// RUN: mlir-opt %s -transform-interpreter -split-input-file --verify-diagnostics | FileCheck %s
// Check that we produce async copies from the vector.transfer_xxx operations.
builtin.module {
// CHECK-LABEL: @copies_to_asyncs
func.func @copies_to_asyncs(%a: memref<1024x1024xf32>) {
%0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
%c0 = arith.constant 0 : index
%c4 = arith.constant 4 : index
%cst_0 = arith.constant 0.000000e+00 : f32
// Make sure we emit the bypassL1.
// CHECK: %[[CP0:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 4 {bypassL1} :
%1 = vector.transfer_read %a[%c0, %c0], %cst_0 {in_bounds = [true]} : memref<1024x1024xf32>, vector<4xf32>
vector.transfer_write %1, %0[%c0, %c0, %c0] {in_bounds = [true]} : vector<4xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>
// CHECK-NOT: nvgpu.device_async_create_group
// CHECK: %[[CP1:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 1
%2 = vector.transfer_read %a[%c0, %c4], %cst_0 {in_bounds = [true]} : memref<1024x1024xf32>, vector<1xf32>
vector.transfer_write %2, %0[%c0, %c4, %c0] {in_bounds = [true]} : vector<1xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>
// CHECK: %[[G:.*]] = nvgpu.device_async_create_group %[[CP0]], %[[CP1]]
// CHECK: nvgpu.device_async_wait %[[G]]
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
%top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
transform.nvgpu.create_async_groups %top_level_func {bypass_l1} : (!transform.any_op) -> (!transform.any_op)
transform.yield
}
}
}
// -----
// Check that we properly take `bypass_l1 = false` into account.
// I.e., we shouldn't be generating bypassL1 attributes.
builtin.module {
// CHECK-LABEL: @copies_to_asyncs_no_mma
func.func @copies_to_asyncs_no_mma(%a: memref<1024x1024xf32>) {
%0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
%c0 = arith.constant 0 : index
%c4 = arith.constant 4 : index
%cst_0 = arith.constant 0.000000e+00 : f32
// Make sure we don't emit the bypassL1.
// CHECK: %[[CP0:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 4 :
%1 = vector.transfer_read %a[%c0, %c0], %cst_0 {in_bounds = [true]} : memref<1024x1024xf32>, vector<4xf32>
vector.transfer_write %1, %0[%c0, %c0, %c0] {in_bounds = [true]} : vector<4xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>
// CHECK-NOT: nvgpu.device_async_create_group
// CHECK: %[[CP1:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 1 :
%2 = vector.transfer_read %a[%c0, %c4], %cst_0 {in_bounds = [true]} : memref<1024x1024xf32>, vector<1xf32>
vector.transfer_write %2, %0[%c0, %c4, %c0] {in_bounds = [true]} : vector<1xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>
// CHECK: %[[G:.*]] = nvgpu.device_async_create_group %[[CP0]], %[[CP1]]
// CHECK: nvgpu.device_async_wait %[[G]]
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
%top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
transform.nvgpu.create_async_groups %top_level_func : (!transform.any_op) -> (!transform.any_op)
transform.yield
}
}
}
// -----
// Check that pattern works with vector.load/vector.store.
builtin.module {
// CHECK-LABEL: @copies_to_asyncs_load_store
func.func @copies_to_asyncs_load_store(%a: memref<1024x1024xf32>) {
%0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
%c0 = arith.constant 0 : index
%c4 = arith.constant 4 : index
%cst_0 = arith.constant 0.000000e+00 : f32
// CHECK: %[[CP0:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 4 :
%1 = vector.load %a[%c0, %c0] : memref<1024x1024xf32>, vector<4xf32>
vector.store %1, %0[%c0, %c0, %c0] : memref<4x32x16xf32, #gpu.address_space<workgroup>>, vector<4xf32>
// CHECK-NOT: nvgpu.device_async_create_group
// CHECK: %[[CP1:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 1 :
%2 = vector.load %a[%c0, %c4] : memref<1024x1024xf32>, vector<1xf32>
vector.store %2, %0[%c0, %c4, %c0] : memref<4x32x16xf32, #gpu.address_space<workgroup>>, vector<1xf32>
// CHECK: %[[G:.*]] = nvgpu.device_async_create_group %[[CP0]], %[[CP1]]
// CHECK: nvgpu.device_async_wait %[[G]]
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
%top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
transform.nvgpu.create_async_groups %top_level_func : (!transform.any_op) -> (!transform.any_op)
transform.yield
}
}
}
// -----
// Check that pattern skips unaligned and unsupported sizes.
builtin.module {
// CHECK-LABEL: @copies_to_asyncs_load_store
func.func @copies_to_asyncs_load_store(%a: memref<1024x1024xf32>, %b: memref<1024x1024xf16>) {
%alloc = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
%alloc_1 = memref.alloc() : memref<4x32x16xf16, #gpu.address_space<workgroup>>
%c0 = arith.constant 0 : index
%c4 = arith.constant 4 : index
%cst_0 = arith.constant 0.000000e+00 : f32
// Requires 1-D vector load
// CHECK-NOT: nvgpu.device_async_copy
// CHECK: vector.load
// CHECK: vector.store
%1 = vector.load %a[%c0, %c4] : memref<1024x1024xf32>, vector<2x2xf32>
vector.store %1, %alloc[%c0, %c4, %c0] : memref<4x32x16xf32, #gpu.address_space<workgroup>>, vector<2x2xf32>
// CHECK-NOT: nvgpu.device_async_create_group
// CHECK-NOT: nvgpu.device_async_copy
// CHECK: vector.load
// CHECK: vector.store
%2 = vector.load %b[%c0, %c4] : memref<1024x1024xf16>, vector<1xf16>
vector.store %2, %alloc_1[%c0, %c4, %c0] : memref<4x32x16xf16, #gpu.address_space<workgroup>>, vector<1xf16>
// CHECK-NOT: nvgpu.device_async_create_group
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
%top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
transform.nvgpu.create_async_groups %top_level_func : (!transform.any_op) -> (!transform.any_op)
transform.yield
}
}
}
// -----
// vector.transfer_read with a mask.
builtin.module {
// CHECK-LABEL: @read_with_mask(
// CHECK-SAME: %{{.*}}: memref<1024x1024xf32>, %[[sz:.*]]: index
func.func @read_with_mask(%a: memref<1024x1024xf32>, %sz: index) {
%0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
%c0 = arith.constant 0 : index
%cst_0 = arith.constant 0.000000e+00 : f32
// CHECK: nvgpu.device_async_copy {{.*}}, {{.*}}, 4, %[[sz]] {bypassL1} :
%mask = vector.create_mask %sz : vector<4xi1>
%1 = vector.transfer_read %a[%c0, %c0], %cst_0, %mask {in_bounds = [true]} : memref<1024x1024xf32>, vector<4xf32>
vector.transfer_write %1, %0[%c0, %c0, %c0] {in_bounds = [true]} : vector<4xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
%top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
transform.nvgpu.create_async_groups %top_level_func {bypass_l1} : (!transform.any_op) -> (!transform.any_op)
transform.yield
}
}
}
// -----
// 2D vector.transfer_read with a mask.
builtin.module {
// CHECK-LABEL: @read_2d_with_mask(
// CHECK-SAME: %[[sz0:.*]]: index, %[[sz1:.*]]: index, %[[a:.*]]: memref<1024x1024xf32>
func.func @read_2d_with_mask(%sz0: index, %sz1: index, %a: memref<1024x1024xf32>) {
// CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[c2:.*]] = arith.constant 2 : index
%0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
%c0 = arith.constant 0 : index
%cst_0 = arith.constant 0.000000e+00 : f32
// CHECK: %[[cmpi0:.*]] = arith.cmpi slt, %[[c0]], %[[sz0]]
// CHECK: %[[s0:.*]] = arith.select %[[cmpi0]], %[[sz1]], %[[c0]]
// CHECK: nvgpu.device_async_copy %[[a]][%[[c0]], %[[c0]]], {{.*}}, 4, %[[s0]] {bypassL1}
// CHECK: %[[cmpi1:.*]] = arith.cmpi slt, %[[c1]], %[[sz0]]
// CHECK: %[[s1:.*]] = arith.select %[[cmpi1]], %[[sz1]], %[[c0]]
// CHECK: nvgpu.device_async_copy %[[a]][%[[c1]], %[[c0]]], {{.*}}, 4, %[[s1]] {bypassL1}
// CHECK: %[[cmpi2:.*]] = arith.cmpi slt, %[[c2]], %[[sz0]]
// CHECK: %[[s2:.*]] = arith.select %[[cmpi2]], %[[sz1]], %[[c0]]
// CHECK: nvgpu.device_async_copy %[[a]][%[[c2]], %[[c0]]], {{.*}}, 4, %[[s2]] {bypassL1}
%mask = vector.create_mask %sz0, %sz1 : vector<3x4xi1>
%1 = vector.transfer_read %a[%c0, %c0], %cst_0, %mask {in_bounds = [true, true]} : memref<1024x1024xf32>, vector<3x4xf32>
vector.transfer_write %1, %0[%c0, %c0, %c0] {in_bounds = [true, true]} : vector<3x4xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
%top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
transform.apply_patterns to %top_level_func {
transform.apply_patterns.vector.transfer_to_scf max_transfer_rank = 1 full_unroll = true
} : !transform.any_op
transform.nvgpu.create_async_groups %top_level_func {bypass_l1} : (!transform.any_op) -> (!transform.any_op)
%top_level_func_2 = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
transform.apply_cse to %top_level_func_2 : !transform.any_op
transform.yield
}
}
}
// -----
// 3D vector.transfer_read with a mask.
builtin.module {
// CHECK-LABEL: @read_3d_with_mask(
// CHECK-SAME: %[[sz0:.*]]: index, %[[sz1:.*]]: index, %[[sz2:.*]]: index, %[[a:.*]]: memref<1024x1024x1024xf32>
func.func @read_3d_with_mask(%sz0: index, %sz1: index, %sz2: index, %a: memref<1024x1024x1024xf32>) {
// CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[c2:.*]] = arith.constant 2 : index
%0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
%c0 = arith.constant 0 : index
%cst_0 = arith.constant 0.000000e+00 : f32
// CHECK: %[[cmpi0:.*]] = arith.cmpi slt, %[[c0]], %[[sz0]]
// CHECK: %[[cmpi1:.*]] = arith.cmpi slt, %[[c0]], %[[sz1]]
// CHECK: %[[cond0:.*]] = arith.andi %[[cmpi1]], %[[cmpi0]]
// CHECK: %[[s0:.*]] = arith.select %[[cond0]], %[[sz2]], %[[c0]]
// CHECK: nvgpu.device_async_copy %[[a]][%[[c0]], %[[c0]], %[[c0]]], {{.*}}, 4, %[[s0]] {bypassL1}
// CHECK: %[[cmpi2:.*]] = arith.cmpi slt, %[[c1]], %[[sz1]]
// CHECK: %[[cond1:.*]] = arith.andi %[[cmpi2]], %[[cmpi0]]
// CHECK: %[[s1:.*]] = arith.select %[[cond1]], %[[sz2]], %[[c0]]
// CHECK: nvgpu.device_async_copy %[[a]][%[[c0]], %[[c1]], %[[c0]]], {{.*}}, 4, %[[s1]] {bypassL1}
// CHECK: %[[cmpi3:.*]] = arith.cmpi slt, %[[c2]], %[[sz1]]
// CHECK: %[[cond2:.*]] = arith.andi %[[cmpi3]], %[[cmpi0]]
// CHECK: %[[s2:.*]] = arith.select %[[cond2]], %[[sz2]], %[[c0]]
// CHECK: nvgpu.device_async_copy %[[a]][%[[c0]], %[[c2]], %[[c0]]], {{.*}}, 4, %[[s2]] {bypassL1}
// CHECK: %[[cmpi4:.*]] = arith.cmpi slt, %[[c1]], %[[sz0]]
// CHECK: %[[cond3:.*]] = arith.andi %[[cmpi1]], %[[cmpi4]]
// CHECK: %[[s3:.*]] = arith.select %[[cond3]], %[[sz2]], %[[c0]]
// CHECK: nvgpu.device_async_copy %[[a]][%[[c1]], %[[c0]], %[[c0]]], {{.*}}, 4, %[[s3]] {bypassL1}
// CHECK: %[[cond4:.*]] = arith.andi %[[cmpi2]], %[[cmpi4]]
// CHECK: %[[s4:.*]] = arith.select %[[cond4]], %[[sz2]], %[[c0]]
// CHECK: nvgpu.device_async_copy %[[a]][%[[c1]], %[[c1]], %[[c0]]], {{.*}}, 4, %[[s4]] {bypassL1}
// CHECK: %[[cond5:.*]] = arith.andi %[[cmpi3]], %[[cmpi4]]
// CHECK: %[[s5:.*]] = arith.select %[[cond5]], %[[sz2]], %[[c0]]
// CHECK: nvgpu.device_async_copy %[[a]][%[[c1]], %[[c2]], %[[c0]]], {{.*}}, 4, %[[s5]] {bypassL1}
%mask = vector.create_mask %sz0, %sz1, %sz2 : vector<2x3x4xi1>
%1 = vector.transfer_read %a[%c0, %c0, %c0], %cst_0, %mask {in_bounds = [true, true, true]} : memref<1024x1024x1024xf32>, vector<2x3x4xf32>
vector.transfer_write %1, %0[%c0, %c0, %c0] {in_bounds = [true, true, true]} : vector<2x3x4xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
%top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
transform.apply_patterns to %top_level_func {
transform.apply_patterns.vector.transfer_to_scf max_transfer_rank = 1 full_unroll = true
} : !transform.any_op
transform.nvgpu.create_async_groups %top_level_func {bypass_l1} : (!transform.any_op) -> (!transform.any_op)
%top_level_func_2 = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
transform.apply_cse to %top_level_func_2 : !transform.any_op
transform.yield
}
}
}