llvm/mlir/test/Dialect/Affine/loop-fusion-4.mlir

// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(affine-loop-fusion{mode=producer}))' -split-input-file | FileCheck %s --check-prefix=PRODUCER-CONSUMER
// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(affine-loop-fusion{fusion-maximal mode=sibling}))' -split-input-file | FileCheck %s --check-prefix=SIBLING-MAXIMAL

// Part I of fusion tests in  mlir/test/Transforms/loop-fusion.mlir.
// Part II of fusion tests in mlir/test/Transforms/loop-fusion-2.mlir
// Part III of fusion tests in mlir/test/Transforms/loop-fusion-3.mlir

// Expects fusion of producer into consumer at depth 4 and subsequent removal of
// source loop.
// PRODUCER-CONSUMER-LABEL: func @unflatten4d
func.func @unflatten4d(%arg1: memref<7x8x9x10xf32>) {
  %m = memref.alloc() : memref<5040xf32>
  %cf7 = arith.constant 7.0 : f32

  affine.for %i0 = 0 to 7 {
    affine.for %i1 = 0 to 8 {
      affine.for %i2 = 0 to 9 {
        affine.for %i3 = 0 to 10 {
          affine.store %cf7, %m[720 * %i0 + 90 * %i1 + 10 * %i2 + %i3] : memref<5040xf32>
        }
      }
    }
  }
  affine.for %i0 = 0 to 7 {
    affine.for %i1 = 0 to 8 {
      affine.for %i2 = 0 to 9 {
        affine.for %i3 = 0 to 10 {
          %v0 = affine.load %m[720 * %i0 + 90 * %i1 + 10 * %i2 + %i3] : memref<5040xf32>
          affine.store %v0, %arg1[%i0, %i1, %i2, %i3] : memref<7x8x9x10xf32>
        }
      }
    }
  }
  return
}

// PRODUCER-CONSUMER:        affine.for
// PRODUCER-CONSUMER-NEXT:     affine.for
// PRODUCER-CONSUMER-NEXT:       affine.for
// PRODUCER-CONSUMER-NEXT:         affine.for
// PRODUCER-CONSUMER-NOT:    affine.for
// PRODUCER-CONSUMER: return

// -----

// Expects fusion of producer into consumer at depth 2 and subsequent removal of
// source loop.
// PRODUCER-CONSUMER-LABEL: func @unflatten2d_with_transpose
func.func @unflatten2d_with_transpose(%arg1: memref<8x7xf32>) {
  %m = memref.alloc() : memref<56xf32>
  %cf7 = arith.constant 7.0 : f32

  affine.for %i0 = 0 to 7 {
    affine.for %i1 = 0 to 8 {
      affine.store %cf7, %m[8 * %i0 + %i1] : memref<56xf32>
    }
  }
  affine.for %i0 = 0 to 8 {
    affine.for %i1 = 0 to 7 {
      %v0 = affine.load %m[%i0 + 8 * %i1] : memref<56xf32>
      affine.store %v0, %arg1[%i0, %i1] : memref<8x7xf32>
    }
  }
  return
}

// PRODUCER-CONSUMER:        affine.for
// PRODUCER-CONSUMER-NEXT:     affine.for
// PRODUCER-CONSUMER-NOT:    affine.for
// PRODUCER-CONSUMER: return

// -----

// Expects fusion of producer into consumer at depth 1 and source loop to not
// be removed due to difference in loop steps.
// PRODUCER-CONSUMER-LABEL: func @check_src_dst_step
func.func @check_src_dst_step(%m : memref<100xf32>,
                         %src: memref<100xf32>,
                         %out: memref<100xf32>) {
  affine.for %i0 = 0 to 100 {
    %r1 = affine.load %src[%i0]: memref<100xf32>
    affine.store %r1, %m[%i0] : memref<100xf32>
  }
  affine.for %i2 = 0 to 100 step 2 {
    %r2 = affine.load %m[%i2] : memref<100xf32>
    affine.store %r2, %out[%i2] : memref<100xf32>
  }
  return
}

// Check if the fusion did take place as well as that the source loop was
// not removed. To check if fusion took place, the read instruction from the
// original source loop is checked to be in the fused loop.
//
// PRODUCER-CONSUMER:        affine.for %[[idx_0:.*]] = 0 to 100 {
// PRODUCER-CONSUMER-NEXT:     %[[result_0:.*]] = affine.load %[[arr1:.*]][%[[idx_0]]] : memref<100xf32>
// PRODUCER-CONSUMER-NEXT:     affine.store %[[result_0]], %{{.*}}[%[[idx_0]]] : memref<100xf32>
// PRODUCER-CONSUMER-NEXT:   }
// PRODUCER-CONSUMER:        affine.for %[[idx_1:.*]] = 0 to 100 step 2 {
// PRODUCER-CONSUMER:          affine.load %[[arr1]][%[[idx_1]]] : memref<100xf32>
// PRODUCER-CONSUMER:        }
// PRODUCER-CONSUMER:        return

// -----

// SIBLING-MAXIMAL-LABEL:   func @reduce_add_non_maximal_f32_f32(
func.func @reduce_add_non_maximal_f32_f32(%arg0: memref<64x64xf32, 1>, %arg1 : memref<1x64xf32, 1>, %arg2 : memref<1x64xf32, 1>) {
    %cst_0 = arith.constant 0.000000e+00 : f32
    %cst_1 = arith.constant 1.000000e+00 : f32
    affine.for %arg3 = 0 to 1 {
      affine.for %arg4 = 0 to 64 {
        %accum = affine.for %arg5 = 0 to 64 iter_args (%prevAccum = %cst_0) -> f32 {
          %4 = affine.load %arg0[%arg5, %arg4] : memref<64x64xf32, 1>
          %5 = arith.addf %prevAccum, %4 : f32
          affine.yield %5 : f32
        }
        %accum_dbl = arith.addf %accum, %accum : f32
        affine.store %accum_dbl, %arg1[%arg3, %arg4] : memref<1x64xf32, 1>
      }
    }
    affine.for %arg3 = 0 to 1 {
      affine.for %arg4 = 0 to 64 {
        // Following loop  trip count does not match the corresponding source trip count.
        %accum = affine.for %arg5 = 0 to 32 iter_args (%prevAccum = %cst_1) -> f32 {
          %4 = affine.load %arg0[%arg5, %arg4] : memref<64x64xf32, 1>
          %5 = arith.mulf %prevAccum, %4 : f32
          affine.yield %5 : f32
        }
        %accum_sqr = arith.mulf %accum, %accum : f32
        affine.store %accum_sqr, %arg2[%arg3, %arg4] : memref<1x64xf32, 1>
      }
    }
    return
}
// Test checks the loop structure is preserved after sibling fusion
// since the destination loop and source loop trip counts do not
// match.
// SIBLING-MAXIMAL:        %[[cst_0:.*]] = arith.constant 0.000000e+00 : f32
// SIBLING-MAXIMAL-NEXT:        %[[cst_1:.*]] = arith.constant 1.000000e+00 : f32
// SIBLING-MAXIMAL-NEXT:           affine.for %[[idx_0:.*]]= 0 to 1 {
// SIBLING-MAXIMAL-NEXT:             affine.for %[[idx_1:.*]] = 0 to 64 {
// SIBLING-MAXIMAL-NEXT:               %[[result_1:.*]] = affine.for %[[idx_2:.*]] = 0 to 32 iter_args(%[[iter_0:.*]] = %[[cst_1]]) -> (f32) {
// SIBLING-MAXIMAL-NEXT:                 %[[result_0:.*]] = affine.for %[[idx_3:.*]] = 0 to 64 iter_args(%[[iter_1:.*]] = %[[cst_0]]) -> (f32) {

// -----

// SIBLING-MAXIMAL-LABEL: func @sibling_load_only
func.func @sibling_load_only(%arg0: memref<10xf32>) {
  affine.for %arg1 = 0 to 10 {
    %0 = affine.load %arg0[%arg1] : memref<10xf32>
  }
  affine.for %arg1 = 0 to 10 {
    %0 = affine.load %arg0[%arg1] : memref<10xf32>
  }
  // SIBLING-MAXIMAL-NEXT: affine.for
  // SIBLING-MAXIMAL-NEXT:   affine.load
  // SIBLING-MAXIMAL-NEXT:   affine.load
  return
}

// -----

// PRODUCER-CONSUMER-LABEL: func @fusion_for_multiple_blocks() {
func.func @fusion_for_multiple_blocks() {
^bb0:
  %m = memref.alloc() : memref<10xf32>
  %cf7 = arith.constant 7.0 : f32

  affine.for %i0 = 0 to 10 {
    affine.store %cf7, %m[%i0] : memref<10xf32>
  }
  affine.for %i1 = 0 to 10 {
    %v0 = affine.load %m[%i1] : memref<10xf32>
  }
  // PRODUCER-CONSUMER:      affine.for %{{.*}} = 0 to 10 {
  // PRODUCER-CONSUMER-NEXT:   affine.store %{{.*}}, %{{.*}}[0] : memref<1xf32>
  // PRODUCER-CONSUMER-NEXT:   affine.load %{{.*}}[0] : memref<1xf32>
  // PRODUCER-CONSUMER-NEXT: }
  cf.br ^bb1
^bb1:
  affine.for %i0 = 0 to 10 {
    affine.store %cf7, %m[%i0] : memref<10xf32>
  }
  affine.for %i1 = 0 to 10 {
    %v0 = affine.load %m[%i1] : memref<10xf32>
  }
  // PRODUCER-CONSUMER:      affine.for %{{.*}} = 0 to 10 {
  // PRODUCER-CONSUMER-NEXT:   affine.store %{{.*}}, %{{.*}}[0] : memref<1xf32>
  // PRODUCER-CONSUMER-NEXT:   affine.load %{{.*}}[0] : memref<1xf32>
  // PRODUCER-CONSUMER-NEXT: }
  return
}

// -----

// PRODUCER-CONSUMER-LABEL: @fuse_higher_dim_nest_into_lower_dim_nest
func.func @fuse_higher_dim_nest_into_lower_dim_nest() {
  %A = memref.alloc() : memref<8x12x128x64xf32>
  %B = memref.alloc() : memref<8x128x12x64xf32>
  affine.for %arg205 = 0 to 8 {
    affine.for %arg206 = 0 to 128 {
      affine.for %arg207 = 0 to 12 {
        affine.for %arg208 = 0 to 64 {
          %a = affine.load %A[%arg205, %arg207, %arg206, %arg208] : memref<8x12x128x64xf32>
          affine.store %a, %B[%arg205, %arg206, %arg207, %arg208] : memref<8x128x12x64xf32>
        }
      }
    }
  }
  %C = memref.alloc() : memref<8x128x768xf16>
  affine.for %arg205 = 0 to 8 {
    affine.for %arg206 = 0 to 128 {
      affine.for %arg207 = 0 to 768 {
        %b = affine.load %B[%arg205, %arg206, %arg207 floordiv 64, %arg207 mod 64] : memref<8x128x12x64xf32>
        %c = arith.truncf %b : f32 to f16
        affine.store %c, %C[%arg205, %arg206, %arg207] : memref<8x128x768xf16>
      }
    }
  }

  // Check that fusion happens into the innermost loop of the consumer.
  // PRODUCER-CONSUMER:      affine.for
  // PRODUCER-CONSUMER-NEXT:   affine.for %{{.*}} = 0 to 128
  // PRODUCER-CONSUMER-NEXT:     affine.for %{{.*}} = 0 to 768
  // PRODUCER-CONSUMER-NOT:  affine.for
  // PRODUCER-CONSUMER:      return
  return
}