ElementwiseOp<"logical_right_shift",
[SameOperandsAndResultElementType]> {
let summary = "Elementwise Logical Right Shift";
let description = [{
Elementwise logical right shift of input1 by the amount specified in input2.
Axis of size 1 will be broadcast, as necessary.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: logical_or
//===----------------------------------------------------------------------===//
def Tosa_LogicalOrOp : Tosa_ElementwiseOp<"logical_or", [
Commutative,
SameOperandsAndResultElementType]> {
let summary = "Returns the truth value of x OR y element-wise.";
let description = [{
Elementwise logical OR of input1 and input2. Axis of size 1 will be
broadcast as necessary.
}];
let arguments = (ins
Tosa_I1Tensor:$input1,
Tosa_I1Tensor:$input2
);
let results = (outs
Tosa_I1Tensor:$z
);
}
//===----------------------------------------------------------------------===//
// Operator: logical_xor
//===----------------------------------------------------------------------===//
def Tosa_LogicalXorOp : Tosa_ElementwiseOp<"logical_xor", [
Commutative,
SameOperandsAndResultElementType]> {
let summary = "Returns the truth value of x XOR y element-wise.";
let description = [{
Elementwise logical XOR of input1 and input2. Axis of size 1 will be
broadcast as necessary.
}];
let arguments = (ins
Tosa_I1Tensor:$input1,
Tosa_I1Tensor:$input2
);
let results = (outs
Tosa_I1Tensor:$z
);
}
//===----------------------------------------------------------------------===//
// Operator: maximum
//===----------------------------------------------------------------------===//
def Tosa_MaximumOp : Tosa_ElementwiseOp<"maximum", [
Commutative,
SameOperandsAndResultElementType]> {
let summary = "Elementwise Maximum";
let description = [{
Elementwise max of input1 and input2. Axis of size 1 will be broadcast, as
necessary.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: minimum
//===----------------------------------------------------------------------===//
def Tosa_MinimumOp : Tosa_ElementwiseOp<"minimum", [
Commutative,
SameOperandsAndResultElementType]> {
let summary = "Elementwise Minimum";
let description = [{
Elementwise minimum of input1 and input2. Axis of size 1
will be broadcast, as necessary.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_Tensor:$output
);
}
def MulOperandsAndResultElementType :
NativeOpTrait<"MulOperandsAndResultElementType"> {
let cppNamespace = "mlir::OpTrait::tosa";
}
//===----------------------------------------------------------------------===//
// Operator: mul
//===----------------------------------------------------------------------===//
def Tosa_MulOp : Tosa_ElementwiseOp<"mul", [
Commutative,
MulOperandsAndResultElementType]> {
let summary = "Multiplication operator";
let description = [{
Elementwise multiplication (Hadamard product) of input1 and input2.
Axis of size 1 will be broadcast, as necessary.
i8/i16 input type can be promoted to i32 result type.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2,
I8Attr:$shift
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: pow
//===----------------------------------------------------------------------===//
def Tosa_PowOp : Tosa_ElementwiseOp<"pow", [SameOperandsAndResultElementType]> {
let summary = "Computes the power of one value to another.";
let description = [{
Elementwise input1 raised to the power of input2.
Axis of size 1 will be broadcast, as necessary.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_Tensor:$z
);
}
//===----------------------------------------------------------------------===//
// Operator: sub
//===----------------------------------------------------------------------===//
def Tosa_SubOp : Tosa_ElementwiseOp<"sub", [SameOperandsAndResultElementType]> {
let summary = "Elementwise subtraction operator";
let description = [{
Elementwise subtraction of input1 and input2. Axis of size 1 will be
broadcast as necessary.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: table
//===----------------------------------------------------------------------===//
def Tosa_TableOp : Tosa_InferShapedTypeOp<"table"> {
let summary = "Table lookup op";
let description = [{
Interpolated table lookup operation. Input values are scaled to create a
fixed-point 9.7 value. The high 9 bits are used to index into the table.
The fractional bits are used to interpolate based on the looked up value and
the index+1 value in the table. The TABLE operator then returns a 16.7
interpolated value. Note that there must be 513 values to handle the full
range of inputs.
The TABLE operator is expected to be used as follows:
* A RESCALE node is expected before the TABLE operator to scale the input
to a full int16_t range for the table lookup
* If an int16_t result is required then follow the TABLE operator with a
RESCALE with a right shift of 7
* If an int8_t result is required then follow the TABLE operator with a
RESCALE with a right shift of 15
}];
let arguments = (ins
Tosa_Tensor: $input1,
Tosa_Tensor1D: $table
);
let results = (outs
Tosa_Tensor:$output
);
let assemblyFormat = [{
$input1 `,` $table attr-dict `:` `(` type($input1) `,` type($table) `)` `->` type($output)
}];
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.5
// Operator Class: Elementwise unary/binary/ternary operators.
// Operator Subclass: Elementwise unary ops.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: abs
//===----------------------------------------------------------------------===//
def Tosa_AbsOp : Tosa_ElementwiseOp<"abs", [SameOperandsAndResultElementType]> {
let summary = "Elementwise abs op";
let description = [{
Elementwise absolute value operation
Example:
```mlir
%out = tosa.abs(%in) : (tensor<21x3xf32>) -> tensor<21x3xf32>
```
}];
let arguments = (ins
Tosa_Tensor:$input1
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: bitwise_not
//===----------------------------------------------------------------------===//
def Tosa_BitwiseNotOp : Tosa_ElementwiseOp<"bitwise_not",
[SameOperandsAndResultElementType]> {
let summary = "Bitwise NOT operator";
let description = [{
Elementwise bitwise NOT of input tensor.
}];
let arguments = (ins
Tosa_Tensor:$input1
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: ceil
//===----------------------------------------------------------------------===//
def Tosa_CeilOp : Tosa_ElementwiseOp<"ceil", [SameOperandsAndResultElementType]> {
let summary = "Elementwise ceil op";
let description = [{
Elementwise ceiling operation
}];
let arguments = (ins
Tosa_Tensor:$input1
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: clz
//===----------------------------------------------------------------------===//
def Tosa_ClzOp : Tosa_ElementwiseOp<"clz", [SameOperandsAndResultElementType]> {
let summary = "Elementwise count leading zero op";
let description = [{
Elementwise count leading zeros operation
}];
let arguments = (ins
Tosa_Tensor:$input1
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: cos
//===----------------------------------------------------------------------===//
def Tosa_CosOp : Tosa_ElementwiseOp<"cos",
[SameOperandsAndResultElementType]> {
let summary = "Elementwise cos op";
let description = [{
Elementwise cosine operation for values given in radians.
}];
let arguments = (ins
Tosa_FloatTensor:$input1
);
let results = (outs
Tosa_FloatTensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: exp
//===----------------------------------------------------------------------===//
def Tosa_ExpOp : Tosa_ElementwiseOp<"exp", [SameOperandsAndResultElementType]> {
let summary = "Elementwise exp op";
let description = [{
Elementwise e to the x operation
}];
let arguments = (ins
Tosa_Tensor:$input1
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: floor
//===----------------------------------------------------------------------===//
def Tosa_FloorOp : Tosa_ElementwiseOp<"floor", [SameOperandsAndResultElementType]> {
let summary = "Elementwise floor op";
let description = [{
Elementwise floor operation
}];
let arguments = (ins
Tosa_Tensor:$input1
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: log
//===----------------------------------------------------------------------===//
def Tosa_LogOp : Tosa_ElementwiseOp<"log", [SameOperandsAndResultElementType]> {
let summary = "Elementwise log op";
let description = [{
Elementwise natural logarithm operation
}];
let arguments = (ins
Tosa_Tensor:$input1
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: logical_not
//===----------------------------------------------------------------------===//
def Tosa_LogicalNotOp : Tosa_ElementwiseOp<"logical_not",
[SameOperandsAndResultElementType]> {
let summary = "Returns the truth value of NOT x element-wise.";
let description = [{
Elementwise logical NOT of input.
}];
let arguments = (ins
Tosa_I1Tensor:$input1
);
let results = (outs
Tosa_I1Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: negate
//===----------------------------------------------------------------------===//
def Tosa_NegateOp : Tosa_ElementwiseOp<"negate",
[SameOperandsAndResultElementType]> {
let summary = "Elementwise negate op";
let description = [{
Elementwise negation operation
}];
let arguments = (ins
Tosa_Tensor:$input1,
OptionalAttr<Tosa_UnaryOpQuantizationAttr>:$quantization_info
);
let results = (outs
Tosa_Tensor:$output
);
let builders = [Tosa_UnaryOpQuantInfoBuilder];
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: reciprocal
//===----------------------------------------------------------------------===//
def Tosa_ReciprocalOp : Tosa_ElementwiseOp<"reciprocal",
[SameOperandsAndResultElementType]> {
let summary = "Elementwise reciprocal op";
let description = [{
Elementwise reciprocal operation. For integer operation, a TABLE should be
used with the appropriate ranges.
}];
let arguments = (ins
Tosa_Tensor:$input1
);
let results = (outs
Tosa_Tensor:$output
);
let extraClassDeclaration = [{
/// Return the reciprocal result on the operand.
static inline APFloat calcOneElement(const APFloat &operand) {
APFloat recip = APFloat(operand.getSemantics(), 1);
recip.divide(operand, APFloat::rmNearestTiesToEven);
return recip;
}
}];
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: rsqrt
//===----------------------------------------------------------------------===//
def Tosa_RsqrtOp : Tosa_ElementwiseOp<"rsqrt",
[SameOperandsAndResultElementType]> {
let summary = "Elementwise 1/sqrt op";
let description = [{
Elementwise reciprocal square root operation. For integer operation, a TABLE
should be used with the appropriate ranges.
}];
let arguments = (ins
Tosa_Tensor:$input1
);
let results = (outs
Tosa_Tensor:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: sin
//===----------------------------------------------------------------------===//
def Tosa_SinOp : Tosa_ElementwiseOp<"sin",
[SameOperandsAndResultElementType]> {
let summary = "Elementwise sin op";
let description = [{
Elementwise sine operation for values given in radians.
}];
let arguments = (ins
Tosa_FloatTensor:$input1
);
let results = (outs
Tosa_FloatTensor:$output
);
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.6
// Operator Class: Elementwise unary/binary/ternary operators.
// Operator Subclass: Elementwise ternary ops.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: select
//===----------------------------------------------------------------------===//
def Tosa_SelectOp : Tosa_ElementwiseOp<"select"> {
let summary = "Elementwise select operator";
let description = [{
Elementwise select of the output based on a condition.
}];
let arguments = (ins
Tosa_I1Tensor:$pred,
Tosa_Tensor:$on_true,
Tosa_Tensor:$on_false
);
let results = (outs
Tosa_Tensor:$output
);
let hasCanonicalizeMethod = 1;
let hasFolder = 1;
let assemblyFormat = [{
operands attr-dict `:` `(` type($pred) `,` type($on_true) `,` type($on_false)
`)` `->` type($output)
}];
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.7
// Operator Class: Logical Operations.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: equal
//===----------------------------------------------------------------------===//
def Tosa_EqualOp : Tosa_ElementwiseOp<"equal", [
InferTensorType,
Commutative,
SameOperandsElementType]> {
let summary = "Returns the truth value of (x == y) element-wise.";
let description = [{
Elementwise comparison operation
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_I1Tensor:$output
);
let extraClassDeclaration = [{
/// Returns when two result types are compatible for this op; method used by
/// InferTypeOpInterface.
static bool isCompatibleReturnTypes(TypeRange l, TypeRange r);
}];
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: greater
//===----------------------------------------------------------------------===//
def Tosa_GreaterOp : Tosa_ElementwiseOp<"greater", [SameOperandsElementType]> {
let summary = "Returns the truth value of (x > y) element-wise.";
let description = [{
Elementwise greater than comparison operation
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_I1Tensor:$output
);
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: greater_equal
//===----------------------------------------------------------------------===//
def Tosa_GreaterEqualOp : Tosa_ElementwiseOp<"greater_equal",
[SameOperandsElementType]> {
let summary = "Returns the truth value of (x >= y) element-wise.";
let description = [{
Elementwise comparison operation
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Tensor:$input2
);
let results = (outs
Tosa_I1Tensor:$output
);
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.8
// Operator Class: Reduction Ops.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: reduce_all
//===----------------------------------------------------------------------===//
def Tosa_ReduceAllOp : Tosa_InferTensorTypeOp<"reduce_all"> {
let summary = "Reduce All operator";
let description = [{
Reduce a tensor along the given axis with a logical AND operation
}];
let arguments = (ins
Tosa_Tensor:$input,
I32Attr:$axis
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
let hasVerifier = 1;
let extraClassDeclaration = [{
/// Returns true when two result types are compatible for this op;
/// Method used by InferTypeOpInterface.
static bool isCompatibleReturnTypes(TypeRange l, TypeRange r);
/// Return the AND result between two integer operands
static inline APInt calcOneElement(APInt leftOperand, APInt rightOperand) {
return leftOperand & rightOperand;
}
}];
}
//===----------------------------------------------------------------------===//
// Operator: reduce_any
//===----------------------------------------------------------------------===//
def Tosa_ReduceAnyOp : Tosa_InferTensorTypeOp<"reduce_any"> {
let summary = "Reduce Any operator";
let description = [{
Reduce a tensor along the given axis with a logical OR operation
}];
let arguments = (ins
Tosa_Tensor:$input,
I32Attr:$axis
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
let hasVerifier = 1;
let extraClassDeclaration = [{
/// Returns true when two result types are compatible for this op;
/// Method used by InferTypeOpInterface.
static bool isCompatibleReturnTypes(TypeRange l, TypeRange r);
/// Return the OR result between two integer operands
static inline APInt calcOneElement(APInt leftOperand, APInt rightOperand) {
return leftOperand | rightOperand;
}
}];
}
//===----------------------------------------------------------------------===//
// Operator: reduce_max
//===----------------------------------------------------------------------===//
def Tosa_ReduceMaxOp : Tosa_InferTensorTypeOp<"reduce_max"> {
let summary = "Reduce Max operator";
let description = [{
Reduce a tensor along the given axis with a maximum operation
}];
let arguments = (ins
Tosa_Tensor:$input,
I32Attr:$axis
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
let hasVerifier = 1;
let extraClassDeclaration = [{
/// Returns true when two result types are compatible for this op;
/// Method used by InferTypeOpInterface.
static bool isCompatibleReturnTypes(TypeRange l, TypeRange r);
/// Return the max of the two integer operands
static inline APInt calcOneElement(APInt leftOperand, APInt rightOperand) {
const llvm::APInt subtractRes = leftOperand - rightOperand;
return (!subtractRes.isNegative()) ? leftOperand : rightOperand;
}
}];
}
//===----------------------------------------------------------------------===//
// Operator: reduce_min
//===----------------------------------------------------------------------===//
def Tosa_ReduceMinOp : Tosa_InferTensorTypeOp<"reduce_min"> {
let summary = "Reduce Min operator";
let description = [{
Reduce a tensor along the given axis with a minimum operation
}];
let arguments = (ins
Tosa_Tensor:$input,
I32Attr:$axis
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
let hasVerifier = 1;
let extraClassDeclaration = [{
/// Returns true when two result types are compatible for this op;
/// Method used by InferTypeOpInterface.
static bool isCompatibleReturnTypes(TypeRange l, TypeRange r);
/// Return the min of the two integer operands
static inline APInt calcOneElement(APInt leftOperand, APInt rightOperand) {
const llvm::APInt subtractRes = leftOperand - rightOperand;
return (!subtractRes.isNegative()) ? rightOperand : leftOperand;
}
}];
}
//===----------------------------------------------------------------------===//
// Operator: reduce_prod
//===----------------------------------------------------------------------===//
def Tosa_ReduceProdOp : Tosa_InferTensorTypeOp<"reduce_prod"> {
let summary = "Reduce Prod operator";
let description = [{
Reduce a tensor along the given axis by computing the product of the axis.
}];
let arguments = (ins
Tosa_Tensor:$input,
I32Attr:$axis
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
let hasVerifier = 1;
let extraClassDeclaration = [{
/// Returns true when two result types are compatible for this op;
/// Method used by InferTypeOpInterface.
static bool isCompatibleReturnTypes(TypeRange l, TypeRange r);
/// Return the prod of the two integer operands
static inline APInt calcOneElement(APInt leftOperand, APInt rightOperand) {
return leftOperand * rightOperand;
}
}];
}
//===----------------------------------------------------------------------===//
// Operator: reduce_sum
//===----------------------------------------------------------------------===//
def Tosa_ReduceSumOp : Tosa_InferTensorTypeOp<"reduce_sum"> {
let summary = "Reduce Sum operator";
let description = [{
Reduce a tensor along the given axis by computing the sum of the axis.
}];
let arguments = (ins
Tosa_Tensor:$input,
I32Attr:$axis
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
let hasVerifier = 1;
let extraClassDeclaration = [{
/// Returns true when two result types are compatible for this op;
/// Method used by InferTypeOpInterface.
static bool isCompatibleReturnTypes(TypeRange l, TypeRange r);
/// Return the sum of the two integer operands
static inline APInt calcOneElement(APInt leftOperand, APInt rightOperand) {
return leftOperand + rightOperand;
}
}];
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.9
// Operator Class: Data Layout / Memory Reinterpretation.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: concat
//===----------------------------------------------------------------------===//
def Tosa_ConcatOp : Tosa_InferTensorTypeOp<"concat"> {
let summary = "Concatenates tensors along one dimension.";
let description = [{
Concatenate a variadic amount of tensors along a given axis. No data
conversion happens during a concat operation.
}];
let arguments = (ins
Variadic<Tosa_Tensor>:$input1,
I32Attr:$axis
);
let results = (outs
Tosa_Tensor:$output
);
let hasCanonicalizer = 1;
let hasFolder = 1;
let extraClassDeclaration = [{
/// Returns true when two result types are compatible for this op;
/// Method used by InferTypeOpInterface.
static bool isCompatibleReturnTypes(TypeRange l, TypeRange r);
}];
}
//===----------------------------------------------------------------------===//
// Operator: pad
//===----------------------------------------------------------------------===//
def Tosa_PadOp : Tosa_InferShapedTypeOp<"pad"> {
let summary = "Pads a tensor with value specified.";
let description = [{
The `tosa.pad` operation pads a tensor along borders of each dimension with
`pad_const` (defaults to zero), given a padding configuration `padding`
specifying low and high values along the dimensions.
Example:
```mlir
%0 = arith.constant dense<[[1, 2], [3, 4]]> : tensor<2x2xi32>
tosa.pad %arg0, %0 : (tensor<1x2xf32>, tensor<2x2xi32>) -> (tensor<4x9xf32>)
```
Example 2:
```mlir
%0 = arith.constant dense<[[-1, 2], [3, 4]]> : tensor<2x2xi32>
tosa.pad %arg0, %0 : (tensor<1x2xf32>, tensor<2x2xi32>) -> (tensor<?x9xf32>)
```
}];
let arguments = (ins
Tosa_RankedTensor:$input1,
Tosa_Int32Or64Tensor:$padding,
Optional<Tosa_ScalarTensor>:$pad_const,
OptionalAttr<Tosa_PadOpQuantizationAttr>:$quantization_info
);
let results = (outs
Tosa_RankedTensor:$output
);
let builders = [Tosa_PadOpQuantInfoBuilder,
Tosa_ExplicitValuePadOpQuantInfoBuilder];
let hasCanonicalizer = 1;
let hasFolder = 1;
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Operator: reshape
//===----------------------------------------------------------------------===//
def Tosa_ReshapeOp : Tosa_InferTensorTypeOp<"reshape"> {
let summary = "Reshape operator";
let description = [{
Returns a tensor with the same type/values as the input, with a new shape
specified by the shape argument. Reshape may operate on tensors of any rank.
No data conversion happens during a reshape operation.
}];
let hasFolder = 1;
let hasVerifier = 1;
let arguments = (ins
Tosa_Tensor:$input1,
DenseI64ArrayAttr:$new_shape
);
let results = (outs
Tosa_RankedTensor:$output
);
let extraClassDeclaration = [{
/// Returns true when two result types are compatible for this op;
/// Method used by InferTypeOpInterface.
static bool isCompatibleReturnTypes(TypeRange l, TypeRange r);
}];
let assemblyFormat = "operands attr-dict `:` functional-type(operands, results)";
}
//===----------------------------------------------------------------------===//
// Operator: reverse
//===----------------------------------------------------------------------===//
def Tosa_ReverseOp: Tosa_Op<"reverse", [
DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
["inferReturnTypeComponents"]>, Pure]> {
let summary = "Reverse operator";
let description = [{
Returns a tensor with the same type/values as the input, with the data
reversed along the given axis. No data conversion happens during a reverse
operation.
}];
let arguments = (ins
Tosa_Tensor:$input1,
I32Attr:$axis
);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
let hasVerifier = 1;
let assemblyFormat = "operands attr-dict `:` functional-type(operands, results)";
}
//===----------------------------------------------------------------------===//
// Operator: slice
//===----------------------------------------------------------------------===//
def Tosa_SliceOp : Tosa_InferShapedTypeOp<"slice"> {
let summary = "Slice operator";
let description = [{
Extracts a slice of the input1 on the given axis, beginning at the
start coordinates, and extending for size elements in each direction. No
data conversion happens during a slice operation.
}];
let arguments = (ins
Tosa_Tensor:$input1,
DenseI64ArrayAttr:$start,
DenseI64ArrayAttr:$size
);
let results = (outs
Tosa_Tensor:$output
);
let hasCanonicalizer = 1;
let hasFolder = 1;
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Operator: tile
//===----------------------------------------------------------------------===//
def Tosa_TileOp : Tosa_InferShapedTypeOp<"tile"> {
let summary = "Tile operator";
let description = [{
Replicates input 0 multiplies times along each dimension.
}];
let arguments = (ins
Tosa_Tensor:$input1,
DenseI64ArrayAttr:$multiples);
let results = (outs
Tosa_Tensor:$output
);
let hasFolder = 1;
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Operator: transpose
//===----------------------------------------------------------------------===//
def Tosa_TransposeOp : Tosa_InferShapedTypeOp<"transpose",
[DeclareOpInterfaceMethods<ReifyRankedShapedTypeOpInterface>]> {
let summary = "Transpose operator";
let description = [{
Permutes the dimensions based on perm.
}];
let arguments = (ins
Tosa_Tensor:$input1,
Tosa_Int32Tensor:$perms
);
let results = (
outs Tosa_Tensor:$output
);
let extraClassDeclaration = [{
LogicalResult getConstantPerms(llvm::SmallVector<int32_t> &perms);
}];
let hasCanonicalizer = 1;
let hasFolder = 1;
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.10
// Operator Class: Scatter/gather Operations.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: gather
//===----------------------------------------------------------------------===//
def Tosa_GatherOp : Tosa_InferShapedTypeOp<"gather"> {
let summary = "Gather operation,";
let description = [{
Generate a tensor for which each element in the output is a slice of the
values tensor based on the value of indices.
}];
let arguments = (ins
Tosa_Tensor3D:$values,
TosaTensorRankOf<[Tosa_Int32], [2]>:$indices
);
let results = (outs
Tosa_Tensor3D:$output
);
}
//===----------------------------------------------------------------------===//
// Operator: scatter
//===----------------------------------------------------------------------===//
def Tosa_ScatterOp : Tosa_InferShapedTypeOp<"scatter"> {
let summary = "Scatter operation,";
let description = [{
The values_out tensor is set to the values_in tensor with data modified as follows:
data from the input tensor is inserted at the positions specified by the indices tensor.
}];
let arguments = (ins
Tosa_Tensor3D:$values_in,
TosaTensorRankOf<[Tosa_Int32], [2]>:$indices,
Tosa_Tensor3D:$input
);
let results = (outs
Tosa_Tensor3D:$values_out
);
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.11
// Operator Class: Image Frontend Functions.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: resize
//===----------------------------------------------------------------------===//
def Tosa_ResizeOp : Tosa_InferShapedTypeOp<"resize"> {
let summary = "Resize operation, supports various resize/upsample modes";
let description = [{
Resizes a tensor. Resize is only allowed in the H and W dimensions. In
expected use, The height dimension is scaled by factor (scale_y_n/scale_y_d).
And the width dimension is scaled by factor (scale_x_n/scale_x_d). Thus the
output dimensions can be derived from the input dimensions by inverting the
scale. And the [order_y, border_x] values adjust the output size to allow
fractional sampling beyond integer input position (IH-1,IW-1).
}];
let arguments = (ins
Tosa_Tensor4D:$input,
Tosa_IntArrayAttr4:$scale,
Tosa_IntArrayAttr2:$offset,
Tosa_IntArrayAttr2:$border,
Tosa_ResizeTypeAttr:$mode
);
let results = (outs
Tosa_Tensor4D:$output
);
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.12
// Operator Class: Type Conversion.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: cast
//===----------------------------------------------------------------------===//
def Tosa_CastOp: Tosa_Op<"cast", [Pure,
DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
["inferReturnTypeComponents"]>]> {
let summary = "Cast operation";
let description = [{
Performs a set of permissible cast operations
| Mode | Input | Output |
|--------------------------|---------|---------|
| signed 8 to bool | int8 | Boolean |
| signed 16 to bool | int16 | Boolean |
| signed 32 to bool | int32 | Boolean |
| bool to 8 | Boolean | int8 |
| bool to 16 | Boolean | int16 |
| bool to 32 | Boolean | int32 |
| signed 8 to signed 16 | int8 | int16 |
| signed 8 to signed 32 | int8 | int32 |
| signed 16 to signed 8 | int16 | int8 |
| signed 16 to signed 32 | int16 | int32 |
| signed 32 to signed 8 | int32 | int8 |
| signed 32 to signed 16 | int32 | int16 |
| float to signed 8 | float | int8 |
| float to signed 16 | float | int16 |
| signed 8 to float | int8 | float |
| signed 16 to float | int16 | float |
| float 32 to float 64 | float32 | float64 |
| float 64 to float 32 | float64 | float32 |
}];
let arguments = (ins
Tosa_Tensor:$input
);
let results = (outs
Tosa_Tensor:$output
);
let assemblyFormat = "operands attr-dict `:` functional-type(operands, results)";
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Operator: rescale
//===----------------------------------------------------------------------===//
def Tosa_RescaleOp: Tosa_Op<"rescale", [Pure,
DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
["inferReturnTypeComponents"]>]> {
let summary = "Tosa rescale operator";
let description = [{
Rescale quantized values into a new domain. Supported rescalings are:
Mode Input Output
signed 8 to 8 int8 int8
signed 8 to 16 int8 int16
signed 8 to 32 int8 int32
signed 16 to 8 int16 int8
signed 16 to 16 int16 int16
signed 16 to 32 int16 int32
signed 32 to 8 int32 int8
signed 32 to 16 int32 int16
signed 32 to 32 int32 int32
signed 48 to 8 int48 int8
signed 48 to 16 int48 int16
signed 48 to 32 int48 int32
unsigned 8 to signed 8 uint8 int8
signed 8 to unsigned 8 int8 uint8
}];
let arguments = (ins
Tosa_Tensor:$input,
I32Attr:$input_zp,
I32Attr:$output_zp,
DenseI32ArrayAttr:$multiplier,
DenseI8ArrayAttr:$shift,
BoolAttr:$scale32,
BoolAttr:$double_round,
BoolAttr:$per_channel
);
let results = (outs
Tosa_Tensor:$output
);
let assemblyFormat = "operands attr-dict `:` functional-type(operands, results)";
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.13
// Operator Class: Data Node Ops.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: const
//===----------------------------------------------------------------------===//
def Tosa_ConstOp : Tosa_Op<"const", [ConstantLike, Pure,
AllShapesMatch<["value", "output"]>,
FirstAttrDerivedResultType]> {
let summary = "Constant op.";
let description = [{
A node containing constant data for use as the input to an operation. May
hold data in any of the supported data formats.
Example:
```mlir
// Generic form
%out = "tosa.const"() {value = dense<0> : tensor<2x3xi32>} : () -> tensor<2x3xi32>
```
}];
let arguments = (ins
ElementsAttr:$value
);
let results = (outs
TosaTensorOf<[AnyTypeOf<[Tosa_AnyNumber]>]>:$output
);
let hasFolder = 1;
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Operator: identity
//===----------------------------------------------------------------------===//
def Tosa_IdentityOp: Tosa_Op<"identity", [Pure,
DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
["inferReturnTypeComponents"]>]> {
let summary = "Identity operator";
let description = [{
Returns a tensor with the same shape, size, type
and content as the input.
}];
let arguments = (ins
Tosa_Tensor:$input1
);
let results = (outs
Tosa_Tensor:$output
);
let assemblyFormat = "operands attr-dict `:` functional-type(operands, results)";
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.14
// Operator Class: Custom Operators.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: custom
//===----------------------------------------------------------------------===//
def Tosa_CustomOp : Tosa_Op<"custom"> {
let summary = "Custom operator wrapper for Tosa";
let description = [{
Hardware implementing TOSA may choose to add additional custom operators
that are not expressed in the existing TOSA operations. These operators are
not expected to be portable across TOSA implementations. The input and
output signatures must be expressed in the corresponding TOSA node.
`operator_name` is a string that tells the backend which custom operator is
being called.
`domain_name` is a string identifier which can help avoid name collisions on
the identifier field.
`implementation_attrs` is a string which is a backend and identifier specific
set of attributes to the custom operator.
`inputs` is the set of tensor inputs to the custom operator.
`outputs is the list of tensors returned by the operator. The number of operators
is backend specific.
Example:
```mlir
%out = tosa.custom %in {domain_name = "tosa_mlir_test", operator_name =
"custom_test", implementation_attrs = ""}: (tensor<10xi32>) ->
(tensor<10xi32>)
```
}];
let arguments = (ins
StrAttr:$operator_name,
StrAttr:$domain_name,
StrAttr:$implementation_attrs,
Variadic<Tosa_Tensor>:$inputs
);
let results = (outs
Variadic<Tosa_Tensor>:$outputs
);
let assemblyFormat = "operands attr-dict `:` functional-type(operands, results)";
}
//===----------------------------------------------------------------------===//
// TOSA Spec Section 2.15
// Operator Class: Control Flow Operators.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operator: cond_if
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Further described in docs/Rationale/RationaleTOSADialect.md .
//===----------------------------------------------------------------------===//
def Tosa_IfOp : Tosa_Op<"cond_if",
[InferShapedTypeOpAdaptor,
SingleBlockImplicitTerminator<"YieldOp">,
RecursiveMemoryEffects]> {
let summary = "Conditional if operator";
let description = [{
Evaluates a Boolean condition and then takes one of two distinct execution
paths. This implements the semantic If-then-else structure.
}];
let arguments = (ins
Tosa_I1Tensor:$cond,
Variadic<Tosa_Tensor>:$inputs
);
let results = (outs
Variadic<Tosa_Tensor>:$output
);
let regions = (region
SizedRegion<1>:$then_branch,
SizedRegion<1>:$else_branch
);
let hasCustomAssemblyFormat = 1;
}
//===----------------------------------------------------------------------===//
// Operator: while_loop
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Further described in docs/Rationale/RationaleTOSADialect.md .
//===----------------------------------------------------------------------===//
def Tosa_WhileOp : Tosa_Op<"while_loop", [
DeclareOpInterfaceMethods<LoopLikeOpInterface>,
InferShapedTypeOpAdaptor,
SingleBlockImplicitTerminator<"YieldOp">,
RecursiveMemoryEffects]> {
let summary = "output = input; While (Cond(output)) {output = Body(output)}";
let description = [{
Generates and evaluates a Bool condition and either executes a loop body or
exits to another control point. This action is performed repeatedly after
updating and re-evaluating the Boolean condition every iteration. This
implements the semantic foreach or while iterative loop structure.
}];
let arguments = (ins
Variadic<Tosa_Tensor>:$inputs
);
let results = (outs
Variadic<Tosa_Tensor>:$output
);
let regions = (region
SizedRegion<1>:$cond,
SizedRegion<1>:$body
);
let hasCustomAssemblyFormat = 1;
}
include "mlir/Dialect/Tosa/IR/TosaUtilOps.td"
#endif // TOSA_OPS