// RUN: mlir-opt %s -split-input-file | mlir-opt -split-input-file | FileCheck %s
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
// CHECK-LABEL: func @sparse_new(
// CHECK-SAME: %[[A:.*]]: !llvm.ptr)
// CHECK: %[[T:.*]] = sparse_tensor.new %[[A]] : !llvm.ptr to tensor<128xf64, #{{.*}}>
// CHECK: return %[[T]] : tensor<128xf64, #{{.*}}>
func.func @sparse_new(%arg0: !llvm.ptr) -> tensor<128xf64, #SparseVector> {
%0 = sparse_tensor.new %arg0 : !llvm.ptr to tensor<128xf64, #SparseVector>
return %0 : tensor<128xf64, #SparseVector>
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed), posWidth=32, crdWidth=32}>
// CHECK-LABEL: func @sparse_pack(
// CHECK-SAME: %[[P:.*]]: tensor<2xi32>,
// CHECK-SAME: %[[I:.*]]: tensor<6x1xi32>,
// CHECK-SAME: %[[D:.*]]: tensor<6xf64>)
// CHECK: %[[R:.*]] = sparse_tensor.assemble (%[[P]], %[[I]]), %[[D]]
// CHECK: return %[[R]] : tensor<100xf64, #{{.*}}>
func.func @sparse_pack(%pos: tensor<2xi32>, %index: tensor<6x1xi32>, %data: tensor<6xf64>)
-> tensor<100xf64, #SparseVector> {
%0 = sparse_tensor.assemble (%pos, %index), %data: (tensor<2xi32>, tensor<6x1xi32>), tensor<6xf64>
to tensor<100xf64, #SparseVector>
return %0 : tensor<100xf64, #SparseVector>
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed), crdWidth=32}>
// CHECK-LABEL: func @sparse_unpack(
// CHECK-SAME: %[[T:.*]]: tensor<100xf64, #
// CHECK-SAME: %[[OP:.*]]: tensor<2xindex>,
// CHECK-SAME: %[[OI:.*]]: tensor<6x1xi32>,
// CHECK-SAME: %[[OD:.*]]: tensor<6xf64>)
// CHECK: %[[P:.*]]:2, %[[D:.*]], %[[PL:.*]]:2, %[[DL:.*]] = sparse_tensor.disassemble %[[T]]
// CHECK: return %[[P]]#0, %[[P]]#1, %[[D]]
func.func @sparse_unpack(%sp : tensor<100xf64, #SparseVector>,
%op : tensor<2xindex>,
%oi : tensor<6x1xi32>,
%od : tensor<6xf64>)
-> (tensor<2xindex>, tensor<6x1xi32>, tensor<6xf64>) {
%rp, %ri, %d, %rpl, %ril, %dl = sparse_tensor.disassemble %sp : tensor<100xf64, #SparseVector>
out_lvls(%op, %oi : tensor<2xindex>, tensor<6x1xi32>)
out_vals(%od : tensor<6xf64>)
-> (tensor<2xindex>, tensor<6x1xi32>), tensor<6xf64>, (index, index), index
return %rp, %ri, %d : tensor<2xindex>, tensor<6x1xi32>, tensor<6xf64>
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
// CHECK-LABEL: func @sparse_dealloc(
// CHECK-SAME: %[[A:.*]]: tensor<128xf64, #{{.*}}>
// CHECK: bufferization.dealloc_tensor %[[A]] : tensor<128xf64, #{{.*}}>
// CHECK: return
func.func @sparse_dealloc(%arg0: tensor<128xf64, #SparseVector>) {
bufferization.dealloc_tensor %arg0 : tensor<128xf64, #SparseVector>
return
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
// CHECK-LABEL: func @sparse_convert_1d_to_sparse(
// CHECK-SAME: %[[A:.*]]: tensor<64xf32>)
// CHECK: %[[T:.*]] = sparse_tensor.convert %[[A]] : tensor<64xf32> to tensor<64xf32, #{{.*}}>
// CHECK: return %[[T]] : tensor<64xf32, #{{.*}}>
func.func @sparse_convert_1d_to_sparse(%arg0: tensor<64xf32>) -> tensor<64xf32, #SparseVector> {
%0 = sparse_tensor.convert %arg0 : tensor<64xf32> to tensor<64xf32, #SparseVector>
return %0 : tensor<64xf32, #SparseVector>
}
// -----
#SparseTensor = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : dense, d2 : compressed) }>
// CHECK-LABEL: func @sparse_convert_3d_from_sparse(
// CHECK-SAME: %[[A:.*]]: tensor<8x8x8xf64, #{{.*}}>)
// CHECK: %[[T:.*]] = sparse_tensor.convert %[[A]] : tensor<8x8x8xf64, #{{.*}}> to tensor<8x8x8xf64>
// CHECK: return %[[T]] : tensor<8x8x8xf64>
func.func @sparse_convert_3d_from_sparse(%arg0: tensor<8x8x8xf64, #SparseTensor>) -> tensor<8x8x8xf64> {
%0 = sparse_tensor.convert %arg0 : tensor<8x8x8xf64, #SparseTensor> to tensor<8x8x8xf64>
return %0 : tensor<8x8x8xf64>
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
// CHECK-LABEL: func @sparse_positions(
// CHECK-SAME: %[[A:.*]]: tensor<128xf64, #{{.*}}>)
// CHECK: %[[T:.*]] = sparse_tensor.positions %[[A]] {level = 0 : index} : tensor<128xf64, #{{.*}}> to memref<?xindex>
// CHECK: return %[[T]] : memref<?xindex>
func.func @sparse_positions(%arg0: tensor<128xf64, #SparseVector>) -> memref<?xindex> {
%0 = sparse_tensor.positions %arg0 {level = 0 : index} : tensor<128xf64, #SparseVector> to memref<?xindex>
return %0 : memref<?xindex>
}
// -----
#COO = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)}>
// CHECK-LABEL: func @sparse_indices_buffer(
// CHECK-SAME: %[[A:.*]]: tensor<?x?xf64, #{{.*}}>)
// CHECK: %[[T:.*]] = sparse_tensor.coordinates_buffer %[[A]] : tensor<?x?xf64, #{{.*}}> to memref<?xindex>
// CHECK: return %[[T]] : memref<?xindex>
func.func @sparse_indices_buffer(%arg0: tensor<?x?xf64, #COO>) -> memref<?xindex> {
%0 = sparse_tensor.coordinates_buffer %arg0 : tensor<?x?xf64, #COO> to memref<?xindex>
return %0 : memref<?xindex>
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
// CHECK-LABEL: func @sparse_indices(
// CHECK-SAME: %[[A:.*]]: tensor<128xf64, #{{.*}}>)
// CHECK: %[[T:.*]] = sparse_tensor.coordinates %[[A]] {level = 0 : index} : tensor<128xf64, #{{.*}}> to memref<?xindex>
// CHECK: return %[[T]] : memref<?xindex>
func.func @sparse_indices(%arg0: tensor<128xf64, #SparseVector>) -> memref<?xindex> {
%0 = sparse_tensor.coordinates %arg0 {level = 0 : index} : tensor<128xf64, #SparseVector> to memref<?xindex>
return %0 : memref<?xindex>
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
// CHECK-LABEL: func @sparse_values(
// CHECK-SAME: %[[A:.*]]: tensor<128xf64, #{{.*}}>)
// CHECK: %[[T:.*]] = sparse_tensor.values %[[A]] : tensor<128xf64, #{{.*}}> to memref<?xf64>
// CHECK: return %[[T]] : memref<?xf64>
func.func @sparse_values(%arg0: tensor<128xf64, #SparseVector>) -> memref<?xf64> {
%0 = sparse_tensor.values %arg0 : tensor<128xf64, #SparseVector> to memref<?xf64>
return %0 : memref<?xf64>
}
// -----
#CSR_SLICE = #sparse_tensor.encoding<{
map = (d0 : #sparse_tensor<slice(1, 4, 1)>, d1 : #sparse_tensor<slice(1, 4, 2)>) -> (d0 : dense, d1 : compressed)
}>
// CHECK-LABEL: func @sparse_slice_offset(
// CHECK-SAME: %[[A:.*]]: tensor<2x8xf64, #{{.*}}>)
// CHECK: %[[T:.*]] = sparse_tensor.slice.offset %[[A]] at 1 : tensor<2x8xf64, #{{.*}}>
// CHECK: return %[[T]] : index
func.func @sparse_slice_offset(%arg0: tensor<2x8xf64, #CSR_SLICE>) -> index {
%0 = sparse_tensor.slice.offset %arg0 at 1 : tensor<2x8xf64, #CSR_SLICE>
return %0 : index
}
// -----
#CSR_SLICE = #sparse_tensor.encoding<{
map = (d0 : #sparse_tensor<slice(1, 4, 1)>, d1 : #sparse_tensor<slice(1, 4, 2)>) -> (d0 : dense, d1 : compressed)
}>
// CHECK-LABEL: func @sparse_slice_stride(
// CHECK-SAME: %[[A:.*]]: tensor<2x8xf64, #{{.*}}>)
// CHECK: %[[T:.*]] = sparse_tensor.slice.stride %[[A]] at 1 : tensor<2x8xf64, #{{.*}}>
// CHECK: return %[[T]] : index
func.func @sparse_slice_stride(%arg0: tensor<2x8xf64, #CSR_SLICE>) -> index {
%0 = sparse_tensor.slice.stride %arg0 at 1 : tensor<2x8xf64, #CSR_SLICE>
return %0 : index
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
// CHECK-LABEL: func @sparse_metadata_init(
// CHECK: %[[T:.*]] = sparse_tensor.storage_specifier.init : !sparse_tensor.storage_specifier<#{{.*}}>
// CHECK: return %[[T]] : !sparse_tensor.storage_specifier<#{{.*}}>
func.func @sparse_metadata_init() -> !sparse_tensor.storage_specifier<#SparseVector> {
%0 = sparse_tensor.storage_specifier.init : !sparse_tensor.storage_specifier<#SparseVector>
return %0 : !sparse_tensor.storage_specifier<#SparseVector>
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
#SparseVector_Slice = #sparse_tensor.encoding<{
map = (d0 : #sparse_tensor<slice(?, ?, ?)>) -> (d0 : compressed)
}>
// CHECK-LABEL: func @sparse_metadata_init(
// CHECK-SAME: %[[A:.*]]: !sparse_tensor.storage_specifier<#{{.*}}>
// CHECK: %[[T:.*]] = sparse_tensor.storage_specifier.init with %[[A]] :
// CHECK: return %[[T]] : !sparse_tensor.storage_specifier<#{{.*}}>
func.func @sparse_metadata_init(%src : !sparse_tensor.storage_specifier<#SparseVector>)
-> !sparse_tensor.storage_specifier<#SparseVector_Slice> {
%0 = sparse_tensor.storage_specifier.init with %src : from !sparse_tensor.storage_specifier<#SparseVector>
to !sparse_tensor.storage_specifier<#SparseVector_Slice>
return %0 : !sparse_tensor.storage_specifier<#SparseVector_Slice>
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
// CHECK-LABEL: func @sparse_get_md(
// CHECK-SAME: %[[A:.*]]: !sparse_tensor.storage_specifier<#{{.*}}>
// CHECK: %[[T:.*]] = sparse_tensor.storage_specifier.get %[[A]] lvl_sz at 0
// CHECK: return %[[T]] : index
func.func @sparse_get_md(%arg0: !sparse_tensor.storage_specifier<#SparseVector>) -> index {
%0 = sparse_tensor.storage_specifier.get %arg0 lvl_sz at 0
: !sparse_tensor.storage_specifier<#SparseVector>
return %0 : index
}
// -----
#SparseVector_Slice = #sparse_tensor.encoding<{
map = (d0 : #sparse_tensor<slice(?, ?, ?)>) -> (d0 : compressed)
}>
// CHECK-LABEL: func @sparse_get_md(
// CHECK-SAME: %[[A:.*]]: !sparse_tensor.storage_specifier<#{{.*}}>
// CHECK: %[[T:.*]] = sparse_tensor.storage_specifier.get %[[A]] dim_offset at 0
// CHECK: return %[[T]] : index
func.func @sparse_get_md(%arg0: !sparse_tensor.storage_specifier<#SparseVector_Slice>) -> index {
%0 = sparse_tensor.storage_specifier.get %arg0 dim_offset at 0
: !sparse_tensor.storage_specifier<#SparseVector_Slice>
return %0 : index
}
// -----
#SparseVector = #sparse_tensor.encoding<{
map = (d0 : #sparse_tensor<slice(?, ?, ?)>) -> (d0 : compressed)
}>
// CHECK-LABEL: func @sparse_get_md(
// CHECK-SAME: %[[A:.*]]: !sparse_tensor.storage_specifier<#{{.*}}>
// CHECK: %[[T:.*]] = sparse_tensor.storage_specifier.get %[[A]] dim_stride at 0
// CHECK: return %[[T]] : index
func.func @sparse_get_md(%arg0: !sparse_tensor.storage_specifier<#SparseVector>) -> index {
%0 = sparse_tensor.storage_specifier.get %arg0 dim_stride at 0
: !sparse_tensor.storage_specifier<#SparseVector>
return %0 : index
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
// CHECK-LABEL: func @sparse_set_md(
// CHECK-SAME: %[[A:.*]]: !sparse_tensor.storage_specifier<#{{.*}}>,
// CHECK-SAME: %[[I:.*]]: index)
// CHECK: %[[T:.*]] = sparse_tensor.storage_specifier.set %[[A]] lvl_sz at 0 with %[[I]]
// CHECK: return %[[T]] : !sparse_tensor.storage_specifier<#{{.*}}>
func.func @sparse_set_md(%arg0: !sparse_tensor.storage_specifier<#SparseVector>, %arg1: index)
-> !sparse_tensor.storage_specifier<#SparseVector> {
%0 = sparse_tensor.storage_specifier.set %arg0 lvl_sz at 0 with %arg1
: !sparse_tensor.storage_specifier<#SparseVector>
return %0 : !sparse_tensor.storage_specifier<#SparseVector>
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
// CHECK-LABEL: func @sparse_noe(
// CHECK-SAME: %[[A:.*]]: tensor<128xf64, #{{.*}}>)
// CHECK: %[[T:.*]] = sparse_tensor.number_of_entries %[[A]] : tensor<128xf64, #{{.*}}>
// CHECK: return %[[T]] : index
func.func @sparse_noe(%arg0: tensor<128xf64, #SparseVector>) -> index {
%0 = sparse_tensor.number_of_entries %arg0 : tensor<128xf64, #SparseVector>
return %0 : index
}
// -----
#DenseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : dense)}>
// CHECK-LABEL: func @sparse_load(
// CHECK-SAME: %[[A:.*]]: tensor<16x32xf64, #{{.*}}>)
// CHECK: %[[T:.*]] = sparse_tensor.load %[[A]] : tensor<16x32xf64, #{{.*}}>
// CHECK: return %[[T]] : tensor<16x32xf64, #{{.*}}>
func.func @sparse_load(%arg0: tensor<16x32xf64, #DenseMatrix>) -> tensor<16x32xf64, #DenseMatrix> {
%0 = sparse_tensor.load %arg0 : tensor<16x32xf64, #DenseMatrix>
return %0 : tensor<16x32xf64, #DenseMatrix>
}
// -----
#DenseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : dense)}>
// CHECK-LABEL: func @sparse_load_ins(
// CHECK-SAME: %[[A:.*]]: tensor<16x32xf64, #{{.*}}>)
// CHECK: %[[T:.*]] = sparse_tensor.load %[[A]] hasInserts : tensor<16x32xf64, #{{.*}}>
// CHECK: return %[[T]] : tensor<16x32xf64, #{{.*}}>
func.func @sparse_load_ins(%arg0: tensor<16x32xf64, #DenseMatrix>) -> tensor<16x32xf64, #DenseMatrix> {
%0 = sparse_tensor.load %arg0 hasInserts : tensor<16x32xf64, #DenseMatrix>
return %0 : tensor<16x32xf64, #DenseMatrix>
}
// -----
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
// CHECK-LABEL: func @sparse_insert(
// CHECK-SAME: %[[A:.*]]: tensor<128xf64, #sparse{{[0-9]*}}>,
// CHECK-SAME: %[[B:.*]]: index,
// CHECK-SAME: %[[C:.*]]: f64)
// CHECK: %[[T:.*]] = tensor.insert %[[C]] into %[[A]][%[[B]]] : tensor<128xf64, #{{.*}}>
// CHECK: return %[[T]] : tensor<128xf64, #{{.*}}>
func.func @sparse_insert(%arg0: tensor<128xf64, #SparseVector>, %arg1: index, %arg2: f64) -> tensor<128xf64, #SparseVector> {
%0 = tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64, #SparseVector>
return %0 : tensor<128xf64, #SparseVector>
}
// -----
// CHECK-LABEL: func @sparse_push_back(
// CHECK-SAME: %[[A:.*]]: index,
// CHECK-SAME: %[[B:.*]]: memref<?xf64>,
// CHECK-SAME: %[[C:.*]]: f64) -> (memref<?xf64>, index) {
// CHECK: %[[D:.*]] = sparse_tensor.push_back %[[A]], %[[B]], %[[C]] : index, memref<?xf64>, f64
// CHECK: return %[[D]]
func.func @sparse_push_back(%arg0: index, %arg1: memref<?xf64>, %arg2: f64) -> (memref<?xf64>, index) {
%0:2 = sparse_tensor.push_back %arg0, %arg1, %arg2 : index, memref<?xf64>, f64
return %0#0, %0#1 : memref<?xf64>, index
}
// -----
// CHECK-LABEL: func @sparse_push_back_inbound(
// CHECK-SAME: %[[A:.*]]: index,
// CHECK-SAME: %[[B:.*]]: memref<?xf64>,
// CHECK-SAME: %[[C:.*]]: f64) -> (memref<?xf64>, index) {
// CHECK: %[[D:.*]] = sparse_tensor.push_back inbounds %[[A]], %[[B]], %[[C]] : index, memref<?xf64>, f64
// CHECK: return %[[D]]
func.func @sparse_push_back_inbound(%arg0: index, %arg1: memref<?xf64>, %arg2: f64) -> (memref<?xf64>, index) {
%0:2 = sparse_tensor.push_back inbounds %arg0, %arg1, %arg2 : index, memref<?xf64>, f64
return %0#0, %0#1 : memref<?xf64>, index
}
// -----
// CHECK-LABEL: func @sparse_push_back_n(
// CHECK-SAME: %[[A:.*]]: index,
// CHECK-SAME: %[[B:.*]]: memref<?xf64>,
// CHECK-SAME: %[[C:.*]]: f64,
// CHECK-SAME: %[[D:.*]]: index) -> (memref<?xf64>, index) {
// CHECK: %[[E:.*]] = sparse_tensor.push_back %[[A]], %[[B]], %[[C]], %[[D]] : index, memref<?xf64>, f64, index
// CHECK: return %[[E]]
func.func @sparse_push_back_n(%arg0: index, %arg1: memref<?xf64>, %arg2: f64, %arg3: index) -> (memref<?xf64>, index) {
%0:2 = sparse_tensor.push_back %arg0, %arg1, %arg2, %arg3 : index, memref<?xf64>, f64, index
return %0#0, %0#1 : memref<?xf64>, index
}
// -----
#SparseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func @sparse_expansion(
// CHECK-SAME: %[[A:.*]]: tensor<8x8xf64, #sparse{{[0-9]*}}>)
// CHECK: %{{.*}}, %{{.*}}, %{{.*}}, %[[T:.*]] = sparse_tensor.expand %[[A]]
// CHECK: return %[[T]] : index
func.func @sparse_expansion(%tensor: tensor<8x8xf64, #SparseMatrix>) -> index {
%values, %filled, %added, %count = sparse_tensor.expand %tensor
: tensor<8x8xf64, #SparseMatrix> to memref<?xf64>, memref<?xi1>, memref<?xindex>
return %count : index
}
// -----
#SparseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func @sparse_compression(
// CHECK-SAME: %[[A0:.*0]]: memref<?xf64>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xi1>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xindex>,
// CHECK-SAME: %[[A3:.*3]]: index
// CHECK-SAME: %[[A4:.*4]]: tensor<8x8xf64, #sparse{{[0-9]*}}>,
// CHECK-SAME: %[[A5:.*5]]: index)
// CHECK: %[[T:.*]] = sparse_tensor.compress %[[A0]], %[[A1]], %[[A2]], %[[A3]] into %[[A4]][%[[A5]]
// CHECK: return %[[T]] : tensor<8x8xf64, #sparse{{[0-9]*}}>
func.func @sparse_compression(%values: memref<?xf64>,
%filled: memref<?xi1>,
%added: memref<?xindex>,
%count: index,
%tensor: tensor<8x8xf64, #SparseMatrix>,
%index: index) -> tensor<8x8xf64, #SparseMatrix> {
%0 = sparse_tensor.compress %values, %filled, %added, %count into %tensor[%index]
: memref<?xf64>, memref<?xi1>, memref<?xindex>, tensor<8x8xf64, #SparseMatrix>
return %0 : tensor<8x8xf64, #SparseMatrix>
}
// -----
#SparseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func @sparse_out(
// CHECK-SAME: %[[A:.*]]: tensor<?x?xf64, #sparse{{[0-9]*}}>,
// CHECK-SAME: %[[B:.*]]: !llvm.ptr)
// CHECK: sparse_tensor.out %[[A]], %[[B]] : tensor<?x?xf64, #sparse{{[0-9]*}}>, !llvm.ptr
// CHECK: return
func.func @sparse_out(%arg0: tensor<?x?xf64, #SparseMatrix>, %arg1: !llvm.ptr) {
sparse_tensor.out %arg0, %arg1 : tensor<?x?xf64, #SparseMatrix>, !llvm.ptr
return
}
// -----
#SparseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func @sparse_binary(
// CHECK-SAME: %[[A:.*]]: f64, %[[B:.*]]: i64) -> f64 {
// CHECK: %[[Z:.*]] = arith.constant 0.000000e+00 : f64
// CHECK: %[[C1:.*]] = sparse_tensor.binary %[[A]], %[[B]] : f64, i64 to f64
// CHECK: overlap = {
// CHECK: ^bb0(%[[A1:.*]]: f64, %[[B1:.*]]: i64):
// CHECK: sparse_tensor.yield %[[A1]] : f64
// CHECK: }
// CHECK: left = identity
// CHECK: right = {
// CHECK: ^bb0(%[[A2:.*]]: i64):
// CHECK: sparse_tensor.yield %[[Z]] : f64
// CHECK: }
// CHECK: return %[[C1]] : f64
// CHECK: }
func.func @sparse_binary(%arg0: f64, %arg1: i64) -> f64 {
%cf0 = arith.constant 0.0 : f64
%r = sparse_tensor.binary %arg0, %arg1 : f64, i64 to f64
overlap={
^bb0(%x: f64, %y: i64):
sparse_tensor.yield %x : f64
}
left=identity
right={
^bb0(%y: i64):
sparse_tensor.yield %cf0 : f64
}
return %r : f64
}
// -----
#SparseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func @sparse_unary(
// CHECK-SAME: %[[A:.*]]: f64) -> f64 {
// CHECK: %[[C1:.*]] = sparse_tensor.unary %[[A]] : f64 to f64
// CHECK: present = {
// CHECK: ^bb0(%[[A1:.*]]: f64):
// CHECK: sparse_tensor.yield %[[A1]] : f64
// CHECK: }
// CHECK: absent = {
// CHECK: %[[R:.*]] = arith.constant -1.000000e+00 : f64
// CHECK: sparse_tensor.yield %[[R]] : f64
// CHECK: }
// CHECK: return %[[C1]] : f64
// CHECK: }
func.func @sparse_unary(%arg0: f64) -> f64 {
%r = sparse_tensor.unary %arg0 : f64 to f64
present={
^bb0(%x: f64):
sparse_tensor.yield %x : f64
} absent={
^bb0:
%cf1 = arith.constant -1.0 : f64
sparse_tensor.yield %cf1 : f64
}
return %r : f64
}
// -----
#SparseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func @sparse_unary(
// CHECK-SAME: %[[A:.*]]: f64) -> i64 {
// CHECK: %[[C1:.*]] = sparse_tensor.unary %[[A]] : f64 to i64
// CHECK: present = {
// CHECK: ^bb0(%[[A1:.*]]: f64):
// CHECK: %[[R:.*]] = arith.fptosi %[[A1]] : f64 to i64
// CHECK: sparse_tensor.yield %[[R]] : i64
// CHECK: }
// CHECK: absent = {
// CHECK: }
// CHECK: return %[[C1]] : i64
// CHECK: }
func.func @sparse_unary(%arg0: f64) -> i64 {
%r = sparse_tensor.unary %arg0 : f64 to i64
present={
^bb0(%x: f64):
%ret = arith.fptosi %x : f64 to i64
sparse_tensor.yield %ret : i64
}
absent={}
return %r : i64
}
// -----
#SparseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func @sparse_reduce_2d_to_1d(
// CHECK-SAME: %[[A:.*]]: f64, %[[B:.*]]: f64) -> f64 {
// CHECK: %[[Z:.*]] = arith.constant 0.000000e+00 : f64
// CHECK: %[[C1:.*]] = sparse_tensor.reduce %[[A]], %[[B]], %[[Z]] : f64 {
// CHECK: ^bb0(%[[A1:.*]]: f64, %[[B1:.*]]: f64):
// CHECK: sparse_tensor.yield %[[A1]] : f64
// CHECK: }
// CHECK: return %[[C1]] : f64
// CHECK: }
func.func @sparse_reduce_2d_to_1d(%arg0: f64, %arg1: f64) -> f64 {
%cf0 = arith.constant 0.0 : f64
%r = sparse_tensor.reduce %arg0, %arg1, %cf0 : f64 {
^bb0(%x: f64, %y: f64):
sparse_tensor.yield %x : f64
}
return %r : f64
}
// -----
#SparseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func @sparse_select(
// CHECK-SAME: %[[A:.*]]: f64) -> f64 {
// CHECK: %[[Z:.*]] = arith.constant 0.000000e+00 : f64
// CHECK: %[[C1:.*]] = sparse_tensor.select %[[A]] : f64 {
// CHECK: ^bb0(%[[A1:.*]]: f64):
// CHECK: %[[B1:.*]] = arith.cmpf ogt, %[[A1]], %[[Z]] : f64
// CHECK: sparse_tensor.yield %[[B1]] : i1
// CHECK: }
// CHECK: return %[[C1]] : f64
// CHECK: }
func.func @sparse_select(%arg0: f64) -> f64 {
%cf0 = arith.constant 0.0 : f64
%r = sparse_tensor.select %arg0 : f64 {
^bb0(%x: f64):
%cmp = arith.cmpf "ogt", %x, %cf0 : f64
sparse_tensor.yield %cmp : i1
}
return %r : f64
}
// -----
#SparseMatrix = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func @concat_sparse_sparse(
// CHECK-SAME: %[[A0:.*]]: tensor<2x4xf64
// CHECK-SAME: %[[A1:.*]]: tensor<3x4xf64
// CHECK-SAME: %[[A2:.*]]: tensor<4x4xf64
// CHECK: %[[TMP0:.*]] = sparse_tensor.concatenate %[[A0]], %[[A1]], %[[A2]] {dimension = 0 : index} :
// CHECK-SAME: tensor<2x4xf64
// CHECK-SAME: tensor<3x4xf64
// CHECK-SAME: tensor<4x4xf64
// CHECK-SAME: tensor<9x4xf64
// CHECK: return %[[TMP0]] : tensor<9x4xf64
func.func @concat_sparse_sparse(%arg0: tensor<2x4xf64, #SparseMatrix>,
%arg1: tensor<3x4xf64, #SparseMatrix>,
%arg2: tensor<4x4xf64, #SparseMatrix>) -> tensor<9x4xf64, #SparseMatrix> {
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index}
: tensor<2x4xf64, #SparseMatrix>,
tensor<3x4xf64, #SparseMatrix>,
tensor<4x4xf64, #SparseMatrix> to tensor<9x4xf64, #SparseMatrix>
return %0 : tensor<9x4xf64, #SparseMatrix>
}
// -----
#DCSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func @sparse_tensor_foreach(
// CHECK-SAME: %[[A0:.*]]: tensor<2x4xf64
// CHECK: sparse_tensor.foreach in %[[A0]] :
// CHECK: ^bb0(%arg1: index, %arg2: index, %arg3: f64):
func.func @sparse_tensor_foreach(%arg0: tensor<2x4xf64, #DCSR>) -> () {
sparse_tensor.foreach in %arg0 : tensor<2x4xf64, #DCSR> do {
^bb0(%1: index, %2: index, %v: f64) :
}
return
}
// -----
#DCSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func @sparse_tensor_foreach(
// CHECK-SAME: %[[A0:.*]]: tensor<2x4xf64, #sparse{{[0-9]*}}>,
// CHECK-SAME: %[[A1:.*]]: f32
// CHECK-NEXT: %[[RET:.*]] = sparse_tensor.foreach in %[[A0]] init(%[[A1]])
// CHECK-NEXT: ^bb0(%[[TMP_1:.*]]: index, %[[TMP_2:.*]]: index, %[[TMP_v:.*]]: f64, %[[TMP_r:.*]]: f32)
// CHECK: sparse_tensor.yield %[[TMP_r]] : f32
// CHECK: }
func.func @sparse_tensor_foreach(%arg0: tensor<2x4xf64, #DCSR>, %arg1: f32) -> () {
%ret = sparse_tensor.foreach in %arg0 init(%arg1): tensor<2x4xf64, #DCSR>, f32 -> f32
do {
^bb0(%1: index, %2: index, %v: f64, %r: f32) :
sparse_tensor.yield %r : f32
}
return
}
// -----
#ID_MAP = affine_map<(i,j) -> (i,j)>
// CHECK-LABEL: func @sparse_sort_coo(
// CHECK-SAME: %[[A:.*]]: index,
// CHECK-SAME: %[[B:.*]]: memref<?xindex>)
// CHECK: sparse_tensor.sort hybrid_quick_sort %[[A]], %[[B]] {ny = 1 : index, perm_map = #{{.*}}} : memref<?xindex>
// CHECK: return %[[B]]
func.func @sparse_sort_coo(%arg0: index, %arg1: memref<?xindex>) -> (memref<?xindex>) {
sparse_tensor.sort hybrid_quick_sort %arg0, %arg1 {perm_map = #ID_MAP, ny = 1 : index}: memref<?xindex>
return %arg1 : memref<?xindex>
}
// -----
#ID_MAP = affine_map<(i,j) -> (i,j)>
// CHECK-LABEL: func @sparse_sort_coo_stable(
// CHECK-SAME: %[[A:.*]]: index,
// CHECK-SAME: %[[B:.*]]: memref<?xi64>,
// CHECK-SAME: %[[C:.*]]: memref<?xf32>)
// CHECK: sparse_tensor.sort insertion_sort_stable %[[A]], %[[B]] jointly %[[C]] {ny = 1 : index, perm_map = #{{.*}}}
// CHECK: return %[[B]], %[[C]]
func.func @sparse_sort_coo_stable(%arg0: index, %arg1: memref<?xi64>, %arg2: memref<?xf32>) -> (memref<?xi64>, memref<?xf32>) {
sparse_tensor.sort insertion_sort_stable %arg0, %arg1 jointly %arg2 {perm_map = #ID_MAP, ny = 1 : index}: memref<?xi64> jointly memref<?xf32>
return %arg1, %arg2 : memref<?xi64>, memref<?xf32>
}
// -----
#UnorderedCOO = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed(nonunique, nonordered), d1 : singleton(nonordered))}>
#OrderedCOO = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)}>
// CHECK-LABEL: func @sparse_reorder_coo(
// CHECK-SAME: %[[A:.*]]: tensor<?x?xf32, #sparse{{[0-9]*}}>
// CHECK: %[[R:.*]] = sparse_tensor.reorder_coo quick_sort %[[A]]
// CHECK: return %[[R]]
func.func @sparse_reorder_coo(%arg0 : tensor<?x?xf32, #UnorderedCOO>) -> tensor<?x?xf32, #OrderedCOO> {
%ret = sparse_tensor.reorder_coo quick_sort %arg0 : tensor<?x?xf32, #UnorderedCOO> to tensor<?x?xf32, #OrderedCOO>
return %ret : tensor<?x?xf32, #OrderedCOO>
}
// -----
#BSR = #sparse_tensor.encoding<{
map = ( i, j ) ->
( i floordiv 2 : dense,
j floordiv 3 : compressed,
i mod 2 : dense,
j mod 3 : dense
)
}>
// CHECK-LABEL: func.func @sparse_crd_translate(
// CHECK-SAME: %[[VAL_0:.*]]: index,
// CHECK-SAME: %[[VAL_1:.*]]: index)
// CHECK: %[[VAL_2:.*]]:4 = sparse_tensor.crd_translate dim_to_lvl{{\[}}%[[VAL_0]], %[[VAL_1]]]
// CHECK: return %[[VAL_2]]#0, %[[VAL_2]]#1, %[[VAL_2]]#2, %[[VAL_2]]#3
func.func @sparse_crd_translate(%arg0: index, %arg1: index) -> (index, index, index, index) {
%l0, %l1, %l2, %l3 = sparse_tensor.crd_translate dim_to_lvl [%arg0, %arg1] as #BSR : index, index, index, index
return %l0, %l1, %l2, %l3 : index, index, index, index
}
// -----
#BSR = #sparse_tensor.encoding<{
map = ( i, j ) ->
( i floordiv 2 : dense,
j floordiv 3 : compressed,
i mod 2 : dense,
j mod 3 : dense
)
}>
// CHECK-LABEL: func.func @sparse_lvl(
// CHECK-SAME: %[[VAL_0:.*]]: index,
// CHECK-SAME: %[[VAL_1:.*]]: tensor
// CHECK: %[[VAL_2:.*]] = sparse_tensor.lvl %[[VAL_1]], %[[VAL_0]]
// CHECK: return %[[VAL_2]]
func.func @sparse_lvl(%arg0: index, %t : tensor<?x?xi32, #BSR>) -> index {
%l0 = sparse_tensor.lvl %t, %arg0 : tensor<?x?xi32, #BSR>
return %l0 : index
}
// -----
#BSR = #sparse_tensor.encoding<{
map = ( i, j ) -> ( i floordiv 2 : dense,
j floordiv 3 : compressed,
i mod 2 : dense,
j mod 3 : dense
)
}>
#DSDD = #sparse_tensor.encoding<{
map = (i, j, k, l) -> (i: dense, j: compressed, k: dense, l: dense)
}>
// CHECK-LABEL: func.func @sparse_reinterpret_map(
// CHECK-SAME: %[[A0:.*]]: tensor<6x12xi32, #sparse{{[0-9]*}}>)
// CHECK: %[[VAL:.*]] = sparse_tensor.reinterpret_map %[[A0]]
// CHECK: return %[[VAL]]
func.func @sparse_reinterpret_map(%t0 : tensor<6x12xi32, #BSR>) -> tensor<3x4x2x3xi32, #DSDD> {
%t1 = sparse_tensor.reinterpret_map %t0 : tensor<6x12xi32, #BSR>
to tensor<3x4x2x3xi32, #DSDD>
return %t1 : tensor<3x4x2x3xi32, #DSDD>
}
// -----
#CSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
// CHECK-LABEL: func.func @sparse_print(
// CHECK-SAME: %[[A0:.*]]: tensor<10x10xf64, #sparse{{[0-9]*}}>)
// CHECK: sparse_tensor.print %[[A0]]
// CHECK: return
func.func @sparse_print(%arg0: tensor<10x10xf64, #CSR>) {
sparse_tensor.print %arg0 : tensor<10x10xf64, #CSR>
return
}
// -----
// CHECK-LABEL: func.func @sparse_has_runtime() -> i1
// CHECK: %[[H:.*]] = sparse_tensor.has_runtime_library
// CHECK: return %[[H]] : i1
func.func @sparse_has_runtime() -> i1 {
%has_runtime = sparse_tensor.has_runtime_library
return %has_runtime : i1
}
// -----
#COO = #sparse_tensor.encoding<{
map = (i, j) -> (
i : compressed(nonunique),
j : singleton(soa)
)
}>
// CHECK-LABEL: func.func @sparse_extract_value(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<4x8xf32, #sparse>,
// CHECK-SAME: %[[VAL_1:.*]]: !sparse_tensor.iterator<#sparse, lvls = 1>) -> f32 {
// CHECK: %[[VAL_2:.*]] = sparse_tensor.extract_value %[[VAL_0]] at %[[VAL_1]] : tensor<4x8xf32, #sparse>, !sparse_tensor.iterator<#sparse, lvls = 1>
// CHECK: return %[[VAL_2]] : f32
// CHECK: }
func.func @sparse_extract_value(%sp : tensor<4x8xf32, #COO>, %it1 : !sparse_tensor.iterator<#COO, lvls = 1>) -> f32 {
%f = sparse_tensor.extract_value %sp at %it1 : tensor<4x8xf32, #COO>, !sparse_tensor.iterator<#COO, lvls = 1>
return %f : f32
}
// -----
#COO = #sparse_tensor.encoding<{
map = (i, j) -> (
i : compressed(nonunique),
j : singleton(soa)
)
}>
// CHECK-LABEL: func.func @sparse_extract_iter_space(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<4x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME: %[[VAL_1:.*]]: !sparse_tensor.iterator<#sparse{{[0-9]*}}, lvls = 0>)
// CHECK: %[[VAL_2:.*]] = sparse_tensor.extract_iteration_space %[[VAL_0]] lvls = 0
// CHECK: %[[VAL_3:.*]] = sparse_tensor.extract_iteration_space %[[VAL_0]] at %[[VAL_1]] lvls = 1
// CHECK: return %[[VAL_2]], %[[VAL_3]] : !sparse_tensor.iter_space<#sparse{{[0-9]*}}, lvls = 0>, !sparse_tensor.iter_space<#sparse{{[0-9]*}}, lvls = 1>
// CHECK: }
func.func @sparse_extract_iter_space(%sp : tensor<4x8xf32, #COO>, %it1 : !sparse_tensor.iterator<#COO, lvls = 0>)
-> (!sparse_tensor.iter_space<#COO, lvls = 0>, !sparse_tensor.iter_space<#COO, lvls = 1>) {
// Extracting the iteration space for the first level needs no parent iterator.
%l1 = sparse_tensor.extract_iteration_space %sp lvls = 0 : tensor<4x8xf32, #COO> -> !sparse_tensor.iter_space<#COO, lvls = 0>
// Extracting the iteration space for the second level needs a parent iterator.
%l2 = sparse_tensor.extract_iteration_space %sp at %it1 lvls = 1 : tensor<4x8xf32, #COO>, !sparse_tensor.iterator<#COO, lvls = 0>
-> !sparse_tensor.iter_space<#COO, lvls = 1>
return %l1, %l2 : !sparse_tensor.iter_space<#COO, lvls = 0>, !sparse_tensor.iter_space<#COO, lvls = 1>
}
// -----
#COO = #sparse_tensor.encoding<{
map = (i, j) -> (
i : compressed(nonunique),
j : singleton(soa)
)
}>
// CHECK-LABEL: func.func @sparse_iterate(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<4x8xf32, #sparse{{[0-9]*}}>,
// CHECK-SAME: %[[VAL_1:.*]]: index,
// CHECK-SAME: %[[VAL_2:.*]]: index) -> index {
// CHECK: %[[VAL_3:.*]] = sparse_tensor.extract_iteration_space %[[VAL_0]] lvls = 0 : tensor<4x8xf32, #sparse{{[0-9]*}}>
// CHECK: %[[VAL_4:.*]] = sparse_tensor.iterate %[[VAL_5:.*]] in %[[VAL_3]] at(%[[VAL_6:.*]]) iter_args(%[[VAL_7:.*]] = %[[VAL_1]]) : !sparse_tensor.iter_space<#sparse{{[0-9]*}}, lvls = 0> -> index {
// CHECK: sparse_tensor.yield %[[VAL_7]] : index
// CHECK: }
// CHECK: return %[[VAL_4]] : index
// CHECK: }
func.func @sparse_iterate(%sp : tensor<4x8xf32, #COO>, %i : index, %j : index) -> index {
%l1 = sparse_tensor.extract_iteration_space %sp lvls = 0 : tensor<4x8xf32, #COO> -> !sparse_tensor.iter_space<#COO, lvls = 0>
%r1 = sparse_tensor.iterate %it1 in %l1 at (%crd) iter_args(%outer = %i): !sparse_tensor.iter_space<#COO, lvls = 0 to 1> -> index {
sparse_tensor.yield %outer : index
}
return %r1 : index
}
// -----
#COO = #sparse_tensor.encoding<{
map = (i, j) -> (
i : compressed(nonunique),
j : singleton(soa)
)
}>
// CHECK-LABEL: func.func @sparse_coiteration(
// CHECK-SAME: %[[SP1:.*]]: !sparse_tensor.iter_space<#sparse, lvls = 0>,
// CHECK-SAME: %[[SP2:.*]]: !sparse_tensor.iter_space<#sparse, lvls = 1>) -> index {
// CHECK: %[[INIT:.*]] = arith.constant 0 : index
// CHECK: %[[RET:.*]] = sparse_tensor.coiterate (%[[SP1]], %[[SP2]]) at(%[[COORD:.*]]) iter_args(%[[ARG:.*]] = %[[INIT]])
// CHECK: case %[[VAL_6:.*]], _ {
// CHECK: sparse_tensor.yield %[[ARG]] : index
// CHECK: }
// CHECK: return %[[RET]] : index
// CHECK: }
func.func @sparse_coiteration(%sp1 : !sparse_tensor.iter_space<#COO, lvls = 0>,
%sp2 : !sparse_tensor.iter_space<#COO, lvls = 1>) -> index {
%init = arith.constant 0 : index
%ret = sparse_tensor.coiterate (%sp1, %sp2) at (%coord) iter_args(%arg = %init)
: (!sparse_tensor.iter_space<#COO, lvls = 0>, !sparse_tensor.iter_space<#COO, lvls = 1>)
-> index
case %it1, _ {
sparse_tensor.yield %arg : index
}
return %ret : index
}