// RUN: mlir-opt -split-input-file -allow-unregistered-dialect -affine-loop-coalescing --cse --mlir-print-local-scope %s | FileCheck %s
// CHECK-LABEL: @one_3d_nest
func.func @one_3d_nest() {
// Capture original bounds. Note that for zero-based step-one loops, the
// upper bound is also the number of iterations.
// CHECK-DAG: %[[orig_lb:.*]] = arith.constant 0
// CHECK-DAG: %[[orig_step:.*]] = arith.constant 1
// CHECK-DAG: %[[orig_ub_k:.*]] = arith.constant 3
// CHECK-DAG: %[[orig_ub_i:.*]] = arith.constant 42
// CHECK-DAG: %[[orig_ub_j:.*]] = arith.constant 56
// CHECK-DAG: %[[range:.*]] = arith.constant 7056
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
%c42 = arith.constant 42 : index
%c56 = arith.constant 56 : index
// The range of the new scf.
// Updated loop bounds.
// CHECK: scf.for %[[i:.*]] = %[[orig_lb]] to %[[range]] step %[[orig_step]]
scf.for %i = %c0 to %c42 step %c1 {
// Inner loops must have been removed.
// CHECK-NOT: scf.for
// Reconstruct original IVs from the linearized one.
// CHECK: %[[delinearize:.+]]:3 = affine.delinearize_index %[[i]]
// CHECK-SAME: into (%[[orig_ub_i]], %[[orig_ub_j]], %[[orig_ub_k]])
scf.for %j = %c0 to %c56 step %c1 {
scf.for %k = %c0 to %c3 step %c1 {
// CHECK: "use"(%[[delinearize]]#0, %[[delinearize]]#1, %[[delinearize]]#2)
"use"(%i, %j, %k) : (index, index, index) -> ()
}
}
}
return
}
// -----
// Check that there is no chasing the replacement of value uses by ensuring
// multiple uses of loop induction variables get rewritten to the same values.
// CHECK-LABEL: @multi_use
func.func @multi_use() {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
// CHECK: scf.for %[[iv:.*]] =
scf.for %i = %c1 to %c10 step %c1 {
scf.for %j = %c1 to %c10 step %c1 {
scf.for %k = %c1 to %c10 step %c1 {
// CHECK: %[[delinearize:.+]]:3 = affine.delinearize_index %[[iv]]
// CHECK: %[[k:.*]] = affine.apply affine_map<(d0) -> (d0 + 1)>(%[[delinearize]]#2)
// CHECK: %[[j:.*]] = affine.apply affine_map<(d0) -> (d0 + 1)>(%[[delinearize]]#1)
// CHECK: %[[i:.*]] = affine.apply affine_map<(d0) -> (d0 + 1)>(%[[delinearize]]#0)
// CHECK: "use1"(%[[i]], %[[j]], %[[k]])
"use1"(%i,%j,%k) : (index,index,index) -> ()
// CHECK: "use2"(%[[i]], %[[k]], %[[j]])
"use2"(%i,%k,%j) : (index,index,index) -> ()
// CHECK: "use3"(%[[k]], %[[j]], %[[i]])
"use3"(%k,%j,%i) : (index,index,index) -> ()
}
}
}
return
}
// -----
func.func @unnormalized_loops() {
// Normalized lower bound and step for the outer scf.
// CHECK-DAG: %[[lb_i:.*]] = arith.constant 0
// CHECK-DAG: %[[step_i:.*]] = arith.constant 1
// CHECK-DAG: %[[orig_step_j_and_numiter_i:.*]] = arith.constant 3
// Number of iterations in the inner loop, the pattern is the same as above,
// only capture the final result.
// CHECK-DAG: %[[numiter_j:.*]] = arith.constant 4
// CHECK-DAG: %[[range:.*]] = arith.constant 12
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
%c5 = arith.constant 5 : index
%c7 = arith.constant 7 : index
%c10 = arith.constant 10 : index
%c17 = arith.constant 17 : index
// New bounds of the outer scf.
// CHECK: scf.for %[[i:.*]] = %[[lb_i]] to %[[range]] step %[[step_i]]
scf.for %i = %c5 to %c10 step %c2 {
// The inner loop has been removed.
// CHECK-NOT: scf.for
scf.for %j = %c7 to %c17 step %c3 {
// The IVs are rewritten.
// CHECK: %[[delinearize:.+]]:2 = affine.delinearize_index %[[i]]
// CHECK-SAME: into (%[[orig_step_j_and_numiter_i]], %[[numiter_j]])
// CHECK: %[[orig_j:.*]] = affine.apply affine_map<(d0) -> (d0 * 3 + 7)>(%[[delinearize]]#1)
// CHECK: %[[orig_i:.*]] = affine.apply affine_map<(d0) -> (d0 * 2 + 5)>(%[[delinearize]]#0)
// CHECK: "use"(%[[orig_i]], %[[orig_j]])
"use"(%i, %j) : (index, index) -> ()
}
}
return
}
// -----
func.func @noramalized_loops_with_yielded_iter_args() {
// CHECK-DAG: %[[orig_lb:.*]] = arith.constant 0
// CHECK-DAG: %[[orig_ub_i:.*]] = arith.constant 42
// CHECK-DAG: %[[orig_step:.*]] = arith.constant 1
// CHECK-DAG: %[[orig_ub_j:.*]] = arith.constant 56
// CHECK-DAG: %[[orig_ub_k:.*]] = arith.constant 3
// CHECK-DAG: %[[range:.*]] = arith.constant 7056
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c3 = arith.constant 3 : index
%c42 = arith.constant 42 : index
%c56 = arith.constant 56 : index
// The range of the new scf.
// Updated loop bounds.
// CHECK: scf.for %[[i:.*]] = %[[orig_lb]] to %[[range]] step %[[orig_step]] iter_args(%[[VAL_1:.*]] = %[[orig_lb]]) -> (index) {
%2:1 = scf.for %i = %c0 to %c42 step %c1 iter_args(%arg0 = %c0) -> (index) {
// Inner loops must have been removed.
// CHECK-NOT: scf.for
// Reconstruct original IVs from the linearized one.
// CHECK: %[[delinearize:.+]]:3 = affine.delinearize_index %[[i]] into (%[[orig_ub_i]], %[[orig_ub_j]], %[[orig_ub_k]])
%1:1 = scf.for %j = %c0 to %c56 step %c1 iter_args(%arg1 = %arg0) -> (index){
%0:1 = scf.for %k = %c0 to %c3 step %c1 iter_args(%arg2 = %arg1) -> (index) {
// CHECK: "use"(%[[delinearize]]#0, %[[delinearize]]#1, %[[delinearize]]#2)
"use"(%i, %j, %k) : (index, index, index) -> ()
// CHECK: scf.yield %[[VAL_1]] : index
scf.yield %arg2 : index
}
scf.yield %0#0 : index
}
scf.yield %1#0 : index
}
return
}
// -----
func.func @noramalized_loops_with_shuffled_yielded_iter_args() {
// CHECK-DAG: %[[orig_lb:.*]] = arith.constant 0
// CHECK-DAG: %[[orig_step:.*]] = arith.constant 1
// CHECK-DAG: %[[orig_ub_k:.*]] = arith.constant 3
// CHECK-DAG: %[[orig_ub_i:.*]] = arith.constant 42
// CHECK-DAG: %[[orig_ub_j:.*]] = arith.constant 56
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c3 = arith.constant 3 : index
%c42 = arith.constant 42 : index
%c56 = arith.constant 56 : index
// The range of the new scf.
// CHECK-DAG:%[[range:.*]] = arith.constant 7056
// Updated loop bounds.
// CHECK: scf.for %[[i:.*]] = %[[orig_lb]] to %[[range]] step %[[orig_step]] iter_args(%[[VAL_1:.*]] = %[[orig_lb]], %[[VAL_2:.*]] = %[[orig_lb]]) -> (index, index) {
%2:2 = scf.for %i = %c0 to %c42 step %c1 iter_args(%arg0 = %c0, %arg1 = %c0) -> (index, index) {
// Inner loops must have been removed.
// CHECK-NOT: scf.for
// Reconstruct original IVs from the linearized one.
// CHECK: %[[delinearize:.+]]:3 = affine.delinearize_index %[[i]]
// CHECK-SAME: into (%[[orig_ub_i]], %[[orig_ub_j]], %[[orig_ub_k]])
%1:2 = scf.for %j = %c0 to %c56 step %c1 iter_args(%arg2 = %arg0, %arg3 = %arg1) -> (index, index){
%0:2 = scf.for %k = %c0 to %c3 step %c1 iter_args(%arg4 = %arg2, %arg5 = %arg3) -> (index, index) {
// CHECK: "use"(%[[delinearize]]#0, %[[delinearize]]#1, %[[delinearize]]#2)
"use"(%i, %j, %k) : (index, index, index) -> ()
// CHECK: scf.yield %[[VAL_2]], %[[VAL_1]] : index, index
scf.yield %arg5, %arg4 : index, index
}
scf.yield %0#0, %0#1 : index, index
}
scf.yield %1#0, %1#1 : index, index
}
return
}
// -----
func.func @noramalized_loops_with_yielded_non_iter_args() {
// CHECK-DAG: %[[orig_lb:.*]] = arith.constant 0
// CHECK-DAG: %[[orig_step:.*]] = arith.constant 1
// CHECK-DAG: %[[orig_ub_k:.*]] = arith.constant 3
// CHECK-DAG: %[[orig_ub_i:.*]] = arith.constant 42
// CHECK-DAG: %[[orig_ub_j:.*]] = arith.constant 56
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c3 = arith.constant 3 : index
%c42 = arith.constant 42 : index
%c56 = arith.constant 56 : index
// The range of the new scf.
// CHECK-DAG: %[[range:.*]] = arith.constant 7056
// Updated loop bounds.
// CHECK: scf.for %[[i:.*]] = %[[orig_lb]] to %[[range]] step %[[orig_step]] iter_args(%[[VAL_1:.*]] = %[[orig_lb]]) -> (index) {
%2:1 = scf.for %i = %c0 to %c42 step %c1 iter_args(%arg0 = %c0) -> (index) {
// Inner loops must have been removed.
// CHECK-NOT: scf.for
// Reconstruct original IVs from the linearized one.
// CHECK: %[[delinearize:.+]]:3 = affine.delinearize_index %[[i]]
// CHECK-SAME: into (%[[orig_ub_i]], %[[orig_ub_j]], %[[orig_ub_k]])
%1:1 = scf.for %j = %c0 to %c56 step %c1 iter_args(%arg1 = %arg0) -> (index){
%0:1 = scf.for %k = %c0 to %c3 step %c1 iter_args(%arg2 = %arg1) -> (index) {
// CHECK: %[[res:.*]] = "use"(%[[delinearize]]#0, %[[delinearize]]#1, %[[delinearize]]#2)
%res = "use"(%i, %j, %k) : (index, index, index) -> (index)
// CHECK: scf.yield %[[res]] : index
scf.yield %res : index
}
scf.yield %0#0 : index
}
scf.yield %1#0 : index
}
return
}
// -----
// Check with parametric loop bounds and steps, capture the bounds here.
// CHECK-LABEL: @parametric
// CHECK-SAME: %[[orig_lb1:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[orig_ub1:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[orig_step1:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[orig_lb2:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[orig_ub2:[A-Za-z0-9]+]]:
// CHECK-SAME: %[[orig_step2:[A-Za-z0-9]+]]:
func.func @parametric(%lb1 : index, %ub1 : index, %step1 : index,
%lb2 : index, %ub2 : index, %step2 : index) {
// Compute the number of iterations for each of the loops and the total
// number of iterations.
// CHECK: %[[normalized_i:.*]] = affine.apply
// CHECK-SAME: affine_map<()[s0, s1, s2] -> ((-s0 + s1) ceildiv s2)>()[%[[orig_lb1]], %[[orig_ub1]], %[[orig_step1]]]
// CHECK: %[[c0:.+]] = arith.constant 0
// CHECK: %[[c1:.+]] = arith.constant 1
// CHECK: %[[normalized_j:.*]] = affine.apply
// CHECK-SAME: affine_map<()[s0, s1, s2] -> ((-s0 + s1) ceildiv s2)>()[%[[orig_lb2]], %[[orig_ub2]], %[[orig_step2]]]
// CHECK: %[[range:.+]] = affine.apply
// CHECK-SAME: affine_map<()[s0, s1, s2, s3, s4, s5] -> (((-s0 + s1) ceildiv s2) * ((-s3 + s4) ceildiv s5))>()
// CHECK-SAME: [%[[orig_lb1]], %[[orig_ub1]], %[[orig_step1]], %[[orig_lb2]], %[[orig_ub2]], %[[orig_step2]]]
// Check that the outer loop is updated.
// CHECK: scf.for %[[i:.*]] = %[[c0]] to %[[range]] step %[[c1]]
scf.for %i = %lb1 to %ub1 step %step1 {
// Check that the inner loop is removed.
// CHECK-NOT: scf.for
scf.for %j = %lb2 to %ub2 step %step2 {
// Remapping of the induction variables.
// CHECK: %[[delinearize:.+]]:2 = affine.delinearize_index %[[i]] into (%[[normalized_i]], %[[normalized_j]])
// CHECK: %[[orig_j:.*]] = affine.apply affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
// CHECK-SAME: (%[[delinearize]]#1)[%[[orig_lb2]], %[[orig_step2]]]
// CHECK: %[[orig_i:.*]] = affine.apply affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
// CHECK-SAME: (%[[delinearize]]#0)[%[[orig_lb1]], %[[orig_step1]]]
// CHECK: "foo"(%[[orig_i]], %[[orig_j]])
"foo"(%i, %j) : (index, index) -> ()
}
}
return
}
// -----
// CHECK-LABEL: @two_bands
func.func @two_bands() {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
// CHECK: %[[outer_range:.*]] = arith.constant 100
// CHECK: scf.for %{{.*}} = %{{.*}} to %[[outer_range]]
scf.for %i = %c0 to %c10 step %c1 {
// Check that the "j" loop was removed and that the inner loops were
// coalesced as well. The preparation step for coalescing will inject the
// subtraction operation unlike the IV remapping.
// CHECK-NOT: scf.for
// CHECK: affine.delinearize_index
scf.for %j = %c0 to %c10 step %c1 {
// The inner pair of loops is coalesced separately.
// CHECK: scf.for
scf.for %k = %i to %j step %c1 {
// CHECK-NOT: scf.for
scf.for %l = %i to %j step %c1 {
"foo"() : () -> ()
}
}
}
}
return
}
// -----
// Check coalescing of affine.for loops when all the loops have constant upper bound.
func.func @coalesce_affine_for() {
affine.for %i = 0 to 16 {
affine.for %j = 0 to 64 {
affine.for %k = 0 to 8 {
"test.foo"(%i, %j, %k) : (index, index, index) -> ()
}
}
}
return
}
// CHECK-DAG: %[[T0:.*]] = affine.apply affine_map<() -> (16)>()
// CHECK-DAG: %[[T1:.*]] = affine.apply affine_map<() -> (64)>()
// CHECK-DAG: %[[T2:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%[[T0]])[%[[T1]]]
// CHECK-DAG: %[[T3:.*]] = affine.apply affine_map<() -> (8)>()
// CHECK-DAG: %[[T4:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%[[T2]])[%[[T3]]]
// CHECK: affine.for %[[IV:.*]] = 0 to %[[T4]]
// CHECK-DAG: %[[K:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)>(%[[IV]])[%[[T3]]]
// CHECK-DAG: %[[T6:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 floordiv s0)>(%[[IV]])[%[[T3]]]
// CHECK-DAG: %[[J:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)>(%[[T6]])[%[[T1]]]
// CHECK-DAG: %[[I:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 floordiv s0)>(%[[T6]])[%[[T1]]]
// CHECK-NEXT: "test.foo"(%[[I]], %[[J]], %[[K]])
// CHECK-NEXT: }
// CHECK-NEXT: return
// -----
// Check coalescing of affine.for loops when all the loops have non constant upper bounds.
func.func @coalesce_affine_for(%arg0: memref<?x?xf32>) {
%c0 = arith.constant 0 : index
%M = memref.dim %arg0, %c0 : memref<?x?xf32>
%N = memref.dim %arg0, %c0 : memref<?x?xf32>
%K = memref.dim %arg0, %c0 : memref<?x?xf32>
affine.for %i = 0 to %M {
affine.for %j = 0 to %N {
affine.for %k = 0 to %K {
"test.foo"(%i, %j, %k) : (index, index, index) -> ()
}
}
}
return
}
// CHECK: %[[DIM:.*]] = memref.dim %arg{{.*}}, %c{{.*}} : memref<?x?xf32>
// CHECK-DAG: %[[T0:.*]] = affine.apply affine_map<()[s0] -> (s0)>()[%[[DIM]]]
// CHECK-DAG: %[[T1:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%[[T0]])[%[[T0]]]
// CHECK-DAG: %[[T2:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%[[T1]])[%[[T0]]]
// CHECK: affine.for %[[IV:.*]] = 0 to %[[T2]]
// CHECK-DAG: %[[K:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)>(%[[IV]])[%[[T0]]]
// CHECK-DAG: %[[T9:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 floordiv s0)>(%[[IV]])[%[[T0]]]
// CHECK-DAG: %[[J:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)>(%[[T9]])[%[[T0]]]
// CHECK-DAG: %[[I:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 floordiv s0)>(%[[T9]])[%[[T0]]]
// CHECK-NEXT: "test.foo"(%[[I]], %[[J]], %[[K]])
// CHECK-NEXT: }
// CHECK-NEXT: return
// -----
// Check coalescing of affine.for loops when some of the loop has constant upper bounds while others have nin constant upper bounds.
func.func @coalesce_affine_for(%arg0: memref<?x?xf32>) {
%c0 = arith.constant 0 : index
%M = memref.dim %arg0, %c0 : memref<?x?xf32>
%N = memref.dim %arg0, %c0 : memref<?x?xf32>
affine.for %i = 0 to %M {
affine.for %j = 0 to %N {
affine.for %k = 0 to 64 {
"test.foo"(%i, %j, %k) : (index, index, index) -> ()
}
}
}
return
}
// CHECK: %[[DIM:.*]] = memref.dim %arg{{.*}}, %c{{.*}} : memref<?x?xf32>
// CHECK-DAG: %[[T0:.*]] = affine.apply affine_map<()[s0] -> (s0)>()[%[[DIM]]]
// CHECK-DAG: %[[T1:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%[[T0]])[%[[T0]]]
// CHECK-DAG: %[[T2:.*]] = affine.apply affine_map<() -> (64)>()
// CHECK-DAG: %[[T3:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%[[T1]])[%[[T2]]]
// CHECK: affine.for %[[IV:.*]] = 0 to %[[T3]]
// CHECK-DAG: %[[K:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)>(%[[IV]])[%[[T2]]]
// CHECK-DAG: %[[T5:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 floordiv s0)>(%[[IV]])[%[[T2]]]
// CHECK-DAG: %[[J:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)>(%[[T5]])[%[[T0]]]
// CHECK-DAG: %[[I:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 floordiv s0)>(%[[T5]])[%[[T0]]]
// CHECK-NEXT: "test.foo"(%[[I]], %[[J]], %[[K]])
// CHECK-NEXT: }
// CHECK-NEXT: return
// -----
// Check coalescing of affine.for loops when upper bound contains multi result upper bound map.
#myMap = affine_map<()[s1] -> (s1, -s1)>
func.func @coalesce_affine_for(%arg0: memref<?x?xf32>) {
%c0 = arith.constant 0 : index
%M = memref.dim %arg0, %c0 : memref<?x?xf32>
%N = memref.dim %arg0, %c0 : memref<?x?xf32>
%K = memref.dim %arg0, %c0 : memref<?x?xf32>
affine.for %i = 0 to min #myMap()[%M] {
affine.for %j = 0 to %N {
affine.for %k = 0 to %K {
"test.foo"(%i, %j, %k) : (index, index, index) -> ()
}
}
}
return
}
// CHECK: %[[DIM:.*]] = memref.dim %arg{{.*}}, %c{{.*}} : memref<?x?xf32>
// CHECK-DAG: %[[T0:.*]] = affine.min affine_map<()[s0] -> (s0, -s0)>()[%[[DIM]]]
// CHECK-DAG: %[[T1:.*]] = affine.apply affine_map<()[s0] -> (s0)>()[%[[DIM]]]
// CHECK-DAG: %[[T2:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%[[T0]])[%[[T1]]]
// CHECK-DAG: %[[T3:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%[[T2]])[%[[T1]]]
// CHECK: affine.for %[[IV:.*]] = 0 to %[[T3]]
// CHECK-DAG: %[[K:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)>(%[[IV]])[%[[T1]]]
// CHECK-DAG: %[[T5:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 floordiv s0)>(%[[IV]])[%[[T1]]]
// CHECK-DAG: %[[J:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)>(%[[T5]])[%[[T1]]]
// CHECK-DAG: %[[I:.*]] = affine.apply affine_map<(d0)[s0] -> (d0 floordiv s0)>(%[[T5]])[%[[T1]]]
// CHECK-NEXT: "test.foo"(%[[I]], %[[J]], %[[K]])
// CHECK-NEXT: }
// CHECK-NEXT: return
// -----
#map0 = affine_map<(d0) -> (d0 * 110)>
#map1 = affine_map<(d0) -> (696, d0 * 110 + 110)>
func.func @test_loops_do_not_get_coalesced() {
affine.for %i = 0 to 7 {
affine.for %j = #map0(%i) to min #map1(%i) {
"use"(%i, %j) : (index, index) -> ()
}
}
return
}
// CHECK: affine.for %[[IV0:.*]] = 0 to 7
// CHECK-NEXT: affine.for %[[IV1:.*]] = affine_map<(d0) -> (d0 * 110)>(%[[IV0]]) to min affine_map<(d0) -> (696, d0 * 110 + 110)>(%[[IV0]])
// CHECK-NEXT: "use"(%[[IV0]], %[[IV1]])
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: return