// RUN: mlir-opt %s -sparsifier="vl=8" | FileCheck %s
#Dense = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : dense)
}>
#matvec = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A
affine_map<(i,j) -> (j)>, // b
affine_map<(i,j) -> (i)> // x (out)
],
iterator_types = ["parallel", "reduction"],
doc = "X(i) += A(i,j) * B(j)"
}
// CHECK-LABEL: llvm.func @kernel_matvec
// CHECK: llvm.intr.vector.reduce.fadd
func.func @kernel_matvec(%arga: tensor<?x?xf32, #Dense>,
%argb: tensor<?xf32>,
%argx: tensor<?xf32>) -> tensor<?xf32> {
%x = linalg.generic #matvec
ins(%arga, %argb: tensor<?x?xf32, #Dense>, tensor<?xf32>)
outs(%argx: tensor<?xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.mulf %a, %b : f32
%1 = arith.addf %x, %0 : f32
linalg.yield %1 : f32
} -> tensor<?xf32>
return %x : tensor<?xf32>
}