// RUN: mlir-opt %s --transform-interpreter -canonicalize --split-input-file --verify-diagnostics | FileCheck %s
func.func @simple_depth_2_unpeeled(%global: memref<?xf32>, %result: memref<?xf32> ) {
%c0 = arith.constant 0 : index
%c100 = arith.constant 100 : index
%c4 = arith.constant 4 : index
%shared = memref.alloc(%c100) : memref<?xf32, #gpu.address_space<workgroup>>
%c0f = arith.constant 0.0 : f32
// Predication is not currently implemented for transfer_read/write, so this is expected to fail.
// expected-note @below {{couldn't predicate}}
scf.for %i = %c0 to %c100 step %c4 iter_args(%accum = %c0f) -> f32 {
%mem = vector.transfer_read %global[%i], %c0f : memref<?xf32>, vector<4xf32>
vector.transfer_write %mem, %shared[%i] : vector<4xf32>, memref<?xf32, #gpu.address_space<workgroup>>
%0 = arith.addf %accum, %accum : f32
scf.yield %0 : f32
}
return
}
!t = !transform.any_op
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg0: !t {transform.readonly}) {
%loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t
// expected-error @below {{irreversible pipelining failure}}
// expected-note @below {{try setting "peel_epilogue"}}
transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2 } : (!t) -> !t
transform.yield
}
}
// -----
// Loop pipeliner is tested separately, just verify the overall shape of the IR here.
func.func private @body(index, memref<?xf32, #gpu.address_space<workgroup>>)
// CHECK-LABEL: @simple_depth_2_peeled
// CHECK-SAME: %[[ARG:.+]]: memref
func.func @simple_depth_2_peeled(%global: memref<?xf32>) {
%c0 = arith.constant 0 : index
%c100 = arith.constant 100 : index
%c200 = arith.constant 200 : index
%c4 = arith.constant 4 : index
// CHECK: memref.alloc
%shared = memref.alloc(%c200) : memref<?xf32, #gpu.address_space<workgroup>>
%c0f = arith.constant 0.0 : f32
// CHECK: %[[LOADED1:.+]] = vector.transfer_read %[[ARG]]
// CHECK: %[[LOADED2:.+]] = vector.transfer_read %[[ARG]]
// CHECK: %[[LOOP:.+]]:2 = scf.for {{.*}} iter_args(%[[IA1:.+]] = %[[LOADED1]], %[[IA2:.+]] = %[[LOADED2]])
// CHECK: vector.transfer_write %[[IA1]]
// CHECK: func.call @body
// CHECK: %[[LOCAL_LOADED:.+]] = vector.transfer_read %[[ARG]]
// CHECK: scf.yield %[[IA2]], %[[LOCAL_LOADED]]
scf.for %i = %c0 to %c100 step %c4 {
%mem = vector.transfer_read %global[%i], %c0f : memref<?xf32>, vector<4xf32>
vector.transfer_write %mem, %shared[%i] : vector<4xf32>, memref<?xf32, #gpu.address_space<workgroup>>
func.call @body(%i, %shared) : (index, memref<?xf32, #gpu.address_space<workgroup>>) -> ()
}
// CHECK: vector.transfer_write %[[LOOP]]#0
// CHECK: call @body
// CHECK: vector.transfer_write %[[LOOP]]#1
// CHECK: call @body
return
}
!t = !transform.any_op
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg0: !t {transform.readonly}) {
%loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t
transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2, peel_epilogue } : (!t) -> !t
transform.yield
}
}
// -----
// CHECK-LABEL: @async_depth_2_predicated
// CHECK-SAME: %[[GLOBAL:.+]]: memref
func.func @async_depth_2_predicated(%global: memref<?xf32>, %alloc_size: index) {
%c0 = arith.constant 0 : index
%c98 = arith.constant 98 : index
%c100 = arith.constant 100 : index
// CHECK-DAG: %[[C4:.+]] = arith.constant 4
// CHECK-DAG: %[[C90:.+]] = arith.constant 90
// CHECK-DAG: %[[C96:.+]] = arith.constant 96
// CHECK-DAG: %[[C8:.+]] = arith.constant 8
// CHECK-DAG: %[[C2:.+]] = arith.constant 2
// CHECK-DAG: %[[C0:.+]] = arith.constant 0
%c4 = arith.constant 4 : index
// CHECK: %[[SHARED:.+]] = memref.alloc{{.*}} #gpu.address_space<workgroup>
%shared = memref.alloc(%alloc_size) : memref<?xf32, #gpu.address_space<workgroup>>
%c0f = arith.constant 0.0 : f32
// CHECK: %[[TOKEN0:.+]] = nvgpu.device_async_copy
// CHECK: %[[TOKEN1:.+]] = nvgpu.device_async_copy
// CHECK: scf.for %[[I:.+]] = {{.*}} iter_args
// CHECK-SAME: %[[ITER_ARG0:.+]] = %[[TOKEN0]]
// CHECK-SAME: %[[ITER_ARG1:.+]] = %[[TOKEN1]]
scf.for %i = %c0 to %c98 step %c4 {
// Condition for the predication "select" below.
// CHECK: %[[CMP0:.+]] = arith.cmpi slt, %[[I]], %[[C90]]
// CHECK: nvgpu.device_async_wait %[[ITER_ARG0]] {numGroups = 1
// Original "select" with updated induction variable.
// CHECK: %[[I_PLUS_8:.+]] = arith.addi %[[I]], %[[C8]]
// CHECK: %[[CMP1:.+]] = arith.cmpi slt, %[[I_PLUS_8]], %[[C96]]
// CHECK: %[[SELECTED0:.+]] = arith.select %[[CMP1]], %[[C4]], %[[C2]]
%c96 = arith.constant 96 : index
%cond = arith.cmpi slt, %i, %c96 : index
%c2 = arith.constant 2 : index
%read_size = arith.select %cond, %c4, %c2 : index
// Updated induction variables (two more) for the device_async_copy below.
// These are generated repeatedly by the pipeliner.
// CHECK: %[[I_PLUS_8_2:.+]] = arith.addi %[[I]], %[[C8]]
// CHECK: %[[I_PLUS_8_3:.+]] = arith.addi %[[I]], %[[C8]]
// The second "select" is generated by predication and selects 0 for
// the two last iterations.
// CHECK: %[[SELECTED1:.+]] = arith.select %[[CMP0]], %[[SELECTED0]], %[[C0]]
// CHECK: %[[ASYNC_TOKEN:.+]] = nvgpu.device_async_copy %[[GLOBAL]][%[[I_PLUS_8_3]]], %[[SHARED]][%[[I_PLUS_8_2]]], 4, %[[SELECTED1]]
%token = nvgpu.device_async_copy %global[%i], %shared[%i], 4, %read_size
: memref<?xf32> to memref<?xf32, #gpu.address_space<workgroup>>
nvgpu.device_async_wait %token
// CHECK: scf.yield %[[ITER_ARG1]], %[[ASYNC_TOKEN]]
}
// There is no need to wait for the last copies as it it was fully predicated
// out and doesn't load the original data.
// CHECK-NOT: nvgpu.device_async_wait
return
}
!t = !transform.any_op
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg0: !t {transform.readonly}) {
%loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t
transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2 } : (!t) -> !t
transform.yield
}
}
// -----
// CHECK-LABEL: @async_depth_2_peeled
func.func @async_depth_2_peeled(%global: memref<?xf32>) {
%c0 = arith.constant 0 : index
%c98 = arith.constant 98 : index
%c100 = arith.constant 100 : index
%c4 = arith.constant 4 : index
%shared = memref.alloc(%c100) : memref<?xf32, #gpu.address_space<workgroup>>
%c0f = arith.constant 0.0 : f32
// CHECK: nvgpu.device_async_copy
// CHECK: nvgpu.device_async_copy
// CHECK: scf.for
// CHECK: nvgpu.device_async_wait %{{.*}} {numGroups = 1
// CHECK: arith.select
// CHECK: nvgpu.device_async_copy
// CHECK: scf.yield
// CHECK: nvgpu.device_async_wait %{{.*}} {numGroups = 1
// CHECK: nvgpu.device_async_wait %{{.*}} {numGroups = 0
scf.for %i = %c0 to %c98 step %c4 {
%c96 = arith.constant 96 : index
%cond = arith.cmpi slt, %i, %c96 : index
%c2 = arith.constant 2 : index
%read_size = arith.select %cond, %c4, %c2 : index
%token = nvgpu.device_async_copy %global[%i], %shared[%i], 4, %read_size
: memref<?xf32> to memref<?xf32, #gpu.address_space<workgroup>>
nvgpu.device_async_wait %token
}
return
}
!t = !transform.any_op
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg0: !t {transform.readonly}) {
%loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t
transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2, peel_epilogue } : (!t) -> !t
transform.yield
}
}