// RUN: mlir-opt --resolve-ranked-shaped-type-result-dims --split-input-file %s | FileCheck %s
// CHECK-LABEL: func @dim_out_of_bounds(
// CHECK-NEXT: arith.constant
// CHECK-NEXT: memref.dim
// CHECK-NEXT: return
func.func @dim_out_of_bounds(%m : memref<7x8xf32>) -> index {
%idx = arith.constant 7 : index
%0 = memref.dim %m, %idx : memref<7x8xf32>
return %0 : index
}
// -----
// CHECK-LABEL: func @dim_out_of_bounds_2(
// CHECK-NEXT: arith.constant
// CHECK-NEXT: arith.constant
// CHECK-NEXT: bufferization.alloc_tensor
// CHECK-NEXT: tensor.dim
// CHECK-NEXT: return
func.func @dim_out_of_bounds_2(%idx1 : index, %idx2 : index) -> index {
%idx = arith.constant 7 : index
%sz = arith.constant 5 : index
%alloc = bufferization.alloc_tensor(%sz, %sz) : tensor<?x?xf32>
%0 = tensor.dim %alloc, %idx : tensor<?x?xf32>
return %0 : index
}
// -----
// CHECK-LABEL: func.func @dynamic_dim_of_transpose_op(
// CHECK-SAME: %[[arg:.*]]: tensor<1x2x?x8xi8>) -> index {
// CHECK-NEXT: %[[c2:.*]] = arith.constant 2
// CHECK-NEXT: tensor.dim %[[arg]], %[[c2]]
// CHECK-NEXT: return
func.func @dynamic_dim_of_transpose_op(%arg0: tensor<1x2x?x8xi8>) -> index {
%0 = "tosa.const"() <{value = dense<[0, 3, 1, 2]> : tensor<4xi32>}> : () -> tensor<4xi32>
%1 = tosa.transpose %arg0, %0 : (tensor<1x2x?x8xi8>, tensor<4xi32>) -> tensor<1x8x2x?xi8>
%c3 = arith.constant 3 : index
%dim = tensor.dim %1, %c3 : tensor<1x8x2x?xi8>
return %dim : index
}
// -----
// CHECK-LABEL: func.func @static_dim_of_transpose_op(
// CHECK: arith.constant 100 : index
// CHECK: return
func.func @static_dim_of_transpose_op(%arg0: tensor<1x100x?x8xi8>) -> index {
%0 = "tosa.const"() <{value = dense<[0, 3, 1, 2]> : tensor<4xi32>}> : () -> tensor<4xi32>
%1 = tosa.transpose %arg0, %0 : (tensor<1x100x?x8xi8>, tensor<4xi32>) -> tensor<1x8x100x?xi8>
%c2 = arith.constant 2 : index
%dim = tensor.dim %1, %c2 : tensor<1x8x100x?xi8>
return %dim : index
}
// -----
// Test case: Folding of memref.dim(memref.expand_shape)
// CHECK-LABEL: func @dim_of_memref_expand_shape(
// CHECK-SAME: %[[MEM:[0-9a-z]+]]: memref<?x8xi32>
// CHECK-NEXT: %[[IDX:.*]] = arith.constant 0
// CHECK-NEXT: %[[DIM:.*]] = memref.dim %[[MEM]], %[[IDX]] : memref<?x8xi32>
// CHECK: return %[[DIM]] : index
func.func @dim_of_memref_expand_shape(%arg0: memref<?x8xi32>)
-> index {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%s = memref.dim %arg0, %c0 : memref<?x8xi32>
%0 = memref.expand_shape %arg0 [[0, 1], [2, 3]] output_shape [1, %s, 2, 4]: memref<?x8xi32> into memref<1x?x2x4xi32>
%1 = memref.dim %0, %c1 : memref<1x?x2x4xi32>
return %1 : index
}
// -----
// CHECK-LABEL: @iter_to_init_arg_loop_like
// CHECK-SAME: (%[[ARG0:.*]]: tensor<?x?xf32>, %[[ARG1:.*]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
// CHECK: %[[RESULT:.*]] = scf.forall
// CHECK-SAME: shared_outs(%[[OUTS:.*]] = %[[ARG1]]) -> (tensor<?x?xf32>) {
// CHECK-NEXT: %{{.*}} = tensor.dim %[[ARG1]], %{{.*}} : tensor<?x?xf32>
func.func @iter_to_init_arg_loop_like(
%arg0 : tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%dim0 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
%result = scf.forall (%i) = (%c0) to (%dim0)
step (%c1) shared_outs(%o = %arg1) -> (tensor<?x?xf32>) {
%dim1 = tensor.dim %o, %c1 : tensor<?x?xf32>
%slice = tensor.extract_slice %arg1[%i, 0] [1, %dim1] [1, 1]
: tensor<?x?xf32> to tensor<1x?xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %slice into %o[%i, 0] [1, %dim1] [1, 1]
: tensor<1x?xf32> into tensor<?x?xf32>
}
}
return %result : tensor<?x?xf32>
}