// RUN: mlir-opt %s -affine-super-vectorize="virtual-vector-size=32,256 test-fastest-varying=2,0" | FileCheck %s
// Permutation maps used in vectorization.
// CHECK: #[[map_proj_d0d1d2_d0d2:map[0-9]*]] = affine_map<(d0, d1, d2) -> (d0, d2)>
func.func @vec2d(%A : memref<?x?x?xf32>) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%M = memref.dim %A, %c0 : memref<?x?x?xf32>
%N = memref.dim %A, %c1 : memref<?x?x?xf32>
%P = memref.dim %A, %c2 : memref<?x?x?xf32>
// CHECK: affine.for %{{.*}} = 0 to %{{.*}} step 32
// CHECK: affine.for %{{.*}} = 0 to %{{.*}} {
// CHECK: affine.for %{{.*}} = 0 to %{{.*}} step 256
// CHECK: {{.*}} = vector.transfer_read %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}], %{{.*}} {permutation_map = #[[map_proj_d0d1d2_d0d2]]} : memref<?x?x?xf32>, vector<32x256xf32>
affine.for %i0 = 0 to %M {
affine.for %i1 = 0 to %N {
affine.for %i2 = 0 to %P {
%a2 = affine.load %A[%i0, %i1, %i2] : memref<?x?x?xf32>
}
}
}
// CHECK: for {{.*}} = 0 to %{{.*}} {
// CHECK: for {{.*}} = 0 to %{{.*}} {
// CHECK: for {{.*}} = 0 to %{{.*}} {
// For the case: --test-fastest-varying=2 --test-fastest-varying=0 no
// vectorization happens because of loop nesting order
affine.for %i3 = 0 to %M {
affine.for %i4 = 0 to %N {
affine.for %i5 = 0 to %P {
%a5 = affine.load %A[%i4, %i5, %i3] : memref<?x?x?xf32>
}
}
}
return
}