// RUN: mlir-opt %s -split-input-file -affine-data-copy-generate="generate-dma=false fast-mem-space=0 skip-non-unit-stride-loops" | FileCheck %s
// Small buffer size to trigger fine copies.
// RUN: mlir-opt %s -split-input-file -affine-data-copy-generate="generate-dma=false fast-mem-space=0 fast-mem-capacity=1" | FileCheck --check-prefix=CHECK-SMALL %s
// Test affine data copy with a memref filter. We use a test pass that invokes
// affine data copy utility on the input loop nest.
// '-test-affine-data-copy-memref-filter' passes the first memref found in an
// affine.load op in the innermost loop as a filter.
// RUN: mlir-opt %s -split-input-file -test-affine-data-copy='memref-filter' | FileCheck %s --check-prefix=FILTER
// RUN: mlir-opt %s -split-input-file -test-affine-data-copy='for-memref-region' | FileCheck %s --check-prefix=MEMREF_REGION
// -copy-skip-non-stride-loops forces the copies to be placed right inside the
// tile space loops, avoiding the sensitivity of copy placement depth to memory
// footprint -- so that one could write a definite test case and not have to
// update it each time something related to the cost functions change.
#id = affine_map<(d0) -> (d0)>
#ub = affine_map<(d0) -> (d0 + 128)>
// Map used to index the buffer while computing.
// CHECK-DAG: [[$MAP_IDENTITY:map[0-9a-zA-Z_]*]] = affine_map<(d0) -> (d0)>
// CHECK-DAG: [[$MAP_PLUS_128:map[0-9a-zA-Z_]*]] = affine_map<(d0) -> (d0 + 128)>
// CHECK-LABEL: func @matmul
// FILTER-LABEL: func @matmul
func.func @matmul(%A: memref<4096x4096xf32>, %B: memref<4096x4096xf32>, %C: memref<4096x4096xf32>) -> memref<4096x4096xf32> {
affine.for %i = 0 to 4096 step 128 {
affine.for %j = 0 to 4096 step 128 {
affine.for %k = 0 to 4096 step 128 {
affine.for %ii = #id(%i) to #ub(%i) {
affine.for %jj = #id(%j) to #ub(%j) {
affine.for %kk = #id(%k) to #ub(%k) {
%5 = affine.load %A[%ii, %kk] : memref<4096x4096xf32>
%6 = affine.load %B[%kk, %jj] : memref<4096x4096xf32>
%7 = affine.load %C[%ii, %jj] : memref<4096x4096xf32>
%8 = arith.mulf %5, %6 : f32
%9 = arith.addf %7, %8 : f32
affine.store %9, %C[%ii, %jj] : memref<4096x4096xf32>
}
}
}
}
}
}
return %C : memref<4096x4096xf32>
}
// Buffers of size 128x128 get created here for all three matrices.
// CHECK: affine.for %[[I:.*]] = 0 to 4096 step 128 {
// CHECK: affine.for %[[J:.*]] = 0 to 4096 step 128 {
// CHECK: [[BUFC:%[0-9a-zA-Z_]+]] = memref.alloc() : memref<128x128xf32>
// The result matrix's copy gets hoisted out.
// Result matrix copy-in.
// CHECK: affine.for %[[II:.*]] = #[[$MAP_IDENTITY]](%{{.*}}) to #[[$MAP_PLUS_128]](%{{.*}}) {
// CHECK: affine.for %[[JJ:.*]] = #[[$MAP_IDENTITY]](%{{.*}}) to #[[$MAP_PLUS_128]](%{{.*}}) {
// CHECK: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<4096x4096xf32>
// CHECK: affine.store %{{.*}}, [[BUFC]][%[[II]] - %[[I]], %[[JJ]] - %[[J]]] : memref<128x128xf32>
// CHECK: }
// CHECK: }
// LHS matrix copy-in.
// CHECK: affine.for %[[K:.*]] = 0 to 4096 step 128 {
// CHECK: [[BUFA:%[0-9a-zA-Z_]+]] = memref.alloc() : memref<128x128xf32>
// CHECK: affine.for %[[II:.*]] = #[[$MAP_IDENTITY]](%{{.*}}) to #[[$MAP_PLUS_128]](%{{.*}}) {
// CHECK: affine.for %[[KK:.*]] = #[[$MAP_IDENTITY]](%{{.*}}) to #[[$MAP_PLUS_128]](%{{.*}}) {
// CHECK: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<4096x4096xf32>
// CHECK: affine.store %{{.*}}, [[BUFA]][%[[II]] - %[[I]], %[[KK]] - %[[K]]] : memref<128x128xf32>
// CHECK: }
// CHECK: }
// RHS matrix copy-in.
// CHECK: [[BUFB:%[0-9a-zA-Z_]+]] = memref.alloc() : memref<128x128xf32>
// CHECK: affine.for %[[KK:.*]] = #[[$MAP_IDENTITY]](%{{.*}}) to #[[$MAP_PLUS_128]](%{{.*}}) {
// CHECK: affine.for %[[JJ:.*]] = #[[$MAP_IDENTITY]](%{{.*}}) to #[[$MAP_PLUS_128]](%{{.*}}) {
// CHECK: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<4096x4096xf32>
// CHECK: affine.store %{{.*}}, [[BUFB]][%[[KK]] - %[[K]], %[[JJ]] - %[[J]]] : memref<128x128xf32>
// CHECK: }
// CHECK: }
// Computation on the fast buffers.
// CHECK: affine.for %{{.*}} = #[[$MAP_IDENTITY]](%{{.*}}) to #[[$MAP_PLUS_128]](%{{.*}}) {
// CHECK: affine.for %{{.*}} = #[[$MAP_IDENTITY]](%{{.*}}) to #[[$MAP_PLUS_128]](%{{.*}}) {
// CHECK: affine.for %{{.*}} = #[[$MAP_IDENTITY]](%{{.*}}) to #[[$MAP_PLUS_128]](%{{.*}}) {
// CHECK: affine.load [[BUFA]][-%{{.*}} + %{{.*}}, -%{{.*}} + %{{.*}}] : memref<128x128xf32>
// CHECK: affine.load [[BUFB]][-%{{.*}} + %{{.*}}, -%{{.*}} + %{{.*}}] : memref<128x128xf32>
// CHECK: affine.load [[BUFC]][-%{{.*}} + %{{.*}}, -%{{.*}} + %{{.*}}] : memref<128x128xf32>
// CHECK: arith.mulf %{{.*}}, %{{.*}} : f32
// CHECK: arith.addf %{{.*}}, %{{.*}} : f32
// CHECK: affine.store %{{.*}}, [[BUFC]][-%{{.*}} + %{{.*}}, -%{{.*}} + %{{.*}}] : memref<128x128xf32>
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK: memref.dealloc [[BUFB]] : memref<128x128xf32>
// CHECK: memref.dealloc [[BUFA]] : memref<128x128xf32>
// CHECK: }
// Result matrix copy out.
// CHECK: affine.for %{{.*}} = #[[$MAP_IDENTITY]](%{{.*}}) to #[[$MAP_PLUS_128]](%{{.*}}) {
// CHECK: affine.for %{{.*}} = #[[$MAP_IDENTITY]](%{{.*}}) to #[[$MAP_PLUS_128]](%{{.*}}) {
// CHECK: affine.load [[BUFC]][%{{.*}} - %{{.*}}, %{{.*}} - %{{.*}}] : memref<128x128xf32>
// CHECK: store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<4096x4096xf32>
// CHECK: }
// CHECK: }
// CHECK: memref.dealloc [[BUFC]] : memref<128x128xf32>
// CHECK: }
// CHECK: }
// Check that only one memref is copied when memref filter is used.
// FILTER: affine.for %{{.*}} = 0 to 4096 step 128 {
// FILTER: memref.alloc() : memref<128x4096xf32>
// FILTER-NOT: memref.alloc()
// FILTER: affine.for
// FILTER: affine.for %{{.*}} = 0 to 4096 {
// FILTER: affine.for %{{.*}} = 0 to 4096 step 128 {
// FILTER-NEXT: affine.for %{{.*}} = 0 to 4096 step 128 {
// FILTER-NEXT: affine.for %{{.*}} = #map{{.*}}(%{{.*}}) to #map{{.*}}(%{{.*}}) {
// FILTER-NEXT: affine.for %{{.*}} = #map{{.*}}(%{{.*}}) to #map{{.*}}(%{{.*}}) {
// FILTER-NEXT: affine.for %{{.*}} = #map{{.*}}(%{{.*}}) to #map{{.*}}(%{{.*}}) {
// FILTER: memref.dealloc %{{.*}} : memref<128x4096xf32>
// FILTER-NOT: memref.dealloc %{{.*}} : memref<128x4096xf32>
// -----
//
// This test case will lead to single element buffers. These are eventually
// expected to be turned into registers via alloca and mem2reg.
//
// CHECK-SMALL-LABEL: func @single_elt_buffers
// FILTER-LABEL: func @single_elt_buffers
// MEMREF_REGION-LABEL: func @single_elt_buffers
func.func @single_elt_buffers(%arg0: memref<1024x1024xf32>, %arg1: memref<1024x1024xf32>, %arg2: memref<1024x1024xf32>) -> memref<1024x1024xf32> {
affine.for %i = 0 to 1024 {
affine.for %j = 0 to 1024 {
affine.for %k = 0 to 1024 {
%6 = affine.load %arg1[%k, %j] : memref<1024x1024xf32>
%7 = affine.load %arg2[%i, %j] : memref<1024x1024xf32>
%9 = arith.addf %6, %7 : f32
affine.store %9, %arg2[%i, %j] : memref<1024x1024xf32>
}
}
}
return %arg2 : memref<1024x1024xf32>
}
// CHECK-SMALL: affine.for %arg{{.*}} = 0 to 1024 {
// CHECK-SMALL: affine.for %arg{{.*}} = 0 to 1024 {
// CHECK-SMALL: memref.alloc() : memref<1x1xf32>
// CHECK-SMALL: affine.load %arg{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32>
// CHECK-SMALL: affine.store %{{.*}}, %{{.*}}[0, 0] : memref<1x1xf32>
// CHECK-SMALL: affine.for %arg{{.*}} = 0 to 1024 {
// CHECK-SMALL: memref.alloc() : memref<1x1xf32>
// CHECK-SMALL: affine.load %arg{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32>
// CHECK-SMALL: affine.store %{{.*}}, %{{.*}}[0, 0] : memref<1x1xf32>
// CHECK-SMALL: affine.load %{{.*}}[0, 0] : memref<1x1xf32>
// CHECK-SMALL: affine.load %{{.*}}[0, 0] : memref<1x1xf32>
// CHECK-SMALL: arith.addf %{{.*}}, %{{.*}} : f32
// CHECK-SMALL: affine.store %{{.*}}, %{{.*}}[0, 0] : memref<1x1xf32>
// CHECK-SMALL: memref.dealloc %{{.*}} : memref<1x1xf32>
// CHECK-SMALL: }
// CHECK-SMALL: affine.load %{{.*}}[0, 0] : memref<1x1xf32>
// CHECK-SMALL: affine.store %{{.*}}, %arg{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32>
// CHECK-SMALL: memref.dealloc %{{.*}} : memref<1x1xf32>
// CHECK-SMALL: }
// CHECK-SMALL: }
// CHECK-SMALL: return
// Check that only one memref is copied when memref filter is used.
// FILTER: memref.alloc() : memref<1024x1024xf32>
// FILTER-NOT: memref.alloc()
// FILTER: affine.for %{{.*}} = 0 to 1024 {
// FILTER: affine.for %{{.*}} = 0 to 1024 {
// FILTER: affine.for %{{.*}} = 0 to 1024 {
// FILTER-NEXT: affine.for %{{.*}} = 0 to 1024 {
// FILTER-NEXT: affine.for %{{.*}} = 0 to 1024 {
// FILTER: memref.dealloc %{{.*}} : memref<1024x1024xf32>
// FILTER-NOT: memref.dealloc
// FILTER: return
// CHeck that only one memref is copied, because for-memref-region is enabled
// (and the first ever encountered load is analyzed).
// MEMREF_REGION: memref.alloc() : memref<1024x1024xf32>
// MEMREF_REGION-NOT: memref.alloc()
// MEMREF_REGION: affine.for %{{.*}} = 0 to 1024 {
// MEMREF_REGION: affine.for %{{.*}} = 0 to 1024 {
// MEMREF_REGION: }
// MEMREF_REGION: }
// MEMREF_REGION-NEXT: affine.for %{{.*}} = 0 to 1024 {
// MEMREF_REGION-NEXT: affine.for %{{.*}} = 0 to 1024 {
// MEMREF_REGION-NEXT: affine.for %{{.*}} = 0 to 1024 {
// MEMREF_REGION: memref.dealloc %{{.*}} : memref<1024x1024xf32>
// MEMREF_REGION-NOT: memref.dealloc
// MEMREF_REGION-NEXT: return
// -----
// This pattern typically appears with tiling with tile sizes that don't divide
// the loop trip counts.
#map_ub = affine_map<(d0) -> (4096, d0 + 100)>
// CHECK-DAG: [[$MAP_IDENTITY:map[0-9a-zA-Z_]*]] = affine_map<(d0) -> (d0)>
// CHECK-DAG: [[$MAP_MIN_UB1:map[0-9a-zA-Z_]*]] = affine_map<(d0) -> (d0 + 100, 4096)>
// CHECK-DAG: [[$MAP_MIN_UB2:map[0-9a-zA-Z_]*]] = affine_map<(d0) -> (4096, d0 + 100)>
// CHECK-LABEL: func @min_upper_bound
func.func @min_upper_bound(%A: memref<4096xf32>) -> memref<4096xf32> {
affine.for %i = 0 to 4096 step 100 {
affine.for %ii = affine_map<(d0) -> (d0)>(%i) to min #map_ub(%i) {
%5 = affine.load %A[%ii] : memref<4096xf32>
%6 = arith.mulf %5, %5 : f32
affine.store %6, %A[%ii] : memref<4096xf32>
}
}
return %A : memref<4096xf32>
}
// CHECK: affine.for %[[IV1:.*]] = 0 to 4096 step 100
// CHECK: %[[BUF:.*]] = memref.alloc() : memref<100xf32>
// CHECK-NEXT: affine.for %[[IV2:.*]] = #[[$MAP_IDENTITY]](%[[IV1]]) to min #[[$MAP_MIN_UB1]](%[[IV1]]) {
// CHECK-NEXT: affine.load %{{.*}}[%[[IV2]]] : memref<4096xf32>
// CHECK-NEXT: affine.store %{{.*}}, %[[BUF]][%[[IV2]] - %[[IV1]]] : memref<100xf32>
// CHECK-NEXT: }
// CHECK-NEXT: affine.for %[[IV2:.*]] = #[[$MAP_IDENTITY]](%[[IV1]]) to min #[[$MAP_MIN_UB2]](%[[IV1]]) {
// CHECK-NEXT: affine.load %[[BUF]][-%[[IV1]] + %[[IV2]]] : memref<100xf32>
// CHECK-NEXT: arith.mulf
// CHECK-NEXT: affine.store %{{.*}}, %[[BUF]][-%[[IV1]] + %[[IV2]]] : memref<100xf32>
// CHECK-NEXT: }
// CHECK: affine.for %[[IV2:.*]] = #[[$MAP_IDENTITY]](%[[IV1]]) to min #[[$MAP_MIN_UB1]](%[[IV1]]) {
// CHECK-NEXT: affine.load %[[BUF]][%[[IV2]] - %[[IV1]]] : memref<100xf32>
// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%[[IV2]]] : memref<4096xf32>
// CHECK-NEXT: }
// CHECK-NEXT: memref.dealloc %[[BUF]] : memref<100xf32>
// CHECK-NEXT: }
// -----
// Lower bound is a max; upper bound is a min. This pattern typically appears
// with multi-level tiling when the tile sizes used don't divide loop trip
// counts.
#lb = affine_map<()[s0, s1] -> (s0 * 512, s1 * 6)>
#ub = affine_map<()[s0, s1] -> (s0 * 512 + 512, s1 * 6 + 6)>
// CHECK-DAG: #[[$LB:.*]] = affine_map<()[s0, s1] -> (s0 * 512, s1 * 6)>
// CHECK-DAG: #[[$UB:.*]] = affine_map<()[s0, s1] -> (s0 * 512 + 512, s1 * 6 + 6)>
// CHECK-LABEL: max_lower_bound(%{{.*}}: memref<2048x516xf64>,
// CHECK-SAME: [[i:arg[0-9a-zA-Z_]+]]
// CHECK-SAME: [[j:arg[0-9a-zA-Z_]+]]
func.func @max_lower_bound(%M: memref<2048x516xf64>, %i : index, %j : index) {
affine.for %ii = 0 to 2048 {
affine.for %jj = max #lb()[%i, %j] to min #ub()[%i, %j] {
affine.load %M[%ii, %jj] : memref<2048x516xf64>
}
}
return
}
// CHECK: %[[BUF:.*]] = memref.alloc() : memref<2048x6xf64>
// CHECK-NEXT: affine.for %[[ii:.*]] = 0 to 2048 {
// CHECK-NEXT: affine.for %[[jj:.*]] = max #[[$LB]]()[%[[i]], %[[j]]] to min #[[$UB]]()[%[[i]], %[[j]]] {
// CHECK-NEXT: affine.load %{{.*}}[%[[ii]], %[[jj]]] : memref<2048x516xf64>
// CHECK-NEXT: affine.store %{{.*}}, %[[BUF]][%[[ii]], %[[jj]] - symbol(%[[j]]) * 6] : memref<2048x6xf64>
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: affine.for %[[ii_:.*]] = 0 to 2048 {
// CHECK-NEXT: affine.for %[[jj_:.*]] = max #[[$LB]]()[%{{.*}}, %{{.*}}] to min #[[$UB]]()[%{{.*}}, %{{.*}}] {
// CHECK-NEXT: affine.load %[[BUF]][%[[ii_]], %[[jj_]] - symbol(%[[j]]) * 6] : memref<2048x6xf64>
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: memref.dealloc %[[BUF]] : memref<2048x6xf64>
// -----
// CHECK-LABEL: func @empty_loops
func.func @empty_loops(%arg0: memref<1024x1024xf64>) {
// Empty loops - so no copy generation happens.
affine.for %i = 0 to 0 {
affine.load %arg0[0, %i] : memref<1024x1024xf64>
}
affine.for %i = 0 to -16 {
affine.load %arg0[0, %i] : memref<1024x1024xf64>
}
return
// CHECK-NOT: memref.alloc
// CHECK: return
}
#map16 = affine_map<(d0, d1, d2) -> (d0 * 40 + d1 * 8 + d2 * 2)>
#map17 = affine_map<(d0, d1, d2) -> (d0 * 40 + d1 * 8 + d2 * 2 + 2)>
// CHECK-LABEL: func @affine_parallel
func.func @affine_parallel(%85:memref<2x5x4x2xi64>) {
affine.for %arg0 = 0 to 2 {
affine.parallel (%arg1) = (0) to (5) {
affine.parallel (%arg2) = (0) to (4) {
affine.for %arg3 = #map16(%arg0, %arg1, %arg2) to #map17(%arg0, %arg1, %arg2) {
%105 = affine.load %85[((%arg3 floordiv 2) floordiv 4) floordiv 5, ((%arg3 floordiv 2) floordiv 4) mod 5, (%arg3 floordiv 2) mod 4, %arg3 mod 2] : memref<2x5x4x2xi64>
}
}
}
}
// CHECK: affine.for
// CHECK-NEXT: affine.for %{{.*}} = 0 to 5
// CHECK-NEXT: affine.for %{{.*}} = 0 to 4
// CHECK-NEXT: affine.for %{{.*}} = 0 to 2
// CHECK: affine.for
// CHECK-NEXT: affine.parallel
// CHECK-NEXT: affine.parallel
return
}
// CHECK-LABEL: func @index_elt_type
func.func @index_elt_type(%arg0: memref<1x2x4x8xindex>) {
affine.for %arg1 = 0 to 1 {
affine.for %arg2 = 0 to 2 {
affine.for %arg3 = 0 to 4 {
affine.for %arg4 = 0 to 8 {
affine.store %arg4, %arg0[%arg1, %arg2, %arg3, %arg4] : memref<1x2x4x8xindex>
}
}
}
}
// CHECK: affine.for %{{.*}} = 0 to 1
// CHECK-NEXT: affine.for %{{.*}} = 0 to 2
// CHECK-NEXT: affine.for %{{.*}} = 0 to 4
// CHECK-NEXT: affine.for %{{.*}} = 0 to 8
// CHECK: affine.for %{{.*}} = 0 to 2
// CHECK-NEXT: affine.for %{{.*}} = 0 to 4
// CHECK-NEXT: affine.for %{{.*}} = 0 to 8
return
}