//===-- TestOps.td - Test dialect operation definitions ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef TEST_OPS
#define TEST_OPS
include "TestDialect.td"
include "TestInterfaces.td"
include "mlir/Dialect/DLTI/DLTIBase.td"
include "mlir/Dialect/Linalg/IR/LinalgInterfaces.td"
include "mlir/IR/EnumAttr.td"
include "mlir/Interfaces/FunctionInterfaces.td"
include "mlir/IR/OpBase.td"
include "mlir/IR/OpAsmInterface.td"
include "mlir/IR/PatternBase.td"
include "mlir/IR/RegionKindInterface.td"
include "mlir/IR/SymbolInterfaces.td"
include "mlir/Interfaces/CallInterfaces.td"
include "mlir/Interfaces/ControlFlowInterfaces.td"
include "mlir/Interfaces/CopyOpInterface.td"
include "mlir/Interfaces/DataLayoutInterfaces.td"
include "mlir/Interfaces/DestinationStyleOpInterface.td"
include "mlir/Interfaces/InferIntRangeInterface.td"
include "mlir/Interfaces/InferTypeOpInterface.td"
include "mlir/Interfaces/LoopLikeInterface.td"
include "mlir/Interfaces/MemorySlotInterfaces.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
// Include the attribute definitions.
include "TestAttrDefs.td"
// Include the type definitions.
include "TestTypeDefs.td"
class TEST_Op<string mnemonic, list<Trait> traits = []> :
Op<Test_Dialect, mnemonic, traits>;
//===----------------------------------------------------------------------===//
// Test Types
//===----------------------------------------------------------------------===//
def IntTypesOp : TEST_Op<"int_types"> {
let results = (outs
AnyI16:$any_i16,
SI32:$si32,
UI64:$ui64,
AnyInteger:$any_int
);
}
def ComplexF64 : Complex<F64>;
def ComplexOp : TEST_Op<"complex_f64"> {
let results = (outs ComplexF64);
}
def ComplexTensorOp : TEST_Op<"complex_f64_tensor"> {
let results = (outs TensorOf<[ComplexF64]>);
}
def TupleOp : TEST_Op<"tuple_32_bit"> {
let results = (outs TupleOf<[I32, F32]>);
}
def NestedTupleOp : TEST_Op<"nested_tuple_32_bit"> {
let results = (outs NestedTupleOf<[I32, F32]>);
}
def TakesStaticMemRefOp : TEST_Op<"takes_static_memref"> {
let arguments = (ins AnyStaticShapeMemRef:$x);
}
def RankLessThan2I8F32MemRefOp : TEST_Op<"rank_less_than_2_I8_F32_memref"> {
let results = (outs MemRefRankOf<[I8, F32], [0, 1]>);
}
def NDTensorOfOp : TEST_Op<"nd_tensor_of"> {
let arguments = (ins
0DTensorOf<[F32]>:$arg0,
1DTensorOf<[F32]>:$arg1,
2DTensorOf<[I16]>:$arg2,
3DTensorOf<[I16]>:$arg3,
4DTensorOf<[I16]>:$arg4
);
}
def RankedTensorOp : TEST_Op<"ranked_tensor_op"> {
let arguments = (ins AnyRankedTensor:$input);
}
def MultiTensorRankOf : TEST_Op<"multi_tensor_rank_of"> {
let arguments = (ins
TensorRankOf<[I8, I32, F32], [0, 1]>:$arg0
);
}
def TEST_TestType : DialectType<Test_Dialect,
CPred<"::llvm::isa<::test::TestType>($_self)">, "test">,
BuildableType<"$_builder.getType<::test::TestType>()">;
//===----------------------------------------------------------------------===//
// Test Symbols
//===----------------------------------------------------------------------===//
def SymbolOp : TEST_Op<"symbol", [NoMemoryEffect, Symbol]> {
let summary = "operation which defines a new symbol";
let arguments = (ins StrAttr:$sym_name,
OptionalAttr<StrAttr>:$sym_visibility);
}
def SymbolScopeOp : TEST_Op<"symbol_scope",
[SymbolTable, SingleBlockImplicitTerminator<"TerminatorOp">]> {
let summary = "operation which defines a new symbol table";
let regions = (region SizedRegion<1>:$region);
}
def SymbolTableRegionOp : TEST_Op<"symbol_table_region", [SymbolTable]> {
let summary = "operation which defines a new symbol table without a "
"restriction on a terminator";
let regions = (region SizedRegion<1>:$region);
}
//===----------------------------------------------------------------------===//
// Test Operands
//===----------------------------------------------------------------------===//
def MixedNormalVariadicOperandOp : TEST_Op<
"mixed_normal_variadic_operand", [SameVariadicOperandSize]> {
let arguments = (ins
Variadic<AnyTensor>:$input1,
AnyTensor:$input2,
Variadic<AnyTensor>:$input3
);
}
def VariadicWithSameOperandsResult :
TEST_Op<"variadic_with_same_operand_results",
[SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnySignlessInteger>);
let results = (outs AnySignlessInteger:$result);
}
def SameOperandsResultType : TEST_Op<
"same_operand_result_type", [SameOperandsAndResultType]> {
let arguments = (ins AnyTensor:$operand);
let results = (outs AnyTensor:$result);
}
//===----------------------------------------------------------------------===//
// Test Results
//===----------------------------------------------------------------------===//
def MixedNormalVariadicResults : TEST_Op<
"mixed_normal_variadic_result", [SameVariadicResultSize]> {
let results = (outs
Variadic<AnyTensor>:$output1,
AnyTensor:$output2,
Variadic<AnyTensor>:$output3
);
}
//===----------------------------------------------------------------------===//
// Test Attributes
//===----------------------------------------------------------------------===//
def AnyAttrOfOp : TEST_Op<"any_attr_of_i32_str"> {
let arguments = (ins AnyAttrOf<[I32Attr, StrAttr]>:$attr);
}
def NonNegIntAttrOp : TEST_Op<"non_negative_int_attr"> {
let arguments = (ins
ConfinedAttr<I32Attr, [IntNonNegative]>:$i32attr,
ConfinedAttr<I64Attr, [IntNonNegative]>:$i64attr
);
}
def PositiveIntAttrOp : TEST_Op<"positive_int_attr"> {
let arguments = (ins
ConfinedAttr<I32Attr, [IntPositive]>:$i32attr,
ConfinedAttr<I64Attr, [IntPositive]>:$i64attr
);
}
def TypeArrayAttrOp : TEST_Op<"type_array_attr"> {
let arguments = (ins TypeArrayAttr:$attr);
}
def TypeArrayAttrWithDefaultOp : TEST_Op<"type_array_attr_with_default"> {
let arguments = (ins DefaultValuedAttr<TypeArrayAttr, "{}">:$attr);
}
def TypeStringAttrWithTypeOp : TEST_Op<"string_attr_with_type"> {
let arguments = (ins TypedStrAttr<AnyType>:$attr);
let assemblyFormat = "$attr attr-dict";
}
def FloatAttrOp : TEST_Op<"float_attrs"> {
// TODO: Clean up the OpBase float type and attribute selectors so they
// can express all of the types.
let arguments = (ins
AnyAttr:$float_attr
);
}
def I32EnumAttrOp : TEST_Op<"i32_enum_attr"> {
let arguments = (ins SomeI32Enum:$attr);
let results = (outs I32:$val);
}
def I64EnumAttrOp : TEST_Op<"i64_enum_attr"> {
let arguments = (ins SomeI64Enum:$attr);
let results = (outs I32:$val);
}
def IntAttrOp : TEST_Op<"int_attrs"> {
let arguments = (ins
AnyI32Attr:$any_i32_attr,
IndexAttr:$index_attr,
UI32Attr:$ui32_attr,
SI32Attr:$si32_attr
);
}
def FloatElementsAttrOp : TEST_Op<"float_elements_attr"> {
let arguments = (ins
RankedF32ElementsAttr<[2]>:$scalar_f32_attr,
RankedF64ElementsAttr<[4, 8]>:$tensor_f64_attr
);
}
def ContainingIntPolynomialAttrOp : TEST_Op<"containing_int_polynomial_attr"> {
let arguments = (ins NestedPolynomialAttr:$attr);
let assemblyFormat = "$attr attr-dict";
}
def ContainingIntPolynomialAttr2Op : TEST_Op<"containing_int_polynomial_attr2"> {
let arguments = (ins NestedPolynomialAttr2:$attr);
let assemblyFormat = "$attr attr-dict";
}
// A pattern that updates dense<[3.0, 4.0]> to dense<[5.0, 6.0]>.
// This tests both matching and generating float elements attributes.
def UpdateFloatElementsAttr : Pat<
(FloatElementsAttrOp
ConstantAttr<RankedF32ElementsAttr<[2]>, "{3.0f, 4.0f}">:$f32attr,
$f64attr),
(FloatElementsAttrOp
ConstantAttr<RankedF32ElementsAttr<[2]>, "{5.0f, 6.0f}">:$f32attr,
$f64attr)>;
def IntElementsAttrOp : TEST_Op<"int_elements_attr"> {
let arguments = (ins
AnyI32ElementsAttr:$any_i32_attr,
I32ElementsAttr:$i32_attr
);
}
def RankedIntElementsAttrOp : TEST_Op<"ranked_int_elements_attr"> {
let arguments = (ins
RankedI32ElementsAttr<[2]>:$vector_i32_attr,
RankedI64ElementsAttr<[4, 8]>:$matrix_i64_attr
);
}
def DerivedTypeAttrOp : TEST_Op<"derived_type_attr", []> {
let results = (outs AnyTensor:$output);
DerivedTypeAttr element_dtype =
DerivedTypeAttr<"return getElementTypeOrSelf(getOutput().getType());">;
DerivedAttr num_elements = DerivedAttr<"int",
"return ::llvm::cast<ShapedType>(getOutput().getType()).getNumElements();",
"$_builder.getI32IntegerAttr($_self)">;
}
def TestPropOp : TEST_Op<"prop">,
Arguments<(ins Variadic<Index>:$upperInits,
I32ElementsAttr:$transforms)>,
Results<(outs Variadic<AnyType>:$results)> {
DerivedAttr upperLen = DerivedAttr<"uint32_t", [{
return getUpperInits().size() / getTransforms().size();
}], [{ $_builder.getI32IntegerAttr($_self) }]>;
}
def StringElementsAttrOp : TEST_Op<"string_elements_attr"> {
let arguments = (ins
StringElementsAttr:$scalar_string_attr
);
}
def TypedAttrOp : TEST_Op<"typed_attr"> {
let arguments = (ins TypeAttr:$type, AnyAttr:$attr);
let assemblyFormat = [{
attr-dict $type `=` custom<AttrElideType>(ref($type), $attr)
}];
}
def TypeAttrOfOp : TEST_Op<"type_attr_of"> {
let arguments = (ins TypeAttrOf<I64>:$type);
let assemblyFormat = [{
attr-dict $type
}];
}
def DenseArrayAttrOp : TEST_Op<"dense_array_attr"> {
let arguments = (ins
DenseBoolArrayAttr:$i1attr,
DenseI8ArrayAttr:$i8attr,
DenseI16ArrayAttr:$i16attr,
DenseI32ArrayAttr:$i32attr,
DenseI64ArrayAttr:$i64attr,
DenseF32ArrayAttr:$f32attr,
DenseF64ArrayAttr:$f64attr,
DenseI32ArrayAttr:$emptyattr
);
let assemblyFormat = [{
`i1attr` `=` $i1attr `i8attr` `=` $i8attr `i16attr` `=` $i16attr
`i32attr` `=` $i32attr `i64attr` `=` $i64attr `f32attr` `=` $f32attr
`f64attr` `=` $f64attr `emptyattr` `=` $emptyattr attr-dict
}];
}
//===----------------------------------------------------------------------===//
// Test Attributes Constraints
//===----------------------------------------------------------------------===//
def ConfinedDenseArrayAttrOp : TEST_Op<"confined_dense_array_attr"> {
let arguments = (ins
ConfinedAttr<DenseI16ArrayAttr,
[DenseArrayStrictlySorted<DenseI16ArrayAttr>]>:$emptyattr,
ConfinedAttr<DenseI32ArrayAttr,
[DenseArraySorted<DenseI32ArrayAttr>]>:$i32attr,
ConfinedAttr<DenseI64ArrayAttr,
[DenseArrayStrictlySorted<DenseI64ArrayAttr>]>:$i64attr
);
}
// It does not make sense to have this constraint on a DenseBoolArrayAttr.
def DenseArrayStrictlyPositiveAttrOp : TEST_Op<"confined_strictly_positive_attr"> {
let arguments = (ins
ConfinedAttr<DenseI8ArrayAttr,
[DenseArrayStrictlyPositive<DenseI8ArrayAttr>]>:$i8attr,
ConfinedAttr<DenseI16ArrayAttr,
[DenseArrayStrictlyPositive<DenseI16ArrayAttr>]>:$i16attr,
ConfinedAttr<DenseI32ArrayAttr,
[DenseArrayStrictlyPositive<DenseI32ArrayAttr>]>:$i32attr,
ConfinedAttr<DenseI64ArrayAttr,
[DenseArrayStrictlyPositive<DenseI64ArrayAttr>]>:$i64attr,
ConfinedAttr<DenseF32ArrayAttr,
[DenseArrayStrictlyPositive<DenseF32ArrayAttr>]>:$f32attr,
ConfinedAttr<DenseF64ArrayAttr,
[DenseArrayStrictlyPositive<DenseF64ArrayAttr>]>:$f64attr,
ConfinedAttr<DenseI16ArrayAttr,
[DenseArrayStrictlyPositive<DenseI16ArrayAttr>]>:$emptyattr
);
}
// It does not make sense to have this constraint on a DenseBoolArrayAttr.
// It is always true.
def DenseArrayNonNegativeOp : TEST_Op<"confined_non_negative_attr"> {
let arguments = (ins
ConfinedAttr<DenseI8ArrayAttr,
[DenseArrayNonNegative<DenseI8ArrayAttr>]>:$i8attr,
ConfinedAttr<DenseI16ArrayAttr,
[DenseArrayNonNegative<DenseI16ArrayAttr>]>:$i16attr,
ConfinedAttr<DenseI32ArrayAttr,
[DenseArrayNonNegative<DenseI32ArrayAttr>]>:$i32attr,
ConfinedAttr<DenseI64ArrayAttr,
[DenseArrayNonNegative<DenseI64ArrayAttr>]>:$i64attr,
ConfinedAttr<DenseF32ArrayAttr,
[DenseArrayNonNegative<DenseF32ArrayAttr>]>:$f32attr,
ConfinedAttr<DenseF64ArrayAttr,
[DenseArrayNonNegative<DenseF64ArrayAttr>]>:$f64attr,
ConfinedAttr<DenseI16ArrayAttr,
[DenseArrayNonNegative<DenseI16ArrayAttr>]>:$emptyattr
);
}
//===----------------------------------------------------------------------===//
// Test Promised Interfaces Constraints
//===----------------------------------------------------------------------===//
def PromisedInterfacesOp : TEST_Op<"promised_interfaces"> {
let arguments = (ins
ConfinedAttr<AnyAttr,
[PromisedAttrInterface<TestExternalAttrInterface>]>:$promisedAttr,
ConfinedType<AnyType,
[HasPromiseOrImplementsTypeInterface<TestExternalTypeInterface>]
>:$promisedType
);
}
//===----------------------------------------------------------------------===//
// Test Enum Attributes
//===----------------------------------------------------------------------===//
// Define the enum attribute.
def TestEnumAttr : EnumAttr<Test_Dialect, TestEnum, "enum">;
// Define an op that contains the enum attribute.
def OpWithEnum : TEST_Op<"op_with_enum"> {
let arguments = (ins TestEnumAttr:$value, OptionalAttr<AnyAttr>:$tag);
let assemblyFormat = "$value (`tag` $tag^)? attr-dict";
}
// Define a pattern that matches and creates an enum attribute.
def : Pat<(OpWithEnum ConstantEnumCase<TestEnumAttr, "first">:$value,
ConstantAttr<I32Attr, "0">:$tag),
(OpWithEnum ConstantEnumCase<TestEnumAttr, "second">,
ConstantAttr<I32Attr, "1">)>;
//===----------------------------------------------------------------------===//
// Test Bit Enum Attributes
//===----------------------------------------------------------------------===//
// Define the enum attribute.
def TestBitEnumAttr : EnumAttr<Test_Dialect, TestBitEnum, "bit_enum"> {
let assemblyFormat = "`<` $value `>`";
}
// Define an op that contains the enum attribute.
def OpWithBitEnum : TEST_Op<"op_with_bit_enum"> {
let arguments = (ins TestBitEnumAttr:$value, OptionalAttr<AnyAttr>:$tag);
let assemblyFormat = "$value (`tag` $tag^)? attr-dict";
}
def TestBitEnumVerticalBarAttr
: EnumAttr<Test_Dialect, TestBitEnumVerticalBar, "bit_enum_vbar"> {
let assemblyFormat = "`<` $value `>`";
}
// Define an op that contains the enum attribute.
def OpWithBitEnumVerticalBar : TEST_Op<"op_with_bit_enum_vbar"> {
let arguments = (ins TestBitEnumVerticalBarAttr:$value,
OptionalAttr<AnyAttr>:$tag);
let assemblyFormat = "$value (`tag` $tag^)? attr-dict";
}
// Define a pattern that matches and creates a bit enum attribute.
def : Pat<(OpWithBitEnum ConstantEnumCase<TestBitEnumAttr, "write|execute">,
ConstantAttr<I32Attr, "0">),
(OpWithBitEnum ConstantEnumCase<TestBitEnumAttr, "execute|read">,
ConstantAttr<I32Attr, "1">)>;
//===----------------------------------------------------------------------===//
// Test Regions
//===----------------------------------------------------------------------===//
def OneRegionOp : TEST_Op<"one_region_op", []> {
let regions = (region AnyRegion);
}
def TwoRegionOp : TEST_Op<"two_region_op", []> {
let regions = (region AnyRegion, AnyRegion);
}
def SizedRegionOp : TEST_Op<"sized_region_op", []> {
let regions = (region SizedRegion<2>:$my_region, SizedRegion<1>);
}
def VariadicRegionInferredTypesOp : TEST_Op<"variadic_region_inferred",
[InferTypeOpInterface]> {
let regions = (region VariadicRegion<AnyRegion>:$bodies);
let results = (outs Variadic<AnyType>);
let extraClassDeclaration = [{
static llvm::LogicalResult inferReturnTypes(mlir::MLIRContext *context,
std::optional<::mlir::Location> location, mlir::ValueRange operands,
mlir::DictionaryAttr attributes, mlir::OpaqueProperties properties, mlir::RegionRange regions,
llvm::SmallVectorImpl<mlir::Type> &inferredReturnTypes) {
inferredReturnTypes.assign({mlir::IntegerType::get(context, 16)});
return mlir::success();
}
}];
}
def OneRegionWithOperandsOp : TEST_Op<"one_region_with_operands_op", []> {
let arguments = (ins Variadic<AnyType>:$operands);
let regions = (region AnyRegion);
}
def IsolatedOneRegionOp : TEST_Op<"isolated_one_region_op", [IsolatedFromAbove]> {
let arguments = (ins Variadic<AnyType>:$operands);
let regions = (region AnyRegion:$my_region);
let assemblyFormat = [{
attr-dict-with-keyword $operands $my_region `:` type($operands)
}];
}
def IsolatedRegionsOp : TEST_Op<"isolated_regions", [IsolatedFromAbove]> {
let regions = (region VariadicRegion<AnyRegion>:$regions);
let assemblyFormat = "attr-dict-with-keyword $regions";
}
def AllocaScopeRegionOp : TEST_Op<"alloca_scope_region",
[AutomaticAllocationScope]> {
let regions = (region AnyRegion:$region);
let assemblyFormat = "attr-dict-with-keyword $region";
}
def OneRegionWithRecursiveMemoryEffectsOp
: TEST_Op<"one_region_with_recursive_memory_effects", [
RecursiveMemoryEffects]> {
let description = [{
Op that has one region and recursive side effects. The
RegionBranchOpInterface is not implemented on this op.
}];
let results = (outs AnyType:$result);
let regions = (region SizedRegion<1>:$body);
}
//===----------------------------------------------------------------------===//
// NoTerminator Operation
//===----------------------------------------------------------------------===//
def SingleNoTerminatorOp : TEST_Op<"single_no_terminator_op",
GraphRegionNoTerminator.traits> {
let regions = (region SizedRegion<1>:$my_region);
let assemblyFormat = "attr-dict `:` $my_region";
}
def SingleNoTerminatorCustomAsmOp : TEST_Op<"single_no_terminator_custom_asm_op",
[SingleBlock, NoTerminator]> {
let regions = (region SizedRegion<1>);
let hasCustomAssemblyFormat = 1;
}
def VariadicNoTerminatorOp : TEST_Op<"variadic_no_terminator_op",
GraphRegionNoTerminator.traits> {
let regions = (region VariadicRegion<SizedRegion<1>>:$my_regions);
let assemblyFormat = "attr-dict `:` $my_regions";
}
//===----------------------------------------------------------------------===//
// Test Call Interfaces
//===----------------------------------------------------------------------===//
def TestCallOp : TEST_Op<"call", [DeclareOpInterfaceMethods<SymbolUserOpInterface>]> {
let arguments = (ins FlatSymbolRefAttr:$callee, Variadic<AnyType>:$operands);
let results = (outs Variadic<AnyType>);
let assemblyFormat = [{
$callee `(` $operands `)` attr-dict `:` functional-type($operands, results)
}];
}
def ConversionCallOp : TEST_Op<"conversion_call_op",
[CallOpInterface]> {
let arguments = (ins Variadic<AnyType>:$arg_operands, SymbolRefAttr:$callee);
let results = (outs Variadic<AnyType>);
let extraClassDeclaration = [{
/// Return the callee of this operation.
::mlir::CallInterfaceCallable getCallableForCallee();
/// Set the callee for this operation.
void setCalleeFromCallable(::mlir::CallInterfaceCallable);
}];
let extraClassDefinition = [{
::mlir::CallInterfaceCallable $cppClass::getCallableForCallee() {
return (*this)->getAttrOfType<::mlir::SymbolRefAttr>("callee");
}
void $cppClass::setCalleeFromCallable(::mlir::CallInterfaceCallable callee) {
(*this)->setAttr("callee", callee.get<SymbolRefAttr>());
}
}];
}
def ConversionFuncOp : TEST_Op<"conversion_func_op", [FunctionOpInterface]> {
let arguments = (ins SymbolNameAttr:$sym_name,
TypeAttrOf<FunctionType>:$function_type,
OptionalAttr<DictArrayAttr>:$arg_attrs,
OptionalAttr<DictArrayAttr>:$res_attrs,
OptionalAttr<StrAttr>:$sym_visibility);
let regions = (region AnyRegion:$body);
let extraClassDeclaration = [{
//===------------------------------------------------------------------===//
// FunctionOpInterface Methods
//===------------------------------------------------------------------===//
/// Returns the region on the current operation that is callable. This may
/// return null in the case of an external callable object, e.g. an external
/// function.
::mlir::Region *getCallableRegion() {
return isExternal() ? nullptr : &getBody();
}
/// Returns the argument types of this async function.
::mlir::ArrayRef<::mlir::Type> getArgumentTypes() {
return getFunctionType().getInputs();
}
/// Returns the result types of this async function.
::mlir::ArrayRef<::mlir::Type> getResultTypes() {
return getFunctionType().getResults();
}
/// Returns the number of results of this async function
unsigned getNumResults() {return getResultTypes().size();}
}];
let hasCustomAssemblyFormat = 1;
}
def FunctionalRegionOp : TEST_Op<"functional_region_op",
[CallableOpInterface]> {
let regions = (region AnyRegion:$body);
let results = (outs FunctionType);
let extraClassDeclaration = [{
::mlir::Region *getCallableRegion() { return &getBody(); }
::llvm::ArrayRef<::mlir::Type> getResultTypes() {
return ::llvm::cast<::mlir::FunctionType>(getType()).getResults();
}
::llvm::ArrayRef<::mlir::Type> getArgumentTypes() {
return ::llvm::cast<::mlir::FunctionType>(getType()).getInputs();
}
}];
}
def FoldToCallOp : TEST_Op<"fold_to_call_op"> {
let arguments = (ins FlatSymbolRefAttr:$callee);
let hasCanonicalizer = 1;
}
//===----------------------------------------------------------------------===//
// Test Traits
//===----------------------------------------------------------------------===//
def SameOperandElementTypeOp : TEST_Op<"same_operand_element_type",
[SameOperandsElementType]> {
let arguments = (ins AnyType, AnyType);
let results = (outs AnyType);
}
def SameOperandAndResultElementTypeOp :
TEST_Op<"same_operand_and_result_element_type",
[SameOperandsAndResultElementType]> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def SameOperandShapeOp : TEST_Op<"same_operand_shape", [SameOperandsShape]> {
let arguments = (ins Variadic<AnyShaped>);
}
def SameOperandAndResultShapeOp : TEST_Op<"same_operand_and_result_shape",
[SameOperandsAndResultShape]> {
let arguments = (ins Variadic<AnyShaped>);
let results = (outs Variadic<AnyShaped>);
}
def SameOperandAndResultTypeOp : TEST_Op<"same_operand_and_result_type",
[SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def ElementwiseMappableOp : TEST_Op<"elementwise_mappable",
ElementwiseMappable.traits> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def ArgAndResHaveFixedElementTypesOp :
TEST_Op<"arg_and_res_have_fixed_element_types",
[PredOpTrait<"fixed type combination",
And<[ElementTypeIsPred<"x", I32>,
ElementTypeIsPred<"y", F32>]>>,
ElementTypeIs<"res", I16>]> {
let arguments = (ins
AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandsHaveSameElementType : TEST_Op<"operands_have_same_element_type", [
AllElementTypesMatch<["x", "y"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def OperandZeroAndResultHaveSameElementType : TEST_Op<
"operand0_and_result_have_same_element_type",
[AllElementTypesMatch<["x", "res"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
let results = (outs AnyType:$res);
}
def OperandsHaveSameType :
TEST_Op<"operands_have_same_type", [AllTypesMatch<["x", "y"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def ResultHasSameTypeAsAttr :
TEST_Op<"result_has_same_type_as_attr",
[AllTypesMatch<["attr", "result"]>]> {
let arguments = (ins TypedAttrInterface:$attr);
let results = (outs AnyType:$result);
let assemblyFormat = "$attr `->` type($result) attr-dict";
}
def OperandZeroAndResultHaveSameType :
TEST_Op<"operand0_and_result_have_same_type",
[AllTypesMatch<["x", "res"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
let results = (outs AnyType:$res);
}
def OperandsHaveSameRank :
TEST_Op<"operands_have_same_rank", [AllRanksMatch<["x", "y"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
}
def OperandZeroAndResultHaveSameRank :
TEST_Op<"operand0_and_result_have_same_rank",
[AllRanksMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandsAndResultHaveSameRank :
TEST_Op<"operands_and_result_have_same_rank", [SameOperandsAndResultRank]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandZeroAndResultHaveSameShape :
TEST_Op<"operand0_and_result_have_same_shape",
[AllShapesMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandZeroAndResultHaveSameElementCount :
TEST_Op<"operand0_and_result_have_same_element_count",
[AllElementCountsMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def FourEqualsFive :
TEST_Op<"four_equals_five", [AllMatch<["5", "4"], "4 equals 5">]>;
def OperandRankEqualsResultSize :
TEST_Op<"operand_rank_equals_result_size",
[AllMatch<[Rank<"operand">.result, ElementCount<"result">.result],
"operand rank equals result size">]> {
let arguments = (ins AnyShaped:$operand);
let results = (outs AnyShaped:$result);
}
def IfFirstOperandIsNoneThenSoIsSecond :
TEST_Op<"if_first_operand_is_none_then_so_is_second", [PredOpTrait<
"has either both none type operands or first is not none",
Or<[
And<[TypeIsPred<"x", NoneType>, TypeIsPred<"y", NoneType>]>,
Neg<TypeIsPred<"x", NoneType>>]>>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def BroadcastableOp : TEST_Op<"broadcastable", [ResultsBroadcastableShape]> {
let arguments = (ins Variadic<AnyTensor>);
let results = (outs AnyTensor);
}
// HasParent trait
def ParentOp : TEST_Op<"parent"> {
let regions = (region AnyRegion);
}
def ChildOp : TEST_Op<"child", [HasParent<"ParentOp">]>;
// ParentOneOf trait
def ParentOp1 : TEST_Op<"parent1"> {
let regions = (region AnyRegion);
}
def ChildWithParentOneOf : TEST_Op<"child_with_parent_one_of",
[ParentOneOf<["ParentOp", "ParentOp1"]>]>;
def TerminatorOp : TEST_Op<"finish", [Terminator]>;
def SingleBlockImplicitTerminatorOp : TEST_Op<"SingleBlockImplicitTerminator",
[SingleBlockImplicitTerminator<"TerminatorOp">]> {
let regions = (region SizedRegion<1>:$region);
}
def I32ElementsAttrOp : TEST_Op<"i32ElementsAttr"> {
let arguments = (ins I32ElementsAttr:$attr);
}
def IndexElementsAttrOp : TEST_Op<"indexElementsAttr"> {
let arguments = (ins IndexElementsAttr:$attr);
}
def OpWithInferTypeInterfaceOp : TEST_Op<"op_with_infer_type_if", [
DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
let arguments = (ins AnyTensor, AnyTensor);
let results = (outs AnyTensor);
}
def OpWithInferTypeAdaptorInterfaceOp : TEST_Op<"op_with_infer_type_adaptor_if", [
InferTypeOpAdaptor]> {
let arguments = (ins AnyTensor:$x, AnyTensor:$y);
let results = (outs AnyTensor);
}
def OpWithRefineTypeInterfaceOp : TEST_Op<"op_with_refine_type_if", [
DeclareOpInterfaceMethods<InferTypeOpInterface,
["refineReturnTypes"]>]> {
let arguments = (ins AnyTensor, AnyTensor);
let results = (outs AnyTensor);
}
def OpWithShapedTypeInferTypeInterfaceOp : TEST_Op<"op_with_shaped_type_infer_type_if",
[InferTensorTypeWithReify]> {
let arguments = (ins AnyTensor, AnyTensor);
let results = (outs AnyTensor);
}
def OpWithShapedTypeInferTypeAdaptorInterfaceOp :
TEST_Op<"op_with_shaped_type_infer_type_adaptor_if",
[InferTensorTypeAdaptorWithReify]> {
let arguments = (ins AnyTensor:$operand1, AnyTensor:$operand2);
let results = (outs AnyTensor:$result);
}
def OpWithResultShapeInterfaceOp : TEST_Op<"op_with_result_shape_interface",
[DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
["reifyReturnTypeShapes"]>]> {
let arguments = (ins AnyRankedTensor:$operand1, AnyRankedTensor:$operand2);
let results = (outs AnyRankedTensor:$result1, AnyRankedTensor:$result2);
}
def OpWithResultShapePerDimInterfaceOp :
TEST_Op<"op_with_result_shape_per_dim_interface",
[DeclareOpInterfaceMethods<ReifyRankedShapedTypeOpInterface>]> {
let arguments = (ins AnyRankedTensor:$operand1, AnyRankedTensor:$operand2);
let results = (outs AnyRankedTensor:$result1, AnyRankedTensor:$result2);
}
def IsNotScalar : Constraint<CPred<"$0.getType().getRank() != 0">>;
def UpdateAttr : Pat<(I32ElementsAttrOp $attr),
(I32ElementsAttrOp ConstantAttr<I32ElementsAttr, "0">),
[(IsNotScalar $attr)]>;
def TestBranchOp : TEST_Op<"br",
[DeclareOpInterfaceMethods<BranchOpInterface>, Terminator]> {
let arguments = (ins Variadic<AnyType>:$targetOperands);
let successors = (successor AnySuccessor:$target);
}
def TestProducingBranchOp : TEST_Op<"producing_br",
[DeclareOpInterfaceMethods<BranchOpInterface>, Terminator,
AttrSizedOperandSegments]> {
let arguments = (ins Variadic<AnyType>:$firstOperands,
Variadic<AnyType>:$secondOperands);
let results = (outs I32:$dummy);
let successors = (successor AnySuccessor:$first,AnySuccessor:$second);
}
// Produces an error value on the error path
def TestInternalBranchOp : TEST_Op<"internal_br",
[DeclareOpInterfaceMethods<BranchOpInterface>, Terminator,
AttrSizedOperandSegments]> {
let arguments = (ins Variadic<AnyType>:$successOperands,
Variadic<AnyType>:$errorOperands);
let successors = (successor AnySuccessor:$successPath, AnySuccessor:$errorPath);
}
def AttrSizedOperandOp : TEST_Op<"attr_sized_operands",
[AttrSizedOperandSegments]> {
let arguments = (ins
Variadic<I32>:$a,
Variadic<I32>:$b,
I32:$c,
Variadic<I32>:$d
);
}
def AttrSizedResultOp : TEST_Op<"attr_sized_results",
[AttrSizedResultSegments]> {
let results = (outs
Variadic<I32>:$a,
Variadic<I32>:$b,
I32:$c,
Variadic<I32>:$d
);
}
def AttrSizedResultCompileTestOp : TEST_Op<"attr_sized_results_compile_test",
[AttrSizedResultSegments]> {
let results = (outs Variadic<I32>:$a, I32:$b, Optional<I32>:$c);
}
// This is used to test encoding of a string attribute into an SSA name of a
// pretty printed value name.
def StringAttrPrettyNameOp
: TEST_Op<"string_attr_pretty_name",
[DeclareOpInterfaceMethods<OpAsmOpInterface, ["getAsmResultNames"]>]> {
let arguments = (ins StrArrayAttr:$names);
let results = (outs Variadic<I32>:$r);
let hasCustomAssemblyFormat = 1;
}
// This is used to test encoding of a string attribute into an SSA name of a
// pretty printed value name.
def CustomResultsNameOp
: TEST_Op<"custom_result_name",
[DeclareOpInterfaceMethods<OpAsmOpInterface, ["getAsmResultNames"]>]> {
let arguments = (ins
Variadic<AnyInteger>:$optional,
StrArrayAttr:$names
);
let results = (outs Variadic<AnyInteger>:$r);
}
// This is used to test the OpAsmOpInterface::getDefaultDialect() feature:
// operations nested in a region under this op will drop the "test." dialect
// prefix.
def DefaultDialectOp : TEST_Op<"default_dialect", [OpAsmOpInterface]> {
let regions = (region AnyRegion:$body);
let extraClassDeclaration = [{
static ::llvm::StringRef getDefaultDialect() {
return "test";
}
void getAsmResultNames(::llvm::function_ref<void(::mlir::Value, ::llvm::StringRef)> setNameFn) {}
}];
let assemblyFormat = "regions attr-dict-with-keyword";
}
// This is used to test the OpAsmOpInterface::getAsmBlockName() feature:
// blocks nested in a region under this op will have a name defined by the
// interface.
def AsmBlockNameOp : TEST_Op<"block_names", [OpAsmOpInterface]> {
let regions = (region AnyRegion:$body);
let extraClassDeclaration = [{
void getAsmBlockNames(mlir::OpAsmSetBlockNameFn setNameFn) {
std::string name;
int count = 0;
for (::mlir::Block &block : getRegion().getBlocks()) {
name = "foo" + std::to_string(count++);
setNameFn(&block, name);
}
}
}];
let assemblyFormat = "regions attr-dict-with-keyword";
}
// This operation requires its return type to have the trait 'TestTypeTrait'.
def ResultTypeWithTraitOp : TEST_Op<"result_type_with_trait", []> {
let results = (outs AnyType);
let hasVerifier = 1;
}
// This operation requires its "attr" attribute to have the
// trait 'TestAttrTrait'.
def AttrWithTraitOp : TEST_Op<"attr_with_trait", []> {
let arguments = (ins AnyAttr:$attr);
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Test Locations
//===----------------------------------------------------------------------===//
def TestLocationSrcOp : TEST_Op<"loc_src"> {
let arguments = (ins I32:$input);
let results = (outs I32:$output);
}
def TestLocationDstOp : TEST_Op<"loc_dst", [SameOperandsAndResultType]> {
let arguments = (ins I32:$input);
let results = (outs I32:$output);
}
def TestLocationSrcNoResOp : TEST_Op<"loc_src_no_res"> {
let arguments = (ins I32:$input);
let results = (outs);
}
def TestLocationDstNoResOp : TEST_Op<"loc_dst_no_res"> {
let arguments = (ins I32:$input);
let results = (outs);
}
//===----------------------------------------------------------------------===//
// Test Patterns
//===----------------------------------------------------------------------===//
def OpA : TEST_Op<"op_a"> {
let arguments = (ins I32, I32Attr:$attr);
let results = (outs I32);
}
def OpB : TEST_Op<"op_b"> {
let arguments = (ins I32, I32Attr:$attr);
let results = (outs I32);
}
// Test named pattern.
def TestNamedPatternRule : Pat<(OpA $input, $attr), (OpB $input, $attr)>;
// Test with fused location.
def : Pat<(OpA (OpA $input, $attr), $bttr), (OpB $input, $bttr)>;
// Test added benefit.
def OpD : TEST_Op<"op_d">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpE : TEST_Op<"op_e">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpF : TEST_Op<"op_f">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpG : TEST_Op<"op_g">, Arguments<(ins I32)>, Results<(outs I32)>;
// Verify that bumping benefit results in selecting different op.
def : Pat<(OpD $input), (OpE $input)>;
def : Pat<(OpD $input), (OpF $input), [], [], (addBenefit 10)>;
// Verify that patterns with more source nodes are selected before those with fewer.
def : Pat<(OpG $input), (OpB $input, ConstantAttr<I32Attr, "20">:$attr)>;
def : Pat<(OpG (OpG $input)), (OpB $input, ConstantAttr<I32Attr, "34">:$attr)>;
// Test patterns for zero-result op.
def OpH : TEST_Op<"op_h">, Arguments<(ins I32)>, Results<(outs)>;
def OpI : TEST_Op<"op_i">, Arguments<(ins I32)>, Results<(outs)>;
def : Pat<(OpH $input), (OpI $input)>;
// Test patterns for zero-input op.
def OpJ : TEST_Op<"op_j">, Arguments<(ins)>, Results<(outs I32)>;
def OpK : TEST_Op<"op_k">, Arguments<(ins)>, Results<(outs I32)>;
def : Pat<(OpJ), (OpK)>;
// Test that natives calls are only called once during rewrites.
def OpM : TEST_Op<"op_m"> {
let arguments = (ins I32, OptionalAttr<I32Attr>:$optional_attr);
let results = (outs I32);
}
def OpN : TEST_Op<"op_n"> {
let arguments = (ins I32, I32);
let results = (outs I32);
}
def OpO : TEST_Op<"op_o"> {
let arguments = (ins I32);
let results = (outs I32);
}
def OpP : TEST_Op<"op_p"> {
let arguments = (ins I32, I32, I32, I32, I32, I32);
let results = (outs I32);
}
// Test same operand name enforces equality condition check.
def TestEqualArgsPattern : Pat<(OpN $a, $a), (OpO $a)>;
// Test when equality is enforced at different depth.
def TestNestedOpEqualArgsPattern :
Pat<(OpN $b, (OpP $a, $b, $c, $d, $e, $f)), (replaceWithValue $b)>;
// Test when equality is enforced on same op and same operand but at different
// depth. We only bound one of the $x to the second operand of outer OpN and
// left another be the default value (which is the value of first operand of
// outer OpN). As a result, it ended up comparing wrong values in some cases.
def TestNestedSameOpAndSameArgEqualityPattern :
Pat<(OpN (OpN $_, $x), $x), (replaceWithValue $x)>;
// Test multiple equal arguments check enforced.
def TestMultipleEqualArgsPattern :
Pat<(OpP $a, $b, $a, $a, $b, $c), (OpN $c, $b)>;
// Test for memrefs normalization of an op with normalizable memrefs.
def OpNorm : TEST_Op<"op_norm", [MemRefsNormalizable]> {
let arguments = (ins AnyMemRef:$X, AnyMemRef:$Y);
}
// Test for memrefs normalization of an op without normalizable memrefs.
def OpNonNorm : TEST_Op<"op_nonnorm"> {
let arguments = (ins AnyMemRef:$X, AnyMemRef:$Y);
}
// Test for memrefs normalization of an op that has normalizable memref results.
def OpNormRet : TEST_Op<"op_norm_ret", [MemRefsNormalizable]> {
let arguments = (ins AnyMemRef:$X);
let results = (outs AnyMemRef:$Y, AnyMemRef:$Z);
}
// Test for memrefs normalization of an op with a reference to a function
// symbol.
def OpFuncRef : TEST_Op<"op_funcref"> {
let summary = "Test op with a reference to a function symbol";
let description = [{
The "test.op_funcref" is a test op with a reference to a function symbol.
}];
let builders = [OpBuilder<(ins "::mlir::func::FuncOp":$function)>];
}
// Pattern add the argument plus a increasing static number hidden in
// OpMTest function. That value is set into the optional argument.
// That way, we will know if operations is called once or twice.
def OpMGetNullAttr : NativeCodeCall<"Attribute()">;
def OpMAttributeIsNull : Constraint<CPred<"! ($_self)">, "Attribute is null">;
def OpMVal : NativeCodeCall<"opMTest($_builder, $0)">;
def : Pat<(OpM $attr, $optAttr), (OpM $attr, (OpMVal $attr) ),
[(OpMAttributeIsNull:$optAttr)]>;
// Test `$_` for ignoring op argument match.
def TestIgnoreArgMatchSrcOp : TEST_Op<"ignore_arg_match_src"> {
let arguments = (ins
AnyType:$a, AnyType:$b, AnyType:$c,
AnyAttr:$d, AnyAttr:$e, AnyAttr:$f);
}
def TestIgnoreArgMatchDstOp : TEST_Op<"ignore_arg_match_dst"> {
let arguments = (ins AnyType:$b, AnyAttr:$f);
}
def : Pat<(TestIgnoreArgMatchSrcOp $_, $b, I32, I64Attr:$_, $_, $f),
(TestIgnoreArgMatchDstOp $b, $f)>;
def OpInterleavedOperandAttribute1 : TEST_Op<"interleaved_operand_attr1"> {
let arguments = (ins
I32:$input1,
I64Attr:$attr1,
I32:$input2,
I64Attr:$attr2
);
}
def OpInterleavedOperandAttribute2 : TEST_Op<"interleaved_operand_attr2"> {
let arguments = (ins
I32:$input1,
I64Attr:$attr1,
I32:$input2,
I64Attr:$attr2
);
}
def ManyArgsOp : TEST_Op<"many_arguments"> {
let arguments = (ins
I32:$input1, I32:$input2, I32:$input3, I32:$input4, I32:$input5,
I32:$input6, I32:$input7, I32:$input8, I32:$input9,
I64Attr:$attr1, I64Attr:$attr2, I64Attr:$attr3, I64Attr:$attr4,
I64Attr:$attr5, I64Attr:$attr6, I64Attr:$attr7, I64Attr:$attr8,
I64Attr:$attr9
);
}
// Test that DRR does not blow up when seeing lots of arguments.
def : Pat<(ManyArgsOp
$input1, $input2, $input3, $input4, $input5,
$input6, $input7, $input8, $input9,
ConstantAttr<I64Attr, "42">,
$attr2, $attr3, $attr4, $attr5, $attr6,
$attr7, $attr8, $attr9),
(ManyArgsOp
$input1, $input2, $input3, $input4, $input5,
$input6, $input7, $input8, $input9,
ConstantAttr<I64Attr, "24">,
$attr2, $attr3, $attr4, $attr5, $attr6,
$attr7, $attr8, $attr9)>;
// Test that we can capture and reference interleaved operands and attributes.
def : Pat<(OpInterleavedOperandAttribute1 $input1, $attr1, $input2, $attr2),
(OpInterleavedOperandAttribute2 $input1, $attr1, $input2, $attr2)>;
// Test NativeCodeCall.
def OpNativeCodeCall1 : TEST_Op<"native_code_call1"> {
let arguments = (ins
I32:$input1, I32:$input2,
BoolAttr:$choice,
I64Attr:$attr1, I64Attr:$attr2
);
let results = (outs I32);
}
def OpNativeCodeCall2 : TEST_Op<"native_code_call2"> {
let arguments = (ins I32:$input, I64ArrayAttr:$attr);
let results = (outs I32);
}
// Native code call to invoke a C++ function
def CreateOperand: NativeCodeCall<"chooseOperand($0, $1, $2)">;
// Native code call to invoke a C++ expression
def CreateArrayAttr: NativeCodeCall<"$_builder.getArrayAttr({$0, $1})">;
// Test that we can use NativeCodeCall to create operand and attribute.
// This pattern chooses between $input1 and $input2 according to $choice and
// it combines $attr1 and $attr2 into an array attribute.
def : Pat<(OpNativeCodeCall1 $input1, $input2,
ConstBoolAttrTrue:$choice, $attr1, $attr2),
(OpNativeCodeCall2 (CreateOperand $input1, $input2, $choice),
(CreateArrayAttr $attr1, $attr2))>;
// Note: the following is just for testing purpose.
// Should use the replaceWithValue directive instead.
def UseOpResult: NativeCodeCall<"$0">;
// Test that we can use NativeCodeCall to create result.
def : Pat<(OpNativeCodeCall1 $input1, $input2,
ConstBoolAttrFalse, $attr1, $attr2),
(UseOpResult $input2)>;
def OpNativeCodeCall3 : TEST_Op<"native_code_call3"> {
let arguments = (ins I32:$input);
let results = (outs I32);
}
// Test that NativeCodeCall is not ignored if it is not used to directly
// replace the matched root op.
def : Pattern<(OpNativeCodeCall3 $input),
[(NativeCodeCallVoid<"createOpI($_builder, $_loc, $0)"> $input),
(OpK)]>;
def OpNativeCodeCall4 : TEST_Op<"native_code_call4"> {
let arguments = (ins AnyType:$input1);
let results = (outs I32:$output1, I32:$output2);
}
def OpNativeCodeCall5 : TEST_Op<"native_code_call5"> {
let arguments = (ins I32:$input1, I32:$input2);
let results = (outs I32:$output1, I32:$output2);
}
def GetFirstI32Result : NativeCodeCall<"success(getFirstI32Result($_self, $0))">;
def BindNativeCodeCallResult : NativeCodeCall<"bindNativeCodeCallResult($0)">;
def : Pat<(OpNativeCodeCall4 (GetFirstI32Result $ret)),
(OpNativeCodeCall5 (BindNativeCodeCallResult:$native $ret), $native)>;
def OpNativeCodeCall6 : TEST_Op<"native_code_call6"> {
let arguments = (ins I32:$input1, I32:$input2);
let results = (outs I32:$output1, I32:$output2);
}
def OpNativeCodeCall7 : TEST_Op<"native_code_call7"> {
let arguments = (ins I32:$input);
let results = (outs I32);
}
def BindMultipleNativeCodeCallResult : NativeCodeCall<"bindMultipleNativeCodeCallResult($0, $1)", 2>;
def : Pattern<(OpNativeCodeCall6 $arg1, $arg2),
[(OpNativeCodeCall7 (BindMultipleNativeCodeCallResult:$native__0 $arg1, $arg2)),
(OpNativeCodeCall7 $native__1)]>;
// Test AllAttrOf.
def OpAllAttrConstraint1 : TEST_Op<"all_attr_constraint_of1"> {
let arguments = (ins I64ArrayAttr:$attr);
let results = (outs I32);
}
def OpAllAttrConstraint2 : TEST_Op<"all_attr_constraint_of2"> {
let arguments = (ins I64ArrayAttr:$attr);
let results = (outs I32);
}
def Constraint0 : AttrConstraint<
CPred<"::llvm::cast<::mlir::IntegerAttr>(::llvm::cast<ArrayAttr>($_self)[0]).getInt() == 0">,
"[0] == 0">;
def Constraint1 : AttrConstraint<
CPred<"::llvm::cast<::mlir::IntegerAttr>(::llvm::cast<ArrayAttr>($_self)[1]).getInt() == 1">,
"[1] == 1">;
def : Pat<(OpAllAttrConstraint1
AllAttrOf<[Constraint0, Constraint1]>:$attr),
(OpAllAttrConstraint2 $attr)>;
// Op for testing RewritePattern removing op with inner ops.
def TestOpWithRegionPattern : TEST_Op<"op_with_region_pattern"> {
let regions = (region SizedRegion<1>:$region);
let hasCanonicalizer = 1;
}
def TestOpConstant : TEST_Op<"constant", [ConstantLike, NoMemoryEffect]> {
let arguments = (ins AnyAttr:$value);
let results = (outs AnyType);
let hasFolder = 1;
}
def OpR : TEST_Op<"op_r">, Arguments<(ins AnyInteger, AnyInteger)>, Results<(outs AnyInteger)>;
def OpS : TEST_Op<"op_s">, Arguments<(ins AnyInteger, AnyAttr:$value)>, Results<(outs AnyInteger)>;
def : Pat<(OpR $input1, (ConstantLikeMatcher I32Attr:$input2)),
(OpS:$unused $input1, $input2)>;
// Op for testing trivial removal via folding of op with inner ops and no uses.
def TestOpWithRegionFoldNoMemoryEffect : TEST_Op<
"op_with_region_fold_no_side_effect", [NoMemoryEffect]> {
let regions = (region SizedRegion<1>:$region);
}
// Op for testing folding of outer op with inner ops.
def TestOpWithRegionFold : TEST_Op<"op_with_region_fold"> {
let arguments = (ins AnyType:$operand);
let results = (outs AnyType);
let regions = (region SizedRegion<1>:$region);
let hasFolder = 1;
}
def TestOpWithVariadicResultsAndFolder: TEST_Op<"op_with_variadic_results_and_folder"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
let hasFolder = 1;
}
def TestAddIOp : TEST_Op<"addi"> {
let arguments = (ins AnyTypeOf<[I32, TestI32]>:$op1,
AnyTypeOf<[I32, TestI32]>:$op2);
let results = (outs AnyTypeOf<[I32, TestI32]>);
}
def TestCommutativeOp : TEST_Op<"op_commutative", [Commutative]> {
let arguments = (ins I32:$op1, I32:$op2, I32:$op3, I32:$op4);
let results = (outs I32);
}
def TestLargeCommutativeOp : TEST_Op<"op_large_commutative", [Commutative]> {
let arguments = (ins I32:$op1, I32:$op2, I32:$op3, I32:$op4, I32:$op5, I32:$op6, I32:$op7);
let results = (outs I32);
}
def TestCommutative2Op : TEST_Op<"op_commutative2", [Commutative]> {
let arguments = (ins I32:$op1, I32:$op2);
let results = (outs I32);
}
def TestIdempotentTraitOp
: TEST_Op<"op_idempotent_trait",
[SameOperandsAndResultType, NoMemoryEffect, Idempotent]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
}
def TestIdempotentTraitBinaryOp
: TEST_Op<"op_idempotent_trait_binary",
[SameOperandsAndResultType, NoMemoryEffect, Idempotent]> {
let arguments = (ins I32:$op1, I32:$op2);
let results = (outs I32);
}
def TestInvolutionTraitNoOperationFolderOp
: TEST_Op<"op_involution_trait_no_operation_fold",
[SameOperandsAndResultType, NoMemoryEffect, Involution]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
}
def TestInvolutionTraitFailingOperationFolderOp
: TEST_Op<"op_involution_trait_failing_operation_fold",
[SameOperandsAndResultType, NoMemoryEffect, Involution]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
let hasFolder = 1;
}
def TestInvolutionTraitSuccesfulOperationFolderOp
: TEST_Op<"op_involution_trait_succesful_operation_fold",
[SameOperandsAndResultType, NoMemoryEffect, Involution]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
let hasFolder = 1;
}
def TestOpInPlaceFoldAnchor : TEST_Op<"op_in_place_fold_anchor"> {
let arguments = (ins I32);
let results = (outs I32);
}
def TestOpInPlaceFold : TEST_Op<"op_in_place_fold"> {
let arguments = (ins I32:$op, OptionalAttr<I32Attr>:$attr);
let results = (outs I32);
let hasFolder = 1;
}
def TestOpInPlaceSelfFold : TEST_Op<"op_in_place_self_fold"> {
let arguments = (ins UnitAttr:$folded);
let results = (outs I32);
let hasFolder = 1;
}
// Test op that simply returns success.
def TestOpInPlaceFoldSuccess : TEST_Op<"op_in_place_fold_success"> {
let results = (outs Variadic<I1>);
let hasFolder = 1;
let extraClassDefinition = [{
::llvm::LogicalResult $cppClass::fold(FoldAdaptor adaptor,
SmallVectorImpl<OpFoldResult> &results) {
return success();
}
}];
}
def TestOpFoldWithFoldAdaptor
: TEST_Op<"fold_with_fold_adaptor",
[AttrSizedOperandSegments, NoTerminator]> {
let arguments = (ins
I32:$op,
DenseI32ArrayAttr:$attr,
Variadic<I32>:$variadic,
VariadicOfVariadic<I32, "attr">:$var_of_var
);
let results = (outs I32:$res);
let regions = (region AnyRegion:$body);
let assemblyFormat = [{
$op `,` `[` $variadic `]` `,` `{` $var_of_var `}` $body attr-dict-with-keyword
}];
let hasFolder = 1;
}
def TestDialectCanonicalizerOp : TEST_Op<"dialect_canonicalizable"> {
let arguments = (ins);
let results = (outs I32);
}
//===----------------------------------------------------------------------===//
// Test Patterns (Symbol Binding)
// Test symbol binding.
def OpSymbolBindingA : TEST_Op<"symbol_binding_a", []> {
let arguments = (ins I32:$operand, I64Attr:$attr);
let results = (outs I32);
}
def OpSymbolBindingB : TEST_Op<"symbol_binding_b", []> {
let arguments = (ins I32:$operand);
let results = (outs I32);
}
def OpSymbolBindingC : TEST_Op<"symbol_binding_c", []> {
let arguments = (ins I32:$operand);
let results = (outs I32);
let builders = OpSymbolBindingB.builders;
}
def OpSymbolBindingD : TEST_Op<"symbol_binding_d", []> {
let arguments = (ins I32:$input1, I32:$input2, I64Attr:$attr);
let results = (outs I32);
}
def HasOneUse: Constraint<CPred<"$0.hasOneUse()">, "has one use">;
def : Pattern<
// Bind to source pattern op operand/attribute/result
(OpSymbolBindingA:$res_a $operand, $attr), [
// Bind to auxiliary op result
(OpSymbolBindingC:$res_c (OpSymbolBindingB:$res_b $operand)),
// Use bound symbols in resultant ops
(OpSymbolBindingD $res_b, $res_c, $attr)],
// Use bound symbols in additional constraints
[(HasOneUse $res_a)]>;
def OpSymbolBindingNoResult : TEST_Op<"symbol_binding_no_result", []> {
let arguments = (ins I32:$operand);
}
// Test that we can bind to an op without results and reference it later.
def : Pat<(OpSymbolBindingNoResult:$op $operand),
(NativeCodeCallVoid<"handleNoResultOp($_builder, $0)"> $op)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Attributes)
// Test matching against op attributes.
def OpAttrMatch1 : TEST_Op<"match_op_attribute1"> {
let arguments = (ins
I32Attr:$required_attr,
OptionalAttr<I32Attr>:$optional_attr,
DefaultValuedAttr<I32Attr, "42">:$default_valued_attr,
I32Attr:$more_attr
);
let results = (outs I32);
}
def OpAttrMatch2 : TEST_Op<"match_op_attribute2"> {
let arguments = OpAttrMatch1.arguments;
let results = (outs I32);
}
def MoreConstraint : AttrConstraint<
CPred<"::llvm::cast<IntegerAttr>($_self).getInt() == 4">, "more constraint">;
def : Pat<(OpAttrMatch1 $required, $optional, $default_valued,
MoreConstraint:$more),
(OpAttrMatch2 $required, $optional, $default_valued, $more)>;
// Test unit attrs.
def OpAttrMatch3 : TEST_Op<"match_op_attribute3"> {
let arguments = (ins UnitAttr:$attr);
let results = (outs I32);
}
def OpAttrMatch4 : TEST_Op<"match_op_attribute4"> {
let arguments = (ins UnitAttr:$attr1, UnitAttr:$attr2);
let results = (outs I32);
}
def : Pat<(OpAttrMatch3 $attr), (OpAttrMatch4 ConstUnitAttr, $attr)>;
// Test with constant attr.
def OpC : TEST_Op<"op_c">, Arguments<(ins I32)>, Results<(outs I32)>;
def : Pat<(OpC $input), (OpB $input, ConstantAttr<I32Attr, "17">:$attr)>;
// Test integer enum attribute in rewrites.
def : Pat<(I32EnumAttrOp I32Case5), (I32EnumAttrOp I32Case10)>;
def : Pat<(I64EnumAttrOp I64Case5), (I64EnumAttrOp I64Case10)>;
def ThreeResultOp : TEST_Op<"three_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2, F32:$result3);
}
def AnotherThreeResultOp
: TEST_Op<"another_three_result",
[DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2, F32:$result3);
}
def TwoResultOp : TEST_Op<"two_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2);
}
def AnotherTwoResultOp : TEST_Op<"another_two_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs F32:$result1, F32:$result2);
}
def OneResultOp1 : TEST_Op<"one_result1"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs F32:$result1);
}
def OneResultOp2 : TEST_Op<"one_result2"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1);
}
def OneResultOp3 : TEST_Op<"one_result3"> {
let arguments = (ins F32);
let results = (outs I32:$result1);
}
// Test using multi-result op as a whole
def : Pat<(ThreeResultOp MultiResultOpKind1:$kind),
(AnotherThreeResultOp $kind)>;
// Test using multi-result op as a whole for partial replacement
def : Pattern<(ThreeResultOp MultiResultOpKind2:$kind),
[(TwoResultOp $kind),
(OneResultOp1 $kind)]>;
def : Pattern<(ThreeResultOp MultiResultOpKind3:$kind),
[(OneResultOp2 $kind),
(AnotherTwoResultOp $kind)]>;
// Test using results separately in a multi-result op
def : Pattern<(ThreeResultOp MultiResultOpKind4:$kind),
[(TwoResultOp:$res1__0 $kind),
(OneResultOp1 $kind),
(TwoResultOp:$res2__1 $kind)]>;
// Test referencing a single value in the value pack
// This rule only matches TwoResultOp if its second result has no use.
def : Pattern<(TwoResultOp:$res MultiResultOpKind5:$kind),
[(OneResultOp2 $kind),
(OneResultOp1 $kind)],
[(HasNoUseOf:$res__1)]>;
// Test using auxiliary ops for replacing multi-result op
def : Pattern<
(ThreeResultOp MultiResultOpKind6:$kind), [
// Auxiliary op generated to help building the final result but not
// directly used to replace the source op's results.
(TwoResultOp:$interm $kind),
(OneResultOp3 $interm__1),
(AnotherTwoResultOp $kind)
]>;
//===----------------------------------------------------------------------===//
// Test Patterns (Variadic Ops)
def OneVResOneVOperandOp1 : TEST_Op<"one_variadic_out_one_variadic_in1"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
}
def OneVResOneVOperandOp2 : TEST_Op<"one_variadic_out_one_variadic_in2"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
}
// Rewrite an op with one variadic operand and one variadic result to
// another similar op.
def : Pat<(OneVResOneVOperandOp1 $inputs), (OneVResOneVOperandOp2 $inputs)>;
def MixedVOperandOp1 : TEST_Op<"mixed_variadic_in1",
[SameVariadicOperandSize]> {
let arguments = (ins
Variadic<I32>:$input1,
F32:$input2,
Variadic<I32>:$input3
);
}
def MixedVOperandOp2 : TEST_Op<"mixed_variadic_in2",
[SameVariadicOperandSize]> {
let arguments = (ins
Variadic<I32>:$input1,
F32:$input2,
Variadic<I32>:$input3
);
}
// Rewrite an op with both variadic operands and normal operands.
def : Pat<(MixedVOperandOp1 $input1, $input2, $input3),
(MixedVOperandOp2 $input1, $input2, $input3)>;
def MixedVResultOp1 : TEST_Op<"mixed_variadic_out1", [SameVariadicResultSize]> {
let results = (outs
Variadic<I32>:$output1,
F32:$output2,
Variadic<I32>:$output3
);
}
def MixedVResultOp2 : TEST_Op<"mixed_variadic_out2", [SameVariadicResultSize]> {
let results = (outs
Variadic<I32>:$output1,
F32:$output2,
Variadic<I32>:$output3
);
}
// Rewrite an op with both variadic results and normal results.
// Note that because we are generating the op with a top-level result pattern,
// we are able to deduce the correct result types for the generated op using
// the information from the matched root op.
def : Pat<(MixedVResultOp1), (MixedVResultOp2)>;
def OneI32ResultOp : TEST_Op<"one_i32_out"> {
let results = (outs I32);
}
def MixedVOperandOp3 : TEST_Op<"mixed_variadic_in3",
[SameVariadicOperandSize]> {
let arguments = (ins
I32:$input1,
Variadic<I32>:$input2,
Variadic<I32>:$input3,
I32Attr:$count
);
let results = (outs I32);
}
def MixedVResultOp3 : TEST_Op<"mixed_variadic_out3",
[SameVariadicResultSize]> {
let arguments = (ins I32Attr:$count);
let results = (outs
I32:$output1,
Variadic<I32>:$output2,
Variadic<I32>:$output3
);
// We will use this op in a nested result pattern, where we cannot deduce the
// result type. So need to provide a builder not requiring result types.
let builders = [
OpBuilder<(ins "::mlir::IntegerAttr":$count),
[{
auto i32Type = $_builder.getIntegerType(32);
$_state.addTypes(i32Type); // $output1
SmallVector<Type, 4> types(count.getInt(), i32Type);
$_state.addTypes(types); // $output2
$_state.addTypes(types); // $output3
$_state.addAttribute("count", count);
}]>
];
}
// Generates an op with variadic results using nested pattern.
def : Pat<(OneI32ResultOp),
(MixedVOperandOp3
(MixedVResultOp3:$results__0 ConstantAttr<I32Attr, "2">),
(replaceWithValue $results__1),
(replaceWithValue $results__2),
ConstantAttr<I32Attr, "2">)>;
// Variadic structured matching
def MixedVOperandOp4 : TEST_Op<"mixed_variadic_in4"> {
let arguments = (ins
Variadic<I32>:$input1,
I32:$input2,
I32Attr:$attr1
);
}
def MixedVOperandOp5 : TEST_Op<"mixed_variadic_in5"> {
let arguments = (ins
I32:$input1,
I32:$input2,
I32:$input3,
I32Attr:$attr1,
StrAttr:$pattern_name
);
}
// Helper op to test variadic recursive pattern matching
def MixedVOperandInOutI32Op : TEST_Op<"mixed_variadic_in_out_i32"> {
let arguments = (ins
I32:$input
);
let results = (outs
I32:$output
);
}
def : Pat<
(MixedVOperandOp4 (variadic $input1a, $input1b), $input2,
ConstantAttr<I32Attr, "0">:$attr1),
(MixedVOperandOp5 $input1a, $input1b, $input2, $attr1,
ConstantStrAttr<StrAttr, "MatchVariadic">)>;
def : Pat<
(MixedVOperandOp5 $input1a, $input1b, $input2, $attr1,
ConstantStrAttr<StrAttr, "MatchInverseVariadic">),
(MixedVOperandOp3 $input2, (variadic $input1b), (variadic $input1a),
ConstantAttr<I32Attr, "1">:$attr1)>;
def : Pat<
(MixedVOperandOp4 (variadic (MixedVOperandInOutI32Op $input1a),
(MixedVOperandInOutI32Op $input1b)),
$input2, ConstantAttr<I32Attr, "1">:$attr1),
(MixedVOperandOp5 $input1a, $input1b, $input2, $attr1,
ConstantStrAttr<StrAttr, "MatchVariadicSubDag">)>;
def : Pat<
(MixedVOperandOp4 (variadic $input1, $input1), $input2,
ConstantAttr<I32Attr, "2">:$attr1),
(MixedVOperandOp5 $input1, $input1, $input2, $attr1,
ConstantStrAttr<StrAttr, "MatchVariadicSameSymbol">)>;
def MixedVOperandOp6 : TEST_Op<"mixed_variadic_in6",
[SameVariadicOperandSize]> {
let arguments = (ins
Variadic<I32>:$input1,
Variadic<I32>:$input2,
I32Attr:$attr1
);
}
def : Pat<
(MixedVOperandOp6 (variadic:$input1 $input1a, $input1b),
(variadic:$input2 $input2a, $input2b),
ConstantAttr<I32Attr, "1">:$attr1),
(MixedVOperandOp6 $input2, $input1, ConstantAttr<I32Attr, "-1">)>;
def : Pat<
(MixedVOperandOp6 (variadic $input1a, $input1b),
(variadic $input2a, $input2b),
ConstantAttr<I32Attr, "2">:$attr1),
(MixedVOperandOp5 $input2a, $input2b, $input1b, $attr1,
ConstantStrAttr<StrAttr, "MatchMultiVariadicSubSymbol">)>;
//===----------------------------------------------------------------------===//
// Test Patterns (either)
def TestEitherOpA : TEST_Op<"either_op_a"> {
let arguments = (ins AnyInteger:$arg0, AnyInteger:$arg1, AnyInteger:$arg2);
let results = (outs I32:$output);
}
def TestEitherOpB : TEST_Op<"either_op_b"> {
let arguments = (ins AnyInteger:$arg0, AnyInteger:$arg1);
let results = (outs I32:$output);
}
def : Pat<(TestEitherOpA (either I32:$arg1, I16:$arg2), $x),
(TestEitherOpB $arg2, $x)>;
def : Pat<(TestEitherOpA (either (TestEitherOpB I32:$arg1, $_), I16:$arg2), $x),
(TestEitherOpB $arg2, $x)>;
def : Pat<(TestEitherOpA (either (TestEitherOpB I32:$arg1, $_),
(TestEitherOpB I16:$arg2, $_)),
$x),
(TestEitherOpB $arg2, $x)>;
def TestEitherHelperOpA : TEST_Op<"either_helper_op_a"> {
let arguments = (ins I32:$arg0);
let results = (outs I32:$output);
}
def TestEitherHelperOpB : TEST_Op<"either_helper_op_b"> {
let arguments = (ins I32:$arg0);
let results = (outs I32:$output);
}
// This test case ensures `emitOpMatch` doesn't redefine `castedOp{0}` local
// variables. To trigger this, we must ensure the matcher for
// `TestEitherHelperOpA` and `TestEitherHelperOpB` are not lifted as a static
// matcher.
def : Pat<(TestEitherOpB (either (TestEitherHelperOpA I32:$either_helper_0),
(TestEitherHelperOpB I32:$either_helper_1))),
(TestEitherOpB $either_helper_0, $either_helper_1)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Location)
// Test that we can specify locations for generated ops.
def : Pat<(TestLocationSrcOp:$res1
(TestLocationSrcOp:$res2
(TestLocationSrcOp:$res3 $input))),
(TestLocationDstOp
(TestLocationDstOp
(TestLocationDstOp $input, (location $res1)),
(location "named")),
(location "fused", $res2, $res3))>;
// Test that we can use the location of an op without results
def : Pat<(TestLocationSrcNoResOp:$loc
(TestLocationSrcOp (TestLocationSrcOp $input))),
(TestLocationDstNoResOp $input, (location $loc))>;
//===----------------------------------------------------------------------===//
// Test Patterns (Type Builders)
def SourceOp : TEST_Op<"source_op"> {
let arguments = (ins AnyInteger:$arg, AnyI32Attr:$tag);
let results = (outs AnyInteger);
}
// An op without return type deduction.
def OpX : TEST_Op<"op_x"> {
let arguments = (ins AnyInteger:$input);
let results = (outs AnyInteger);
}
// Test that ops without built-in type deduction can be created in the
// replacement DAG with an explicitly specified type.
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "11">:$attr),
(OpX (OpX $val, (returnType "$_builder.getI32Type()")))>;
// Test NativeCodeCall type builder can accept arguments.
def SameTypeAs : NativeCodeCall<"$0.getType()">;
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "22">:$attr),
(OpX (OpX $val, (returnType (SameTypeAs $val))))>;
// Test multiple return types.
def MakeI64Type : NativeCodeCall<"$_builder.getI64Type()">;
def MakeI32Type : NativeCodeCall<"$_builder.getI32Type()">;
def OneToTwo : TEST_Op<"one_to_two"> {
let arguments = (ins AnyInteger);
let results = (outs AnyInteger, AnyInteger);
}
def TwoToOne : TEST_Op<"two_to_one"> {
let arguments = (ins AnyInteger, AnyInteger);
let results = (outs AnyInteger);
}
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "33">:$attr),
(TwoToOne (OpX (OneToTwo:$res__0 $val, (returnType (MakeI64Type), (MakeI32Type))), (returnType (MakeI32Type))),
(OpX $res__1, (returnType (MakeI64Type))))>;
// Test copy value return type.
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "44">:$attr),
(OpX (OpX $val, (returnType $val)))>;
// Test create multiple return types with different methods.
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "55">:$attr),
(TwoToOne (OneToTwo:$res__0 $val, (returnType $val, "$_builder.getI64Type()")), $res__1)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Trailing Directives)
// Test that we can specify both `location` and `returnType` directives.
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "66">:$attr),
(TwoToOne (OpX $val, (returnType $val), (location "loc1")),
(OpX $val, (location "loc2"), (returnType $val)))>;
//===----------------------------------------------------------------------===//
// Test Legalization
//===----------------------------------------------------------------------===//
def Test_LegalizerEnum_Success : ConstantStrAttr<StrAttr, "Success">;
def Test_LegalizerEnum_Failure : ConstantStrAttr<StrAttr, "Failure">;
def ILLegalOpA : TEST_Op<"illegal_op_a">, Results<(outs I32)>;
def ILLegalOpB : TEST_Op<"illegal_op_b">, Results<(outs I32)>;
def ILLegalOpC : TEST_Op<"illegal_op_c">, Results<(outs I32)>;
def ILLegalOpD : TEST_Op<"illegal_op_d">, Results<(outs I32)>;
def ILLegalOpE : TEST_Op<"illegal_op_e">, Results<(outs I32)>;
def ILLegalOpF : TEST_Op<"illegal_op_f">, Results<(outs I32)>;
def ILLegalOpG : TEST_Op<"illegal_op_g">, Results<(outs I32)>;
def LegalOpA : TEST_Op<"legal_op_a">,
Arguments<(ins StrAttr:$status)>, Results<(outs I32)>;
def LegalOpB : TEST_Op<"legal_op_b">, Results<(outs I32)>;
def LegalOpC : TEST_Op<"legal_op_c">,
Arguments<(ins I32)>, Results<(outs I32)>;
def LegalOpD : TEST_Op<"legal_op_d">, Arguments<(ins AnyType)>;
// Check that the conversion infrastructure can properly undo the creation of
// operations where an operation was created before its parent, in this case,
// in the parent's builder.
def IllegalOpTerminator : TEST_Op<"illegal_op_terminator", [Terminator]>;
def IllegalOpWithRegion : TEST_Op<"illegal_op_with_region"> {
let skipDefaultBuilders = 1;
let builders = [OpBuilder<(ins),
[{
Region *bodyRegion = $_state.addRegion();
OpBuilder::InsertionGuard g($_builder);
Block *body = $_builder.createBlock(bodyRegion);
$_builder.setInsertionPointToEnd(body);
$_builder.create<IllegalOpTerminator>($_state.location);
}]>];
}
def IllegalOpWithRegionAnchor : TEST_Op<"illegal_op_with_region_anchor">;
// Check that smaller pattern depths are chosen, i.e. prioritize more direct
// mappings.
def : Pat<(ILLegalOpA), (LegalOpA Test_LegalizerEnum_Success)>;
def : Pat<(ILLegalOpA), (ILLegalOpB)>;
def : Pat<(ILLegalOpB), (LegalOpA Test_LegalizerEnum_Failure)>;
// Check that the higher benefit pattern is taken for multiple legalizations
// with the same depth.
def : Pat<(ILLegalOpC), (ILLegalOpD)>;
def : Pat<(ILLegalOpD), (LegalOpA Test_LegalizerEnum_Failure)>;
def : Pat<(ILLegalOpC), (ILLegalOpE), [], [], (addBenefit 10)>;
def : Pat<(ILLegalOpE), (LegalOpA Test_LegalizerEnum_Success)>;
// Check that patterns use the most up-to-date value when being replaced.
def TestRewriteOp : TEST_Op<"rewrite">,
Arguments<(ins AnyType)>, Results<(outs AnyType)>;
def : Pat<(TestRewriteOp $input), (replaceWithValue $input)>;
// Check that patterns can specify bounded recursion when rewriting.
def TestRecursiveRewriteOp : TEST_Op<"recursive_rewrite"> {
let arguments = (ins I64Attr:$depth);
let assemblyFormat = "$depth attr-dict";
}
// Test legalization pattern: this op will be erase and will also erase the
// producer of its operand.
def BlackHoleOp : TEST_Op<"blackhole">,
Arguments<(ins AnyType)>;
//===----------------------------------------------------------------------===//
// Test Type Legalization
//===----------------------------------------------------------------------===//
def TestRegionBuilderOp : TEST_Op<"region_builder">;
def TestReturnOp : TEST_Op<"return", [Pure, ReturnLike, Terminator]> {
let arguments = (ins Variadic<AnyType>);
let builders = [OpBuilder<(ins),
[{ build($_builder, $_state, {}); }]>
];
}
def TestCastOp : TEST_Op<"cast">,
Arguments<(ins Variadic<AnyType>)>, Results<(outs AnyType)>;
def TestInvalidOp : TEST_Op<"invalid", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
def TestTypeProducerOp : TEST_Op<"type_producer">,
Results<(outs AnyType)>;
def TestAnotherTypeProducerOp : TEST_Op<"another_type_producer">,
Results<(outs AnyType)>;
def TestTypeConsumerOp : TEST_Op<"type_consumer">,
Arguments<(ins AnyType)>;
def TestTypeChangerOp : TEST_Op<"type_changer">,
Arguments<(ins AnyType)>, Results<(outs AnyType)>;
def TestValidOp : TEST_Op<"valid", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
def TestMergeBlocksOp : TEST_Op<"merge_blocks"> {
let summary = "merge_blocks operation";
let description = [{
Test op with multiple blocks that are merged with Dialect Conversion
}];
let regions = (region AnyRegion:$body);
let results = (outs Variadic<AnyType>:$result);
}
def TestRemappedValueRegionOp : TEST_Op<"remapped_value_region",
[SingleBlock]> {
let summary = "remapped_value_region operation";
let description = [{
Test op that remaps values that haven't yet been converted in Dialect
Conversion.
}];
let regions = (region SizedRegion<1>:$body);
let results = (outs Variadic<AnyType>:$result);
}
def TestSignatureConversionUndoOp : TEST_Op<"signature_conversion_undo"> {
let regions = (region AnyRegion);
}
def TestSignatureConversionNoConverterOp
: TEST_Op<"signature_conversion_no_converter"> {
let regions = (region AnyRegion);
}
//===----------------------------------------------------------------------===//
// Test parser.
//===----------------------------------------------------------------------===//
def ParseIntegerLiteralOp : TEST_Op<"parse_integer_literal"> {
let results = (outs Variadic<Index>:$results);
let hasCustomAssemblyFormat = 1;
}
def ParseWrappedKeywordOp : TEST_Op<"parse_wrapped_keyword"> {
let arguments = (ins StrAttr:$keyword);
let hasCustomAssemblyFormat = 1;
}
def ParseB64BytesOp : TEST_Op<"parse_b64"> {
let arguments = (ins StrAttr:$b64);
let hasCustomAssemblyFormat = 1;
}
//===----------------------------------------------------------------------===//
// Test region argument list parsing.
def IsolatedRegionOp : TEST_Op<"isolated_region", [IsolatedFromAbove]> {
let summary = "isolated region operation";
let description = [{
Test op with an isolated region, to test passthrough region arguments. Each
argument is of index type.
}];
let arguments = (ins Index);
let regions = (region SizedRegion<1>:$region);
let hasCustomAssemblyFormat = 1;
}
def SSACFGRegionOp : TEST_Op<"ssacfg_region", [
DeclareOpInterfaceMethods<RegionKindInterface>]> {
let summary = "operation with an SSACFG region";
let description = [{
Test op that defines an SSACFG region.
}];
let regions = (region VariadicRegion<AnyRegion>:$regions);
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def GraphRegionOp : TEST_Op<"graph_region", [
DeclareOpInterfaceMethods<RegionKindInterface>]> {
let summary = "operation with a graph region";
let description = [{
Test op that defines a graph region.
}];
let regions = (region AnyRegion:$region);
let assemblyFormat = "attr-dict-with-keyword $region";
}
def IsolatedGraphRegionOp : TEST_Op<"isolated_graph_region", [
DeclareOpInterfaceMethods<RegionKindInterface>,
IsolatedFromAbove]> {
let summary = "isolated from above operation with a graph region";
let description = [{
Test op that defines a graph region which is isolated from above.
}];
let regions = (region AnyRegion:$region);
let assemblyFormat = "attr-dict-with-keyword $region";
}
def AffineScopeOp : TEST_Op<"affine_scope", [AffineScope]> {
let summary = "affine scope operation";
let description = [{
Test op that defines a new affine scope.
}];
let regions = (region SizedRegion<1>:$region);
let hasCustomAssemblyFormat = 1;
}
//===----------------------------------------------------------------------===//
// Custom printer/parser
def CustomDimensionListAttrOp : TEST_Op<"custom_dimension_list_attr"> {
let description = [{
Test printing/parsing of dimension list attribute.
}];
let arguments = (ins DenseI64ArrayAttr:$dimension_list);
let assemblyFormat = [{
`dimension_list` `=` custom<DimensionList>($dimension_list)
attr-dict
}];
}
def OptionalCustomAttrOp : TEST_Op<"optional_custom_attr"> {
let description = [{
Test using a custom directive as the optional group anchor and the first
element to parse. It is expected to return an `OptionalParseResult`.
}];
let arguments = (ins OptionalAttr<I1Attr>:$attr);
let assemblyFormat = [{
attr-dict (custom<OptionalCustomParser>($attr)^) : (`bar`)?
}];
}
//===----------------------------------------------------------------------===//
// Test OpAsmInterface.
def AsmInterfaceOp : TEST_Op<"asm_interface_op"> {
let results = (outs AnyType:$first, Variadic<AnyType>:$middle_results,
AnyType);
}
def AsmDialectInterfaceOp : TEST_Op<"asm_dialect_interface_op"> {
let results = (outs AnyType);
}
//===----------------------------------------------------------------------===//
// Test ArrayOfAttr
//===----------------------------------------------------------------------===//
// Embed the array attributes directly in the assembly format for a nice syntax.
def ArrayOfAttrOp : TEST_Op<"array_of_attr_op"> {
let arguments = (ins TestArrayOfUglyAttrs:$a, TestArrayOfInts:$b,
TestArrayOfEnums:$c);
let assemblyFormat = "`a` `=` $a `,` `b` `=` $b `,` `c` `=` $c attr-dict";
}
//===----------------------------------------------------------------------===//
// Test SideEffects
//===----------------------------------------------------------------------===//
def SideEffectOp : TEST_Op<"side_effect_op",
[DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
DeclareOpInterfaceMethods<TestEffectOpInterface>]> {
let results = (outs AnyType:$result);
}
def SideEffectWithRegionOp : TEST_Op<"side_effect_with_region_op",
[DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
DeclareOpInterfaceMethods<TestEffectOpInterface>]> {
let arguments = (ins AnyType:$operand);
let results = (outs AnyType:$result);
let regions = (region AnyRegion:$region);
let assemblyFormat = [{
`(` $operand`)` $region attr-dict `:` type($operand) `->` type($result)
}];
}
//===----------------------------------------------------------------------===//
// Test CopyOpInterface
//===----------------------------------------------------------------------===//
def CopyOp : TEST_Op<"copy", [CopyOpInterface]> {
let description = [{
Represents a copy operation.
}];
let arguments = (ins Res<AnyRankedOrUnrankedMemRef, "", [MemRead]>:$source,
Res<AnyRankedOrUnrankedMemRef, "", [MemWrite]>:$target);
let assemblyFormat = [{
`(` $source `,` $target `)` `:` `(` type($source) `,` type($target) `)`
attr-dict
}];
}
//===----------------------------------------------------------------------===//
// Test Buffer/Tensor
//===----------------------------------------------------------------------===//
def RegionYieldOp : TEST_Op<"region_yield",
[Pure, ReturnLike, Terminator]> {
let description = [{
This operation is used in a region and yields the corresponding type for
that operation.
}];
let arguments = (ins AnyType:$result);
let assemblyFormat = [{
$result `:` type($result) attr-dict
}];
let builders = [OpBuilder<(ins),
[{ build($_builder, $_state, {}); }]>
];
}
class BufferBasedOpBase<string mnemonic, list<Trait> traits>
: TEST_Op<mnemonic, traits> {
let description = [{
A buffer based operation, that uses memRefs as input and output.
}];
let arguments = (ins Arg<AnyRankedOrUnrankedMemRef, "reading",
[MemRead]>:$input,
Arg<AnyRankedOrUnrankedMemRef, "writing",
[MemWrite]>:$output);
}
def BufferBasedOp : BufferBasedOpBase<"buffer_based", []>{
let assemblyFormat = [{
`in` `(` $input`:` type($input) `)` `out` `(` $output`:` type($output) `)`
attr-dict
}];
}
def RegionBufferBasedOp : BufferBasedOpBase<"region_buffer_based",
[SingleBlockImplicitTerminator<"RegionYieldOp">]> {
let regions = (region AnyRegion:$region);
let assemblyFormat = [{
`in` `(` $input`:` type($input) `)` `out` `(` $output`:` type($output) `)`
$region attr-dict
}];
}
def TensorBasedOp : TEST_Op<"tensor_based", []> {
let description = [{
A tensor based operation, that uses a tensor as an input and results in a
tensor again.
}];
let arguments = (ins AnyRankedTensor:$input);
let results = (outs AnyRankedTensor:$result);
let assemblyFormat = [{
`in` `(` $input`:` type($input) `)` `->` type($result) attr-dict
}];
}
def ReadBufferOp : TEST_Op<"read_buffer", [DeclareOpInterfaceMethods<MemoryEffectsOpInterface>]> {
let description = [{
An operation that reads the buffer operand and dumps its contents.
}];
let arguments = (ins AnyRankedOrUnrankedMemRef:$buffer);
}
def ForwardBufferOp : TEST_Op<"forward_buffer", [Pure]> {
let description = [{
A pure operation that takes a buffer and returns a buffer. This op does not
have any side effects, so it cannot allocate or read a buffer from memory.
It must return the input buffer (or a view thereof). This op purposely does
does not implement any interface.
}];
let arguments = (ins AnyRankedOrUnrankedMemRef:$buffer);
let results = (outs AnyRankedOrUnrankedMemRef:$result);
}
//===----------------------------------------------------------------------===//
// Test ValueBoundsOpInterface
//===----------------------------------------------------------------------===//
def ReifyBoundOp : TEST_Op<"reify_bound", [Pure]> {
let description = [{
Reify a bound for the given index-typed value or dimension size of a shaped
value. "LB", "EQ" and "UB" bounds are supported. If `scalable` is set,
`vscale_min` and `vscale_max` must be provided, which allows computing
a bound in terms of "vector.vscale" for a given range of vscale.
}];
let arguments = (ins AnyType:$var,
OptionalAttr<I64Attr>:$dim,
DefaultValuedAttr<StrAttr, "\"EQ\"">:$type,
UnitAttr:$constant,
UnitAttr:$scalable,
OptionalAttr<I64Attr>:$vscale_min,
OptionalAttr<I64Attr>:$vscale_max);
let results = (outs Index:$result);
let extraClassDeclaration = [{
::mlir::presburger::BoundType getBoundType();
::mlir::ValueBoundsConstraintSet::Variable getVariable();
}];
let hasVerifier = 1;
}
def CompareOp : TEST_Op<"compare"> {
let description = [{
Compare `lhs` and `rhs`. A remark is emitted which indicates whether the
specified comparison operator was proven to hold. The remark also indicates
whether the opposite comparison operator was proven to hold.
`var_operands` must have exactly two operands: one for the LHS operand and
one for the RHS operand. If `lhs_map` is specified, as many operands as
`lhs_map` has inputs are expected instead of the first operand. If `rhs_map`
is specified, as many operands as `rhs_map` has inputs are expected instead
of the second operand.
}];
let arguments = (ins Variadic<Index>:$var_operands,
DefaultValuedAttr<StrAttr, "\"EQ\"">:$cmp,
OptionalAttr<AffineMapAttr>:$lhs_map,
OptionalAttr<AffineMapAttr>:$rhs_map,
UnitAttr:$compose);
let results = (outs);
let extraClassDeclaration = [{
::mlir::ValueBoundsConstraintSet::ComparisonOperator
getComparisonOperator();
::mlir::ValueBoundsConstraintSet::Variable getLhs();
::mlir::ValueBoundsConstraintSet::Variable getRhs();
}];
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Test RegionBranchOpInterface
//===----------------------------------------------------------------------===//
def RegionIfYieldOp : TEST_Op<"region_if_yield",
[NoMemoryEffect, ReturnLike, Terminator]> {
let arguments = (ins Variadic<AnyType>:$results);
let assemblyFormat = [{
$results `:` type($results) attr-dict
}];
}
def RegionIfOp : TEST_Op<"region_if",
[DeclareOpInterfaceMethods<RegionBranchOpInterface,
["getRegionInvocationBounds",
"getEntrySuccessorOperands"]>,
SingleBlockImplicitTerminator<"RegionIfYieldOp">,
RecursiveMemoryEffects]> {
let description =[{
Represents an abstract if-then-else-join pattern. In this context, the then
and else regions jump to the join region, which finally returns to its
parent op.
}];
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>:$results);
let regions = (region SizedRegion<1>:$thenRegion,
AnyRegion:$elseRegion,
AnyRegion:$joinRegion);
let extraClassDeclaration = [{
::mlir::Block::BlockArgListType getThenArgs() {
return getBody(0)->getArguments();
}
::mlir::Block::BlockArgListType getElseArgs() {
return getBody(1)->getArguments();
}
::mlir::Block::BlockArgListType getJoinArgs() {
return getBody(2)->getArguments();
}
}];
let hasCustomAssemblyFormat = 1;
}
def AnyCondOp : TEST_Op<"any_cond",
[DeclareOpInterfaceMethods<RegionBranchOpInterface,
["getRegionInvocationBounds"]>,
RecursiveMemoryEffects]> {
let results = (outs Variadic<AnyType>:$results);
let regions = (region AnyRegion:$region);
}
def LoopBlockOp : TEST_Op<"loop_block",
[DeclareOpInterfaceMethods<RegionBranchOpInterface,
["getEntrySuccessorOperands"]>, RecursiveMemoryEffects]> {
let results = (outs F32:$floatResult);
let arguments = (ins I32:$init);
let regions = (region SizedRegion<1>:$body);
let assemblyFormat = [{
$init `:` functional-type($init, $floatResult) $body
attr-dict-with-keyword
}];
}
def LoopBlockTerminatorOp : TEST_Op<"loop_block_term",
[DeclareOpInterfaceMethods<RegionBranchTerminatorOpInterface>, Pure,
Terminator]> {
let arguments = (ins I32:$nextIterArg, F32:$exitArg);
let assemblyFormat = [{
`iter` $nextIterArg `exit` $exitArg attr-dict
}];
}
def TestNoTerminatorOp : TEST_Op<"switch_with_no_break", [
NoTerminator,
DeclareOpInterfaceMethods<RegionBranchOpInterface, ["getSuccessorRegions"]>
]> {
let arguments = (ins Index:$arg, DenseI64ArrayAttr:$cases);
let regions = (region VariadicRegion<SizedRegion<1>>:$caseRegions);
let assemblyFormat = [{
$arg attr-dict custom<SwitchCases>($cases, $caseRegions)
}];
}
//===----------------------------------------------------------------------===//
// Test TableGen generated build() methods
//===----------------------------------------------------------------------===//
def TableGenConstant : TEST_Op<"tblgen_constant"> {
let results = (outs AnyType);
}
// No variadic args or results.
def TableGenBuildOp0 : TEST_Op<"tblgen_build_0"> {
let arguments = (ins AnyType:$value);
let results = (outs AnyType:$result);
}
// Sigle variadic arg and single variadic results.
def TableGenBuildOp1 : TEST_Op<"tblgen_build_1"> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs Variadic<AnyType>:$results);
}
// Single variadic arg and non-variadic results.
def TableGenBuildOp2 : TEST_Op<"tblgen_build_2"> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs AnyType:$result);
}
// Single variadic arg and multiple variadic results.
def TableGenBuildOp3 : TEST_Op<"tblgen_build_3", [SameVariadicResultSize]> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs Variadic<AnyType>:$resultA, Variadic<AnyType>:$resultB);
}
// Single variadic arg, non variadic results, with SameOperandsAndResultType.
// Tests suppression of ambiguous build methods for operations with
// SameOperandsAndResultType trait.
def TableGenBuildOp4 : TEST_Op<"tblgen_build_4", [SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs AnyType:$result);
}
// Base class for testing `build` methods for ops with
// InferReturnTypeOpInterface.
class TableGenBuildInferReturnTypeBaseOp<string mnemonic,
list<Trait> traits = []>
: TEST_Op<mnemonic, [InferTypeOpInterface] # traits> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs AnyType:$result);
let extraClassDeclaration = [{
static ::llvm::LogicalResult inferReturnTypes(::mlir::MLIRContext *,
::std::optional<::mlir::Location> location, ::mlir::ValueRange operands,
::mlir::DictionaryAttr attributes, mlir::OpaqueProperties properties, ::mlir::RegionRange regions,
::llvm::SmallVectorImpl<::mlir::Type> &inferredReturnTypes) {
inferredReturnTypes.assign({operands[0].getType()});
return ::mlir::success();
}
}];
}
// Op with InferTypeOpInterface and regions.
def TableGenBuildOp5 : TableGenBuildInferReturnTypeBaseOp<
"tblgen_build_5", [InferTypeOpInterface]> {
let regions = (region AnyRegion:$body);
}
// Two variadic args, non variadic results, with AttrSizedOperandSegments
// Test build method generation for property conversion & type inference.
def TableGenBuildOp6 : TEST_Op<"tblgen_build_6", [AttrSizedOperandSegments]> {
let arguments = (ins Variadic<AnyType>:$a, Variadic<AnyType>:$b);
let results = (outs F32:$result);
}
//===----------------------------------------------------------------------===//
// Test BufferPlacement
//===----------------------------------------------------------------------===//
def GetTupleElementOp: TEST_Op<"get_tuple_element"> {
let description = [{
Test op that returns a specified element of the tuple.
}];
let arguments = (ins
TupleOf<[AnyType]>,
I32Attr:$index
);
let results = (outs AnyType);
}
def MakeTupleOp: TEST_Op<"make_tuple"> {
let description = [{
Test op that creates a tuple value from a list of values.
}];
let arguments = (ins
Variadic<AnyType>:$inputs
);
let results = (outs TupleOf<[AnyType]>);
}
//===----------------------------------------------------------------------===//
// Test Target DataLayout
//===----------------------------------------------------------------------===//
def OpWithDataLayoutOp : TEST_Op<"op_with_data_layout",
[HasDefaultDLTIDataLayout, DataLayoutOpInterface]> {
let summary =
"An op that uses DataLayout implementation from the Target dialect";
let regions = (region VariadicRegion<AnyRegion>:$regions);
}
def DataLayoutQueryOp : TEST_Op<"data_layout_query"> {
let summary = "A token op recognized by data layout query test pass";
let description = [{
The data layout query pass pattern-matches this op and attaches to it an
array attribute containing the result of data layout query of the result
type of this op.
}];
let results = (outs AnyType:$res);
}
//===----------------------------------------------------------------------===//
// Test Reducer Patterns
//===----------------------------------------------------------------------===//
def OpCrashLong : TEST_Op<"op_crash_long"> {
let arguments = (ins I32, I32, I32);
let results = (outs I32);
}
def OpCrashShort : TEST_Op<"op_crash_short"> {
let results = (outs I32);
}
def : Pat<(OpCrashLong $_, $_, $_), (OpCrashShort)>;
//===----------------------------------------------------------------------===//
// Test DestinationStyleOpInterface.
//===----------------------------------------------------------------------===//
def TestDestinationStyleOp :
TEST_Op<"destination_style_op", [
DestinationStyleOpInterface,
AttrSizedOperandSegments]> {
let arguments = (ins
Variadic<AnyType>:$inputs,
Variadic<AnyType>:$outputs,
Variadic<AnyType>:$other_operands);
let results = (outs Variadic<AnyType>:$results);
let assemblyFormat = [{
attr-dict (`ins` `(` $inputs^ `:` type($inputs) `)`)?
(`outs` `(` $outputs^ `:` type($outputs) `)`)?
(`(` $other_operands^ `:` type($other_operands) `)`)?
(`->` type($results)^)?
}];
let extraClassDeclaration = [{
mlir::MutableOperandRange getDpsInitsMutable() {
return getOutputsMutable();
}
}];
}
//===----------------------------------------------------------------------===//
// Test LinalgConvolutionOpInterface.
//===----------------------------------------------------------------------===//
def TestLinalgConvOpNotLinalgOp : TEST_Op<"conv_op_not_linalg_op", [
LinalgConvolutionOpInterface]> {
let arguments = (ins
AnyType:$image, AnyType:$filter, AnyType:$output);
let results = (outs AnyRankedTensor:$result);
}
def TestLinalgConvOp :
TEST_Op<"linalg_conv_op", [AttrSizedOperandSegments, SingleBlock,
DestinationStyleOpInterface, LinalgStructuredInterface,
LinalgConvolutionOpInterface]> {
let arguments = (ins Variadic<AnyType>:$inputs,
Variadic<AnyType>:$outputs);
let results = (outs Variadic<AnyType>:$results);
let regions = (region AnyRegion:$region);
let assemblyFormat = [{
attr-dict (`ins` `(` $inputs^ `:` type($inputs) `)`)?
`outs` `(` $outputs `:` type($outputs) `)`
$region (`->` type($results)^)?
}];
let extraClassDeclaration = [{
bool hasIndexSemantics() { return false; }
static void regionBuilder(mlir::ImplicitLocOpBuilder &b, mlir::Block &block,
mlir::ArrayRef<mlir::NamedAttribute> attrs) {
b.create<mlir::linalg::YieldOp>(block.getArguments().back());
}
static std::function<void(mlir::ImplicitLocOpBuilder &, mlir::Block &,
mlir::ArrayRef<mlir::NamedAttribute>)>
getRegionBuilder() {
return ®ionBuilder;
}
llvm::SmallVector<mlir::utils::IteratorType> getIteratorTypesArray() {
auto attrs = getOperation()->getAttrOfType<mlir::ArrayAttr>("iterator_types");
auto range = attrs.getAsValueRange<IteratorTypeAttr, mlir::utils::IteratorType>();
return {range.begin(), range.end()};
}
mlir::ArrayAttr getIndexingMaps() {
return getOperation()->getAttrOfType<mlir::ArrayAttr>("indexing_maps");
}
std::string getLibraryCallName() {
return "";
}
mlir::MutableOperandRange getDpsInitsMutable() {
return getOutputsMutable();
}
}];
}
//===----------------------------------------------------------------------===//
// Test LinalgFillOpInterface.
//===----------------------------------------------------------------------===//
def TestLinalgFillOpNotLinalgOp : TEST_Op<"fill_op_not_linalg_op", [
LinalgFillOpInterface]> {
let arguments = (ins
AnyType:$value, AnyType:$output);
let results = (outs AnyRankedTensor:$result);
}
def TestLinalgFillOp :
TEST_Op<"linalg_fill_op", [AttrSizedOperandSegments, SingleBlock,
DestinationStyleOpInterface, LinalgStructuredInterface,
LinalgFillOpInterface]> {
let arguments = (ins Variadic<AnyType>:$inputs,
Variadic<AnyType>:$outputs);
let results = (outs Variadic<AnyType>:$results);
let regions = (region AnyRegion:$region);
let assemblyFormat = [{
attr-dict (`ins` `(` $inputs^ `:` type($inputs) `)`)?
`outs` `(` $outputs `:` type($outputs) `)`
$region (`->` type($results)^)?
}];
let extraClassDeclaration = [{
bool hasIndexSemantics() { return false; }
static void regionBuilder(mlir::ImplicitLocOpBuilder &b, mlir::Block &block,
mlir::ArrayRef<mlir::NamedAttribute> attrs) {
b.create<mlir::linalg::YieldOp>(block.getArguments().back());
}
static std::function<void(mlir::ImplicitLocOpBuilder &, mlir::Block &,
mlir::ArrayRef<mlir::NamedAttribute>)>
getRegionBuilder() {
return ®ionBuilder;
}
llvm::SmallVector<mlir::utils::IteratorType> getIteratorTypesArray() {
auto attrs = getOperation()->getAttrOfType<mlir::ArrayAttr>("iterator_types");
auto range = attrs.getAsValueRange<IteratorTypeAttr, mlir::utils::IteratorType>();
return {range.begin(), range.end()};
}
mlir::ArrayAttr getIndexingMaps() {
return getOperation()->getAttrOfType<mlir::ArrayAttr>("indexing_maps");
}
std::string getLibraryCallName() {
return "";
}
mlir::MutableOperandRange getDpsInitsMutable() {
return getOutputsMutable();
}
}];
}
//===----------------------------------------------------------------------===//
// Test Ops with Default-Valued String Attributes
//===----------------------------------------------------------------------===//
def TestDefaultStrAttrNoValueOp : TEST_Op<"no_str_value"> {
let arguments = (ins DefaultValuedAttr<StrAttr, "">:$value);
let assemblyFormat = "attr-dict";
}
def TestDefaultStrAttrHasValueOp : TEST_Op<"has_str_value"> {
let arguments = (ins DefaultValuedStrAttr<StrAttr, "">:$value);
let assemblyFormat = "attr-dict";
}
def : Pat<(TestDefaultStrAttrNoValueOp $value),
(TestDefaultStrAttrHasValueOp ConstantStrAttr<StrAttr, "foo">)>;
//===----------------------------------------------------------------------===//
// Test Ops with variadics
//===----------------------------------------------------------------------===//
def TestVariadicRewriteSrcOp : TEST_Op<"variadic_rewrite_src_op", [AttrSizedOperandSegments]> {
let arguments = (ins
Variadic<AnyType>:$arg,
AnyType:$brg,
Variadic<AnyType>:$crg
);
}
def TestVariadicRewriteDstOp : TEST_Op<"variadic_rewrite_dst_op", [AttrSizedOperandSegments]> {
let arguments = (ins
AnyType:$brg,
Variadic<AnyType>:$crg,
Variadic<AnyType>:$arg
);
}
def : Pat<(TestVariadicRewriteSrcOp $arg, $brg, $crg),
(TestVariadicRewriteDstOp $brg, $crg, $arg)>;
//===----------------------------------------------------------------------===//
// Test Ops with Default-Valued Attributes and Differing Print Settings
//===----------------------------------------------------------------------===//
def TestDefaultAttrPrintOp : TEST_Op<"default_value_print"> {
let arguments = (ins DefaultValuedAttr<I32Attr, "0">:$value_with_default,
I32:$operand);
let assemblyFormat = "attr-dict $operand";
}
//===----------------------------------------------------------------------===//
// Test Ops with effects
//===----------------------------------------------------------------------===//
def TestResource : Resource<"TestResource">;
def TestEffectsOpA : TEST_Op<"op_with_effects_a"> {
let arguments = (ins
Arg<Variadic<AnyMemRef>, "", [MemRead]>,
Arg<FlatSymbolRefAttr, "", [MemRead]>:$first,
Arg<SymbolRefAttr, "", [MemWrite]>:$second,
Arg<OptionalAttr<SymbolRefAttr>, "", [MemRead]>:$optional_symbol
);
let results = (outs Res<AnyMemRef, "", [MemAlloc<TestResource, 0>]>);
}
def TestEffectsOpB : TEST_Op<"op_with_effects_b",
[MemoryEffects<[MemWrite<TestResource, 0>]>]>;
def TestEffectsRead : TEST_Op<"op_with_memread",
[MemoryEffects<[MemRead]>]> {
let results = (outs AnyInteger);
}
def TestEffectsWrite : TEST_Op<"op_with_memwrite",
[MemoryEffects<[MemWrite]>]>;
def TestEffectsResult : TEST_Op<"test_effects_result"> {
let results = (outs Res<I32, "", [MemAlloc, MemWrite]>);
}
//===----------------------------------------------------------------------===//
// Test Ops with verifiers
//===----------------------------------------------------------------------===//
def TestVerifiersOp : TEST_Op<"verifiers",
[SingleBlock, NoTerminator, IsolatedFromAbove]> {
let arguments = (ins I32:$input);
let regions = (region SizedRegion<1>:$region);
let hasVerifier = 1;
let hasRegionVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Test Loop Op with a graph region
//===----------------------------------------------------------------------===//
// Test loop op with a graph region.
def TestGraphLoopOp : TEST_Op<"graph_loop",
[LoopLikeOpInterface, NoMemoryEffect,
RecursivelySpeculatable, SingleBlock,
RegionKindInterface, HasOnlyGraphRegion]> {
let arguments = (ins Variadic<AnyType>:$args);
let results = (outs Variadic<AnyType>:$rets);
let regions = (region SizedRegion<1>:$body);
let assemblyFormat = [{
$args $body attr-dict `:` functional-type(operands, results)
}];
let extraClassDeclaration = [{
llvm::SmallVector<mlir::Region *> getLoopRegions() { return {&getBody()}; }
}];
}
//===----------------------------------------------------------------------===//
// Test InferIntRangeInterface
//===----------------------------------------------------------------------===//
def InferIntRangeType : AnyTypeOf<[AnyInteger, Index]>;
def TestWithBoundsOp : TEST_Op<"with_bounds",
[DeclareOpInterfaceMethods<InferIntRangeInterface, ["inferResultRanges"]>,
NoMemoryEffect]> {
let arguments = (ins APIntAttr:$umin,
APIntAttr:$umax,
APIntAttr:$smin,
APIntAttr:$smax);
let results = (outs InferIntRangeType:$fakeVal);
let assemblyFormat = "attr-dict `:` type($fakeVal)";
}
def TestWithBoundsRegionOp : TEST_Op<"with_bounds_region",
[DeclareOpInterfaceMethods<InferIntRangeInterface, ["inferResultRanges"]>,
SingleBlock, NoTerminator]> {
let arguments = (ins APIntAttr:$umin,
APIntAttr:$umax,
APIntAttr:$smin,
APIntAttr:$smax);
// The region has one argument of any integer type
let regions = (region SizedRegion<1>:$region);
let hasCustomAssemblyFormat = 1;
}
def TestIncrementOp : TEST_Op<"increment",
[DeclareOpInterfaceMethods<InferIntRangeInterface, ["inferResultRanges"]>,
NoMemoryEffect, AllTypesMatch<["value", "result"]>]> {
let arguments = (ins InferIntRangeType:$value);
let results = (outs InferIntRangeType:$result);
let assemblyFormat = "attr-dict $value `:` type($result)";
}
def TestReflectBoundsOp : TEST_Op<"reflect_bounds",
[DeclareOpInterfaceMethods<InferIntRangeInterface, ["inferResultRanges"]>,
AllTypesMatch<["value", "result"]>]> {
let arguments = (ins InferIntRangeType:$value,
OptionalAttr<APIntAttr>:$umin,
OptionalAttr<APIntAttr>:$umax,
OptionalAttr<APIntAttr>:$smin,
OptionalAttr<APIntAttr>:$smax);
let results = (outs InferIntRangeType:$result);
let assemblyFormat = "attr-dict $value `:` type($result)";
}
//===----------------------------------------------------------------------===//
// Test ConditionallySpeculatable
//===----------------------------------------------------------------------===//
def ConditionallySpeculatableOp : TEST_Op<"conditionally_speculatable_op",
[ConditionallySpeculatable, NoMemoryEffect]> {
let description = [{
Op used to test conditional speculation. This op can be speculatively
executed if the input to it is an `arith.constant`.
}];
let arguments = (ins I32:$input);
let results = (outs I32:$result);
let extraClassDeclaration = [{
::mlir::Speculation::Speculatability getSpeculatability();
}];
let extraClassDefinition = [{
::mlir::Speculation::Speculatability
ConditionallySpeculatableOp::getSpeculatability() {
Operation* definingOp = getInput().getDefiningOp();
return definingOp && isa<::mlir::arith::ConstantOp>(definingOp) ?
::mlir::Speculation::Speculatable : ::mlir::Speculation::NotSpeculatable;
}
}];
}
def PureOp : TEST_Op<"always_speculatable_op", [Pure]> {
let description = [{
Op used to test conditional speculation. This op can always be
speculatively executed.
}];
let results = (outs I32:$result);
}
def NeverSpeculatableOp : TEST_Op<"never_speculatable_op", [ConditionallySpeculatable]> {
let description = [{
Op used to test conditional speculation. This op can never be
speculatively executed.
}];
let results = (outs I32:$result);
let extraClassDeclaration = [{
::mlir::Speculation::Speculatability getSpeculatability() {
return ::mlir::Speculation::NotSpeculatable;
}
}];
}
def RecursivelySpeculatableOp : TEST_Op<"recursively_speculatable_op", [
RecursivelySpeculatable, RecursiveMemoryEffects]> {
let description = [{
Op used to test conditional speculation. This op can be speculatively
executed only if all the ops in the attached region can be.
}];
let results = (outs I32:$result);
let regions = (region SizedRegion<1>:$body);
}
//===---------------------------------------------------------------------===//
// Test CSE
//===---------------------------------------------------------------------===//
def TestCSEOfSingleBlockOp : TEST_Op<"cse_of_single_block_op",
[SingleBlockImplicitTerminator<"RegionYieldOp">, Pure]> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs Variadic<AnyType>:$outputs);
let regions = (region SizedRegion<1>:$region);
let assemblyFormat = [{
attr-dict `inputs` `(` $inputs `)`
$region `:` type($inputs) `->` type($outputs)
}];
}
//===----------------------------------------------------------------------===//
// Test Ops to upgrade base on the dialect versions
//===----------------------------------------------------------------------===//
def TestVersionedOpA : TEST_Op<"versionedA"> {
// A previous version of the dialect (let's say 1.*) supported an attribute
// named "dimensions":
// let arguments = (ins
// AnyI64Attr:$dimensions
// );
// In the current version (2.0) "dimensions" was renamed to "dims", and a new
// boolean attribute "modifier" was added. The previous version of the op
// corresponds to "modifier=false". We support loading old IR through
// upgrading, see `upgradeFromVersion()` in `TestBytecodeDialectInterface`.
let arguments = (ins
AnyI64Attr:$dims,
BoolAttr:$modifier
);
// Since we use properties to store attributes, we need a custom encoding
// reader/writer to handle versioning.
let useCustomPropertiesEncoding = 1;
}
def TestVersionedOpB : TEST_Op<"versionedB"> {
// A previous version of the dialect (let's say 1.*) we encoded TestAttrParams
// with a custom encoding:
//
// #test.attr_params<X, Y> -> { varInt: Y, varInt: X }
//
// In the current version (2.0) the encoding changed and the two parameters of
// the attribute are swapped:
//
// #test.attr_params<X, Y> -> { varInt: X, varInt: Y }
//
// We support loading old IR through a custom readAttribute method, see
// `readAttribute()` in `TestBytecodeDialectInterface`
let arguments = (ins
TestAttrParams:$attribute
);
}
def TestVersionedOpC : TEST_Op<"versionedC"> {
let arguments = (ins AnyAttrOf<[TestAttrParams,
I32ElementsAttr]>:$attribute
);
}
//===----------------------------------------------------------------------===//
// Test Properties
//===----------------------------------------------------------------------===//
// Op with a properties struct defined inline.
def TestOpWithProperties : TEST_Op<"with_properties"> {
let assemblyFormat = [{
`a` `=` $a `,`
`b` `=` $b `,`
`c` `=` $c `,`
`flag` `=` $flag `,`
`array` `=` $array attr-dict}];
let arguments = (ins
I64Property:$a,
StrAttr:$b, // Attributes can directly be used here.
StringProperty:$c,
BoolProperty:$flag,
IntArrayProperty<"int64_t">:$array // example of an array
);
}
def TestOpWithPropertiesAndAttr
: TEST_Op<"with_properties_and_attr"> {
let assemblyFormat = "$lhs prop-dict attr-dict";
let arguments = (ins I32Attr:$lhs, IntProperty<"int64_t">:$rhs);
}
def TestOpWithPropertiesAndInferredType
: TEST_Op<"with_properties_and_inferred_type", [
DeclareOpInterfaceMethods<InferTypeOpInterface>
]> {
let assemblyFormat = "$lhs prop-dict attr-dict";
let arguments = (ins I32Attr:$lhs, IntProperty<"int64_t">:$rhs);
let results = (outs AnyType:$result);
}
// Demonstrate how to wrap an existing C++ class named MyPropStruct.
def MyStructProperty : Property<"MyPropStruct"> {
let convertToAttribute = "return $_storage.asAttribute($_ctxt);";
let convertFromAttribute = "return MyPropStruct::setFromAttr($_storage, $_attr, $_diag);";
let hashProperty = "$_storage.hash();";
}
def TestOpWithWrappedProperties : TEST_Op<"with_wrapped_properties"> {
let assemblyFormat = "prop-dict attr-dict";
let arguments = (ins
MyStructProperty:$prop
);
}
def TestOpUsingPropertyInCustom : TEST_Op<"using_property_in_custom"> {
let assemblyFormat = "custom<UsingPropertyInCustom>($prop) attr-dict";
let arguments = (ins IntArrayProperty<"int64_t">:$prop);
}
def TestOpUsingPropertyInCustomAndOther
: TEST_Op<"using_property_in_custom_and_other"> {
let assemblyFormat = "custom<UsingPropertyInCustom>($prop) prop-dict attr-dict";
let arguments = (ins
IntArrayProperty<"int64_t">:$prop,
IntProperty<"int64_t">:$other
);
}
def TestOpUsingPropertyRefInCustom : TEST_Op<"using_property_ref_in_custom"> {
let assemblyFormat = "custom<IntProperty>($first) `+` custom<SumProperty>($second, ref($first)) attr-dict";
let arguments = (ins IntProperty<"int64_t">:$first, IntProperty<"int64_t">:$second);
}
def IntPropertyWithWorseBytecode : Property<"int64_t"> {
let writeToMlirBytecode = writeMlirBytecodeWithConvertToAttribute;
let readFromMlirBytecode = readMlirBytecodeUsingConvertFromAttribute;
}
def TestOpUsingIntPropertyWithWorseBytecode
: TEST_Op<"using_int_property_with_worse_bytecode"> {
let arguments = (ins IntPropertyWithWorseBytecode:$value);
}
// Op with a properties struct defined out-of-line. The struct has custom
// printer/parser.
def PropertiesWithCustomPrint : Property<"PropertiesWithCustomPrint"> {
let convertToAttribute = [{
return getPropertiesAsAttribute($_ctxt, $_storage);
}];
let convertFromAttribute = [{
return setPropertiesFromAttribute($_storage, $_attr, $_diag);
}];
let hashProperty = [{
computeHash($_storage);
}];
}
def TestOpWithNiceProperties : TEST_Op<"with_nice_properties"> {
let assemblyFormat = "prop-dict attr-dict";
let arguments = (ins
PropertiesWithCustomPrint:$prop
);
let extraClassDeclaration = [{
void printProperties(::mlir::MLIRContext *ctx, ::mlir::OpAsmPrinter &p,
const Properties &prop,
::mlir::ArrayRef<::llvm::StringRef> elidedProps);
static ::mlir::ParseResult parseProperties(::mlir::OpAsmParser &parser,
::mlir::OperationState &result);
static ::llvm::LogicalResult readFromMlirBytecode(
::mlir::DialectBytecodeReader &,
test::PropertiesWithCustomPrint &prop);
static void writeToMlirBytecode(
::mlir::DialectBytecodeWriter &,
const test::PropertiesWithCustomPrint &prop);
}];
let extraClassDefinition = [{
::llvm::LogicalResult TestOpWithNiceProperties::readFromMlirBytecode(
::mlir::DialectBytecodeReader &reader,
test::PropertiesWithCustomPrint &prop) {
StringRef label;
uint64_t value;
if (failed(reader.readString(label)) || failed(reader.readVarInt(value)))
return failure();
prop.label = std::make_shared<std::string>(label.str());
prop.value = value;
return success();
}
void TestOpWithNiceProperties::writeToMlirBytecode(
::mlir::DialectBytecodeWriter &writer,
const test::PropertiesWithCustomPrint &prop) {
writer.writeOwnedString(*prop.label);
writer.writeVarInt(prop.value);
}
void TestOpWithNiceProperties::printProperties(::mlir::MLIRContext *ctx,
::mlir::OpAsmPrinter &p, const Properties &prop,
::mlir::ArrayRef<::llvm::StringRef> elidedProps) {
customPrintProperties(p, prop.prop);
}
::mlir::ParseResult TestOpWithNiceProperties::parseProperties(
::mlir::OpAsmParser &parser,
::mlir::OperationState &result) {
Properties &prop = result.getOrAddProperties<Properties>();
if (customParseProperties(parser, prop.prop))
return failure();
return success();
}
}];
}
def VersionedProperties : Property<"VersionedProperties"> {
let convertToAttribute = [{
return getPropertiesAsAttribute($_ctxt, $_storage);
}];
let convertFromAttribute = [{
return setPropertiesFromAttribute($_storage, $_attr, $_diag);
}];
let hashProperty = [{
computeHash($_storage);
}];
}
def TestOpWithVersionedProperties : TEST_Op<"with_versioned_properties"> {
let assemblyFormat = "prop-dict attr-dict";
let arguments = (ins
VersionedProperties:$prop
);
let extraClassDeclaration = [{
void printProperties(::mlir::MLIRContext *ctx, ::mlir::OpAsmPrinter &p,
const Properties &prop,
::mlir::ArrayRef<::llvm::StringRef> elidedProps);
static ::mlir::ParseResult parseProperties(::mlir::OpAsmParser &parser,
::mlir::OperationState &result);
static ::llvm::LogicalResult readFromMlirBytecode(
::mlir::DialectBytecodeReader &,
test::VersionedProperties &prop);
static void writeToMlirBytecode(
::mlir::DialectBytecodeWriter &,
const test::VersionedProperties &prop);
}];
let extraClassDefinition = [{
void TestOpWithVersionedProperties::printProperties(::mlir::MLIRContext *ctx,
::mlir::OpAsmPrinter &p, const Properties &prop,
::mlir::ArrayRef<::llvm::StringRef> elidedProps) {
customPrintProperties(p, prop.prop);
}
::mlir::ParseResult TestOpWithVersionedProperties::parseProperties(
::mlir::OpAsmParser &parser,
::mlir::OperationState &result) {
Properties &prop = result.getOrAddProperties<Properties>();
if (customParseProperties(parser, prop.prop))
return failure();
return success();
}
}];
}
def TestOpWithDefaultValuedProperties : TEST_Op<"with_default_valued_properties"> {
let assemblyFormat = [{
($a^) : (`na`)?
($b^)?
($c^)?
($unit^)?
attr-dict
}];
let arguments = (ins DefaultValuedAttr<I32Attr, "0">:$a,
DefaultValuedProperty<StringProperty, "\"\"">:$b,
DefaultValuedProperty<IntProperty<"int32_t">, "-1">:$c,
UnitProperty:$unit);
}
def TestOpWithOptionalProperties : TEST_Op<"with_optional_properties"> {
let assemblyFormat = [{
(`anAttr` `=` $anAttr^)?
(`simple` `=` $simple^)?
(`nonTrivialStorage` `=` $nonTrivialStorage^)?
(`hasDefault` `=` $hasDefault^)?
(`nested` `=` $nested^)?
(`longSyntax` `=` $longSyntax^)?
(`hasUnit` $hasUnit^)?
(`maybeUnit` `=` $maybeUnit^)?
attr-dict
}];
let arguments = (ins
OptionalAttr<I32Attr>:$anAttr,
OptionalProperty<I64Property>:$simple,
OptionalProperty<StringProperty>:$nonTrivialStorage,
// Confirm that properties with default values now default to nullopt and have
// the long syntax.
OptionalProperty<DefaultValuedProperty<I64Property, "0">>:$hasDefault,
OptionalProperty<OptionalProperty<I64Property>>:$nested,
OptionalProperty<StringProperty, 0>:$longSyntax,
UnitProperty:$hasUnit,
OptionalProperty<UnitProperty>:$maybeUnit);
}
def TestOpWithArrayProperties : TEST_Op<"with_array_properties"> {
let assemblyFormat = [{
`ints` `=` $ints
`strings` `=` $strings
`nested` `=` $nested
`opt` `=` $opt
`explicitOptions` `=` $explicitOptions
`explicitUnits` `=` $explicitUnits
($hasDefault^ `thats_has_default`)?
attr-dict
}];
let arguments = (ins
ArrayProperty<I64Property>:$ints,
ArrayProperty<StringProperty>:$strings,
ArrayProperty<ArrayProperty<I32Property>>:$nested,
OptionalProperty<ArrayProperty<I32Property>>:$opt,
ArrayProperty<OptionalProperty<I64Property>>:$explicitOptions,
ArrayProperty<UnitProperty>:$explicitUnits,
DefaultValuedProperty<ArrayProperty<I64Property>,
"::llvm::ArrayRef<int64_t>{}", "::llvm::SmallVector<int64_t>{}">:$hasDefault
);
}
//===----------------------------------------------------------------------===//
// Test Dataflow
//===----------------------------------------------------------------------===//
def TestCallAndStoreOp : TEST_Op<"call_and_store",
[DeclareOpInterfaceMethods<CallOpInterface>]> {
let arguments = (ins
SymbolRefAttr:$callee,
Arg<AnyMemRef, "", [MemWrite]>:$address,
Variadic<AnyType>:$callee_operands,
BoolAttr:$store_before_call
);
let results = (outs
Variadic<AnyType>:$results
);
let assemblyFormat =
"$callee `(` $callee_operands `)` `,` $address attr-dict "
"`:` functional-type(operands, results)";
}
def TestCallOnDeviceOp : TEST_Op<"call_on_device",
[DeclareOpInterfaceMethods<CallOpInterface>]> {
let arguments = (ins
SymbolRefAttr:$callee,
Variadic<AnyType>:$forwarded_operands,
AnyType:$non_forwarded_device_operand
);
let results = (outs
Variadic<AnyType>:$results
);
let assemblyFormat =
"$callee `(` $forwarded_operands `)` `,` $non_forwarded_device_operand "
"attr-dict `:` functional-type(operands, results)";
}
def TestStoreWithARegion : TEST_Op<"store_with_a_region",
[DeclareOpInterfaceMethods<RegionBranchOpInterface>,
SingleBlock]> {
let arguments = (ins
Arg<AnyMemRef, "", [MemWrite]>:$address,
BoolAttr:$store_before_region
);
let regions = (region AnyRegion:$body);
let assemblyFormat =
"$address attr-dict-with-keyword regions `:` type($address)";
}
def TestStoreWithALoopRegion : TEST_Op<"store_with_a_loop_region",
[DeclareOpInterfaceMethods<RegionBranchOpInterface>,
SingleBlock]> {
let arguments = (ins
Arg<AnyMemRef, "", [MemWrite]>:$address,
BoolAttr:$store_before_region
);
let regions = (region AnyRegion:$body);
let assemblyFormat =
"$address attr-dict-with-keyword regions `:` type($address)";
}
def TestStoreWithARegionTerminator : TEST_Op<"store_with_a_region_terminator",
[ReturnLike, Terminator, NoMemoryEffect]> {
let assemblyFormat = "attr-dict";
}
def TestOpOptionallyImplementingInterface
: TEST_Op<"op_optionally_implementing_interface",
[TestOptionallyImplementedOpInterface]> {
let arguments = (ins BoolAttr:$implementsInterface);
}
//===----------------------------------------------------------------------===//
// Test Mem2Reg & SROA
//===----------------------------------------------------------------------===//
def TestMultiSlotAlloca : TEST_Op<"multi_slot_alloca",
[DeclareOpInterfaceMethods<PromotableAllocationOpInterface>,
DeclareOpInterfaceMethods<DestructurableAllocationOpInterface>]> {
let results = (outs Variadic<MemRefOf<[I32]>>:$results);
let assemblyFormat = "attr-dict `:` functional-type(operands, results)";
}
#endif // TEST_OPS