// RUN: mlir-opt -allow-unregistered-dialect %s | FileCheck %s
// Verify the printed output can be parsed.
// RUN: mlir-opt -allow-unregistered-dialect %s | mlir-opt -allow-unregistered-dialect | FileCheck %s
// Verify the generic form can be parsed.
// RUN: mlir-opt -allow-unregistered-dialect -mlir-print-op-generic %s | mlir-opt -allow-unregistered-dialect | FileCheck %s
// CHECK: #map = affine_map<(d0) -> (d0 + 1)>
// CHECK: #map1 = affine_map<()[s0] -> (s0 + 1)>
// CHECK-LABEL: func @func_with_ops
// CHECK-SAME: %[[ARG:.*]]: f32
func.func @func_with_ops(f32) {
^bb0(%a : f32):
// CHECK: %[[T:.*]] = "getTensor"() : () -> tensor<4x4x?xf32>
%t = "getTensor"() : () -> tensor<4x4x?xf32>
// CHECK: %[[C2:.*]] = arith.constant 2 : index
// CHECK-NEXT: %{{.*}} = tensor.dim %[[T]], %[[C2]] : tensor<4x4x?xf32>
%c2 = arith.constant 2 : index
%t2 = "tensor.dim"(%t, %c2) : (tensor<4x4x?xf32>, index) -> index
// CHECK: %{{.*}} = arith.addf %[[ARG]], %[[ARG]] : f32
%x = "arith.addf"(%a, %a) : (f32,f32) -> (f32)
// CHECK: return
return
}
// CHECK-LABEL: func @standard_instrs(%arg0: tensor<4x4x?xf32>, %arg1: f32, %arg2: i32, %arg3: index, %arg4: i64, %arg5: f16) {
func.func @standard_instrs(tensor<4x4x?xf32>, f32, i32, index, i64, f16) {
^bb42(%t: tensor<4x4x?xf32>, %f: f32, %i: i32, %idx : index, %j: i64, %half: f16):
// CHECK: %[[C2:.*]] = arith.constant 2 : index
// CHECK: %[[A2:.*]] = tensor.dim %arg0, %[[C2]] : tensor<4x4x?xf32>
%c2 = arith.constant 2 : index
%a2 = tensor.dim %t, %c2 : tensor<4x4x?xf32>
// CHECK: %f = constant @func_with_ops : (f32) -> ()
%10 = constant @func_with_ops : (f32) -> ()
// CHECK: %f_0 = constant @affine_apply : () -> ()
%11 = constant @affine_apply : () -> ()
// CHECK: %[[I2:.*]] = arith.addi
%i2 = arith.addi %i, %i: i32
// CHECK: %[[I3:.*]] = arith.addi
%i3 = arith.addi %i2, %i : i32
// CHECK: %[[I4:.*]] = arith.addi
%i4 = arith.addi %i2, %i3 : i32
// CHECK: %[[F3:.*]] = arith.addf
%f3 = arith.addf %f, %f : f32
// CHECK: %[[F4:.*]] = arith.addf
%f4 = arith.addf %f, %f3 : f32
%true = arith.constant true
%tci32 = arith.constant dense<0> : tensor<42xi32>
%vci32 = arith.constant dense<0> : vector<42xi32>
%tci1 = arith.constant dense<1> : tensor<42xi1>
%vci1 = arith.constant dense<1> : vector<42xi1>
// CHECK: %{{.*}} = arith.select %{{.*}}, %arg3, %arg3 : index
%21 = arith.select %true, %idx, %idx : index
// CHECK: %{{.*}} = arith.select %{{.*}}, %{{.*}}, %{{.*}} : tensor<42xi1>, tensor<42xi32>
%22 = arith.select %tci1, %tci32, %tci32 : tensor<42 x i1>, tensor<42 x i32>
// CHECK: %{{.*}} = arith.select %{{.*}}, %{{.*}}, %{{.*}} : vector<42xi1>, vector<42xi32>
%23 = arith.select %vci1, %vci32, %vci32 : vector<42 x i1>, vector<42 x i32>
// CHECK: %{{.*}} = arith.select %{{.*}}, %arg3, %arg3 : index
%24 = "arith.select"(%true, %idx, %idx) : (i1, index, index) -> index
// CHECK: %{{.*}} = arith.select %{{.*}}, %{{.*}}, %{{.*}} : tensor<42xi32>
%25 = arith.select %true, %tci32, %tci32 : tensor<42 x i32>
%64 = arith.constant dense<0.> : vector<4 x f32>
%tcf32 = arith.constant dense<0.> : tensor<42 x f32>
%vcf32 = arith.constant dense<0.> : vector<4 x f32>
// CHECK: %{{.*}} = arith.cmpf ogt, %{{.*}}, %{{.*}} : f32
%65 = arith.cmpf ogt, %f3, %f4 : f32
// Predicate 0 means ordered equality comparison.
// CHECK: %{{.*}} = arith.cmpf oeq, %{{.*}}, %{{.*}} : f32
%66 = "arith.cmpf"(%f3, %f4) {predicate = 1} : (f32, f32) -> i1
// CHECK: %{{.*}} = arith.cmpf olt, %{{.*}}, %{{.*}}: vector<4xf32>
%67 = arith.cmpf olt, %vcf32, %vcf32 : vector<4 x f32>
// CHECK: %{{.*}} = arith.cmpf oeq, %{{.*}}, %{{.*}}: vector<4xf32>
%68 = "arith.cmpf"(%vcf32, %vcf32) {predicate = 1} : (vector<4 x f32>, vector<4 x f32>) -> vector<4 x i1>
// CHECK: %{{.*}} = arith.cmpf oeq, %{{.*}}, %{{.*}}: tensor<42xf32>
%69 = arith.cmpf oeq, %tcf32, %tcf32 : tensor<42 x f32>
// CHECK: %{{.*}} = arith.cmpf oeq, %{{.*}}, %{{.*}}: vector<4xf32>
%70 = arith.cmpf oeq, %vcf32, %vcf32 : vector<4 x f32>
// CHECK: arith.constant true
%74 = arith.constant true
// CHECK: arith.constant false
%75 = arith.constant false
// CHECK: %{{.*}} = math.absf %arg1 : f32
%100 = "math.absf"(%f) : (f32) -> f32
// CHECK: %{{.*}} = math.absf %arg1 : f32
%101 = math.absf %f : f32
// CHECK: %{{.*}} = math.absf %{{.*}}: vector<4xf32>
%102 = math.absf %vcf32 : vector<4xf32>
// CHECK: %{{.*}} = math.absf %arg0 : tensor<4x4x?xf32>
%103 = math.absf %t : tensor<4x4x?xf32>
// CHECK: %{{.*}} = math.ceil %arg1 : f32
%104 = "math.ceil"(%f) : (f32) -> f32
// CHECK: %{{.*}} = math.ceil %arg1 : f32
%105 = math.ceil %f : f32
// CHECK: %{{.*}} = math.ceil %{{.*}}: vector<4xf32>
%106 = math.ceil %vcf32 : vector<4xf32>
// CHECK: %{{.*}} = math.ceil %arg0 : tensor<4x4x?xf32>
%107 = math.ceil %t : tensor<4x4x?xf32>
// CHECK: %{{.*}} = math.copysign %arg1, %arg1 : f32
%116 = "math.copysign"(%f, %f) : (f32, f32) -> f32
// CHECK: %{{.*}} = math.copysign %arg1, %arg1 : f32
%117 = math.copysign %f, %f : f32
// CHECK: %{{.*}} = math.copysign %{{.*}}, %{{.*}}: vector<4xf32>
%118 = math.copysign %vcf32, %vcf32 : vector<4xf32>
// CHECK: %{{.*}} = math.copysign %arg0, %arg0 : tensor<4x4x?xf32>
%119 = math.copysign %t, %t : tensor<4x4x?xf32>
// CHECK: %{{.*}} = math.rsqrt %arg1 : f32
%145 = math.rsqrt %f : f32
// CHECK: math.floor %arg1 : f32
%163 = "math.floor"(%f) : (f32) -> f32
// CHECK: %{{.*}} = math.floor %arg1 : f32
%164 = math.floor %f : f32
// CHECK: %{{.*}} = math.floor %{{.*}}: vector<4xf32>
%165 = math.floor %vcf32 : vector<4xf32>
// CHECK: %{{.*}} = math.floor %arg0 : tensor<4x4x?xf32>
%166 = math.floor %t : tensor<4x4x?xf32>
return
}
// CHECK-LABEL: func @affine_apply() {
func.func @affine_apply() {
%i = "arith.constant"() {value = 0: index} : () -> index
%j = "arith.constant"() {value = 1: index} : () -> index
// CHECK: affine.apply #map(%c0)
%a = "affine.apply" (%i) { map = affine_map<(d0) -> (d0 + 1)> } :
(index) -> (index)
// CHECK: affine.apply #map1()[%c0]
%b = affine.apply affine_map<()[x] -> (x+1)>()[%i]
return
}
// CHECK-LABEL: func @load_store_prefetch
func.func @load_store_prefetch(memref<4x4xi32>, index) {
^bb0(%0: memref<4x4xi32>, %1: index):
// CHECK: %0 = memref.load %arg0[%arg1, %arg1] : memref<4x4xi32>
%2 = "memref.load"(%0, %1, %1) : (memref<4x4xi32>, index, index)->i32
// CHECK: %{{.*}} = memref.load %arg0[%arg1, %arg1] : memref<4x4xi32>
%3 = memref.load %0[%1, %1] : memref<4x4xi32>
// CHECK: memref.prefetch %arg0[%arg1, %arg1], write, locality<1>, data : memref<4x4xi32>
memref.prefetch %0[%1, %1], write, locality<1>, data : memref<4x4xi32>
// CHECK: memref.prefetch %arg0[%arg1, %arg1], read, locality<3>, instr : memref<4x4xi32>
memref.prefetch %0[%1, %1], read, locality<3>, instr : memref<4x4xi32>
return
}
// Test with zero-dimensional operands using no index in load/store.
// CHECK-LABEL: func @zero_dim_no_idx
func.func @zero_dim_no_idx(%arg0 : memref<i32>, %arg1 : memref<i32>, %arg2 : memref<i32>) {
%0 = memref.load %arg0[] : memref<i32>
memref.store %0, %arg1[] : memref<i32>
return
// CHECK: %0 = memref.load %{{.*}}[] : memref<i32>
// CHECK: memref.store %{{.*}}, %{{.*}}[] : memref<i32>
}
// CHECK-LABEL: func @return_op(%arg0: i32) -> i32 {
func.func @return_op(%a : i32) -> i32 {
// CHECK: return %arg0 : i32
"func.return" (%a) : (i32)->()
}
// CHECK-LABEL: func @calls(%arg0: i32) {
func.func @calls(%arg0: i32) {
// CHECK: %0 = call @return_op(%arg0) : (i32) -> i32
%x = call @return_op(%arg0) : (i32) -> i32
// CHECK: %1 = call @return_op(%0) : (i32) -> i32
%y = call @return_op(%x) : (i32) -> i32
// CHECK: %2 = call @return_op(%0) : (i32) -> i32
%z = "func.call"(%x) {callee = @return_op} : (i32) -> i32
// CHECK: %f = constant @affine_apply : () -> ()
%f = constant @affine_apply : () -> ()
// CHECK: call_indirect %f() : () -> ()
call_indirect %f() : () -> ()
// CHECK: %f_0 = constant @return_op : (i32) -> i32
%f_0 = constant @return_op : (i32) -> i32
// CHECK: %3 = call_indirect %f_0(%arg0) : (i32) -> i32
%2 = call_indirect %f_0(%arg0) : (i32) -> i32
// CHECK: %4 = call_indirect %f_0(%arg0) : (i32) -> i32
%3 = "func.call_indirect"(%f_0, %arg0) : ((i32) -> i32, i32) -> i32
return
}
// CHECK-LABEL: func @memref_cast(%arg0
func.func @memref_cast(%arg0: memref<4xf32>, %arg1 : memref<?xf32>, %arg2 : memref<64x16x4xf32, strided<[64, 4, 1], offset: 0>>) {
// CHECK: memref.cast %{{.*}} : memref<4xf32> to memref<?xf32>
%0 = memref.cast %arg0 : memref<4xf32> to memref<?xf32>
// CHECK: memref.cast %{{.*}} : memref<?xf32> to memref<4xf32>
%1 = memref.cast %arg1 : memref<?xf32> to memref<4xf32>
// CHECK: memref.cast %{{.*}} : memref<64x16x4xf32, strided<[64, 4, 1]>> to memref<64x16x4xf32, strided<[?, ?, ?], offset: ?>>
%2 = memref.cast %arg2 : memref<64x16x4xf32, strided<[64, 4, 1], offset: 0>> to memref<64x16x4xf32, strided<[?, ?, ?], offset: ?>>
// CHECK: memref.cast {{%.*}} : memref<64x16x4xf32, strided<[?, ?, ?], offset: ?>> to memref<64x16x4xf32, strided<[64, 4, 1]>>
%3 = memref.cast %2 : memref<64x16x4xf32, strided<[?, ?, ?], offset: ?>> to memref<64x16x4xf32, strided<[64, 4, 1], offset: 0>>
// CHECK: memref.cast %{{.*}} : memref<4xf32> to memref<*xf32>
%4 = memref.cast %1 : memref<4xf32> to memref<*xf32>
// CHECK: memref.cast %{{.*}} : memref<*xf32> to memref<4xf32>
%5 = memref.cast %4 : memref<*xf32> to memref<4xf32>
return
}
// Check that unranked memrefs with non-default memory space roundtrip
// properly.
// CHECK-LABEL: @unranked_memref_roundtrip(memref<*xf32, 4>)
func.func private @unranked_memref_roundtrip(memref<*xf32, 4>)
// CHECK-LABEL: func @memref_view(%arg0
func.func @memref_view(%arg0 : index, %arg1 : index, %arg2 : index) {
%0 = memref.alloc() : memref<2048xi8>
// Test two dynamic sizes and dynamic offset.
// CHECK: memref.view {{.*}} : memref<2048xi8> to memref<?x?xf32>
%1 = memref.view %0[%arg2][%arg0, %arg1] : memref<2048xi8> to memref<?x?xf32>
// Test one dynamic size and dynamic offset.
// CHECK: memref.view {{.*}} : memref<2048xi8> to memref<4x?xf32>
%3 = memref.view %0[%arg2][%arg1] : memref<2048xi8> to memref<4x?xf32>
// Test static sizes and static offset.
// CHECK: memref.view {{.*}} : memref<2048xi8> to memref<64x4xf32>
%c0 = arith.constant 0: index
%5 = memref.view %0[%c0][] : memref<2048xi8> to memref<64x4xf32>
return
}
// CHECK-LABEL: func @test_dimop
// CHECK-SAME: %[[ARG:.*]]: tensor<4x4x?xf32>
func.func @test_dimop(%arg0: tensor<4x4x?xf32>) {
// CHECK: %[[C2:.*]] = arith.constant 2 : index
// CHECK: %{{.*}} = tensor.dim %[[ARG]], %[[C2]] : tensor<4x4x?xf32>
%c2 = arith.constant 2 : index
%0 = tensor.dim %arg0, %c2 : tensor<4x4x?xf32>
// use dim as an index to ensure type correctness
%1 = affine.apply affine_map<(d0) -> (d0)>(%0)
return
}
// CHECK-LABEL: func @assume_alignment
// CHECK-SAME: %[[MEMREF:.*]]: memref<4x4xf16>
func.func @assume_alignment(%0: memref<4x4xf16>) {
// CHECK: memref.assume_alignment %[[MEMREF]], 16 : memref<4x4xf16>
memref.assume_alignment %0, 16 : memref<4x4xf16>
return
}