// RUN: mlir-opt -buffer-hoisting -split-input-file %s | FileCheck %s
// This file checks the behaviour of BufferHoisting pass for moving Alloc
// operations to their correct positions.
// Test Case:
// bb0
// / \
// bb1 bb2 <- Initial position of AllocOp
// \ /
// bb3
// BufferHoisting expected behavior: It should move the existing AllocOp to
// the entry block.
// CHECK-LABEL: func @condBranch
func.func @condBranch(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
cf.cond_br %arg0, ^bb1, ^bb2
^bb1:
cf.br ^bb3(%arg1 : memref<2xf32>)
^bb2:
%0 = memref.alloc() : memref<2xf32>
test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
cf.br ^bb3(%0 : memref<2xf32>)
^bb3(%1: memref<2xf32>):
test.copy(%1, %arg2) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK-NEXT: %[[ALLOC:.*]] = memref.alloc()
// CHECK-NEXT: cf.cond_br
// -----
// Test Case:
// bb0
// / \
// bb1 bb2 <- Initial position of AllocOp
// \ /
// bb3
// BufferHoisting expected behavior: It should not move the existing AllocOp
// to any other block since the alloc has a dynamic dependency to block argument
// %0 in bb2.
// CHECK-LABEL: func @condBranchDynamicType
func.func @condBranchDynamicType(
%arg0: i1,
%arg1: memref<?xf32>,
%arg2: memref<?xf32>,
%arg3: index) {
cf.cond_br %arg0, ^bb1, ^bb2(%arg3: index)
^bb1:
cf.br ^bb3(%arg1 : memref<?xf32>)
^bb2(%0: index):
%1 = memref.alloc(%0) : memref<?xf32>
test.buffer_based in(%arg1: memref<?xf32>) out(%1: memref<?xf32>)
cf.br ^bb3(%1 : memref<?xf32>)
^bb3(%2: memref<?xf32>):
test.copy(%2, %arg2) : (memref<?xf32>, memref<?xf32>)
return
}
// CHECK-NEXT: cf.cond_br
// CHECK: ^bb2
// CHECK: ^bb2(%[[IDX:.*]]:{{.*}})
// CHECK-NEXT: %[[ALLOC0:.*]] = memref.alloc(%[[IDX]])
// CHECK-NEXT: test.buffer_based
// -----
// Test Case:
// bb0
// / \
// bb1 bb2 <- Initial position of AllocOp
// | / \
// | bb3 bb4
// | \ /
// \ bb5
// \ /
// bb6
// |
// bb7
// BufferHoisting expected behavior: It should not move the existing AllocOp
// to any other block since the alloc has a dynamic dependency to block argument
// %0 in bb2.
// CHECK-LABEL: func @condBranchDynamicTypeNested
func.func @condBranchDynamicTypeNested(
%arg0: i1,
%arg1: memref<?xf32>,
%arg2: memref<?xf32>,
%arg3: index) {
cf.cond_br %arg0, ^bb1, ^bb2(%arg3: index)
^bb1:
cf.br ^bb6(%arg1 : memref<?xf32>)
^bb2(%0: index):
%1 = memref.alloc(%0) : memref<?xf32>
test.buffer_based in(%arg1: memref<?xf32>) out(%1: memref<?xf32>)
cf.cond_br %arg0, ^bb3, ^bb4
^bb3:
cf.br ^bb5(%1 : memref<?xf32>)
^bb4:
cf.br ^bb5(%1 : memref<?xf32>)
^bb5(%2: memref<?xf32>):
cf.br ^bb6(%2 : memref<?xf32>)
^bb6(%3: memref<?xf32>):
cf.br ^bb7(%3 : memref<?xf32>)
^bb7(%4: memref<?xf32>):
test.copy(%4, %arg2) : (memref<?xf32>, memref<?xf32>)
return
}
// CHECK-NEXT: cf.cond_br
// CHECK: ^bb2
// CHECK: ^bb2(%[[IDX:.*]]:{{.*}})
// CHECK-NEXT: %[[ALLOC0:.*]] = memref.alloc(%[[IDX]])
// CHECK-NEXT: test.buffer_based
// -----
// Test Case:
// bb0
// / \
// | bb1 <- Initial position of AllocOp
// \ /
// bb2
// BufferHoisting expected behavior: It should move the existing AllocOp to
// the entry block.
// CHECK-LABEL: func @criticalEdge
func.func @criticalEdge(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
cf.cond_br %arg0, ^bb1, ^bb2(%arg1 : memref<2xf32>)
^bb1:
%0 = memref.alloc() : memref<2xf32>
test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
cf.br ^bb2(%0 : memref<2xf32>)
^bb2(%1: memref<2xf32>):
test.copy(%1, %arg2) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK-NEXT: %[[ALLOC:.*]] = memref.alloc()
// CHECK-NEXT: cf.cond_br
// -----
// Test Case:
// bb0 <- Initial position of the first AllocOp
// / \
// bb1 bb2
// \ /
// bb3 <- Initial position of the second AllocOp
// BufferHoisting expected behavior: It shouldn't move the AllocOps.
// CHECK-LABEL: func @ifElse
func.func @ifElse(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
%0 = memref.alloc() : memref<2xf32>
test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
cf.cond_br %arg0,
^bb1(%arg1, %0 : memref<2xf32>, memref<2xf32>),
^bb2(%0, %arg1 : memref<2xf32>, memref<2xf32>)
^bb1(%1: memref<2xf32>, %2: memref<2xf32>):
cf.br ^bb3(%1, %2 : memref<2xf32>, memref<2xf32>)
^bb2(%3: memref<2xf32>, %4: memref<2xf32>):
cf.br ^bb3(%3, %4 : memref<2xf32>, memref<2xf32>)
^bb3(%5: memref<2xf32>, %6: memref<2xf32>):
%7 = memref.alloc() : memref<2xf32>
test.buffer_based in(%7: memref<2xf32>) out(%7: memref<2xf32>)
test.copy(%7, %arg2) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK-NEXT: %[[ALLOC0:.*]] = memref.alloc()
// CHECK-NEXT: test.buffer_based
// CHECK: cf.br ^bb3
// CHECK: cf.br ^bb3
// CHECK-NEXT: ^bb3
// CHECK: %[[ALLOC1:.*]] = memref.alloc()
// CHECK-NEXT: test.buffer_based
// CHECK: test.copy(%[[ALLOC1]]
// CHECK-NEXT: return
// -----
// Test Case: No users for buffer in if-else CFG
// bb0 <- Initial position of AllocOp
// / \
// bb1 bb2
// \ /
// bb3
// BufferHoisting expected behavior: It shouldn't move the AllocOp.
// CHECK-LABEL: func @ifElseNoUsers
func.func @ifElseNoUsers(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
%0 = memref.alloc() : memref<2xf32>
test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
cf.cond_br %arg0,
^bb1(%arg1, %0 : memref<2xf32>, memref<2xf32>),
^bb2(%0, %arg1 : memref<2xf32>, memref<2xf32>)
^bb1(%1: memref<2xf32>, %2: memref<2xf32>):
cf.br ^bb3(%1, %2 : memref<2xf32>, memref<2xf32>)
^bb2(%3: memref<2xf32>, %4: memref<2xf32>):
cf.br ^bb3(%3, %4 : memref<2xf32>, memref<2xf32>)
^bb3(%5: memref<2xf32>, %6: memref<2xf32>):
test.copy(%arg1, %arg2) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK-NEXT: %[[ALLOC0:.*]] = memref.alloc()
// CHECK-NEXT: test.buffer_based
// -----
// Test Case:
// bb0 <- Initial position of the first AllocOp
// / \
// bb1 bb2
// | / \
// | bb3 bb4
// \ \ /
// \ /
// bb5 <- Initial position of the second AllocOp
// BufferHoisting expected behavior: AllocOps shouldn't be moved.
// CHECK-LABEL: func @ifElseNested
func.func @ifElseNested(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
%0 = memref.alloc() : memref<2xf32>
test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
cf.cond_br %arg0,
^bb1(%arg1, %0 : memref<2xf32>, memref<2xf32>),
^bb2(%0, %arg1 : memref<2xf32>, memref<2xf32>)
^bb1(%1: memref<2xf32>, %2: memref<2xf32>):
cf.br ^bb5(%1, %2 : memref<2xf32>, memref<2xf32>)
^bb2(%3: memref<2xf32>, %4: memref<2xf32>):
cf.cond_br %arg0, ^bb3(%3 : memref<2xf32>), ^bb4(%4 : memref<2xf32>)
^bb3(%5: memref<2xf32>):
cf.br ^bb5(%5, %3 : memref<2xf32>, memref<2xf32>)
^bb4(%6: memref<2xf32>):
cf.br ^bb5(%3, %6 : memref<2xf32>, memref<2xf32>)
^bb5(%7: memref<2xf32>, %8: memref<2xf32>):
%9 = memref.alloc() : memref<2xf32>
test.buffer_based in(%7: memref<2xf32>) out(%9: memref<2xf32>)
test.copy(%9, %arg2) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK-NEXT: %[[ALLOC0:.*]] = memref.alloc()
// CHECK-NEXT: test.buffer_based
// CHECK: cf.br ^bb5
// CHECK: cf.br ^bb5
// CHECK: cf.br ^bb5
// CHECK-NEXT: ^bb5
// CHECK: %[[ALLOC1:.*]] = memref.alloc()
// CHECK-NEXT: test.buffer_based
// -----
// Test Case: Dead operations in a single block.
// BufferHoisting expected behavior: It shouldn't move the AllocOps.
// CHECK-LABEL: func @redundantOperations
func.func @redundantOperations(%arg0: memref<2xf32>) {
%0 = memref.alloc() : memref<2xf32>
test.buffer_based in(%arg0: memref<2xf32>) out(%0: memref<2xf32>)
%1 = memref.alloc() : memref<2xf32>
test.buffer_based in(%0: memref<2xf32>) out(%1: memref<2xf32>)
return
}
// CHECK-NEXT: %[[ALLOC0:.*]] = memref.alloc()
// CHECK-NEXT: test.buffer_based
// CHECK: %[[ALLOC1:.*]] = memref.alloc()
// CHECK-NEXT: test.buffer_based
// -----
// Test Case:
// bb0
// / \
// Initial pos of the 1st AllocOp -> bb1 bb2 <- Initial pos of the 2nd AllocOp
// \ /
// bb3
// BufferHoisting expected behavior: Both AllocOps should be moved to the
// entry block.
// CHECK-LABEL: func @moving_alloc_and_inserting_missing_dealloc
func.func @moving_alloc_and_inserting_missing_dealloc(
%cond: i1,
%arg0: memref<2xf32>,
%arg1: memref<2xf32>) {
cf.cond_br %cond, ^bb1, ^bb2
^bb1:
%0 = memref.alloc() : memref<2xf32>
test.buffer_based in(%arg0: memref<2xf32>) out(%0: memref<2xf32>)
cf.br ^exit(%0 : memref<2xf32>)
^bb2:
%1 = memref.alloc() : memref<2xf32>
test.buffer_based in(%arg0: memref<2xf32>) out(%1: memref<2xf32>)
cf.br ^exit(%1 : memref<2xf32>)
^exit(%arg2: memref<2xf32>):
test.copy(%arg2, %arg1) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK-NEXT: %{{.*}} = memref.alloc()
// CHECK-NEXT: %{{.*}} = memref.alloc()
// CHECK-NEXT: cf.cond_br
// -----
// Test Case: Invalid position of the DeallocOp. There is a user after
// deallocation.
// bb0
// / \
// bb1 bb2 <- Initial position of AllocOp
// \ /
// bb3
// BufferHoisting expected behavior: It should move the AllocOp to the entry
// block.
// CHECK-LABEL: func @moving_invalid_dealloc_op_complex
func.func @moving_invalid_dealloc_op_complex(
%cond: i1,
%arg0: memref<2xf32>,
%arg1: memref<2xf32>) {
cf.cond_br %cond, ^bb1, ^bb2
^bb1:
cf.br ^exit(%arg0 : memref<2xf32>)
^bb2:
%1 = memref.alloc() : memref<2xf32>
test.buffer_based in(%arg0: memref<2xf32>) out(%1: memref<2xf32>)
memref.dealloc %1 : memref<2xf32>
cf.br ^exit(%1 : memref<2xf32>)
^exit(%arg2: memref<2xf32>):
test.copy(%arg2, %arg1) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK-NEXT: %{{.*}} = memref.alloc()
// CHECK-NEXT: cf.cond_br
// -----
// Test Case: Nested regions - This test defines a BufferBasedOp inside the
// region of a RegionBufferBasedOp.
// BufferHoisting expected behavior: The AllocOp for the BufferBasedOp should
// remain inside the region of the RegiobBufferBasedOp. The AllocOp of the
// RegionBufferBasedOp should be moved to the entry block.
// CHECK-LABEL: func @nested_regions_and_cond_branch
func.func @nested_regions_and_cond_branch(
%arg0: i1,
%arg1: memref<2xf32>,
%arg2: memref<2xf32>) {
cf.cond_br %arg0, ^bb1, ^bb2
^bb1:
cf.br ^bb3(%arg1 : memref<2xf32>)
^bb2:
%0 = memref.alloc() : memref<2xf32>
test.region_buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>) {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%1 = memref.alloc() : memref<2xf32>
test.buffer_based in(%arg1: memref<2xf32>) out(%1: memref<2xf32>)
%tmp1 = math.exp %gen1_arg0 : f32
test.region_yield %tmp1 : f32
}
cf.br ^bb3(%0 : memref<2xf32>)
^bb3(%1: memref<2xf32>):
test.copy(%1, %arg2) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK-NEXT: %[[ALLOC0:.*]] = memref.alloc()
// CHECK-NEXT: cf.cond_br
// CHECK: test.region_buffer_based
// CHECK: %[[ALLOC1:.*]] = memref.alloc()
// CHECK-NEXT: test.buffer_based
// -----
// Test Case: nested region control flow
// The alloc position of %1 does not need to be changed and flows through
// both if branches until it is finally returned.
// CHECK-LABEL: func @nested_region_control_flow
func.func @nested_region_control_flow(
%arg0 : index,
%arg1 : index) -> memref<?x?xf32> {
%0 = arith.cmpi eq, %arg0, %arg1 : index
%1 = memref.alloc(%arg0, %arg0) : memref<?x?xf32>
%2 = scf.if %0 -> (memref<?x?xf32>) {
scf.yield %1 : memref<?x?xf32>
} else {
%3 = memref.alloc(%arg0, %arg1) : memref<?x?xf32>
scf.yield %1 : memref<?x?xf32>
}
return %2 : memref<?x?xf32>
}
// CHECK: %[[ALLOC0:.*]] = memref.alloc(%arg0, %arg0)
// CHECK-NEXT: %{{.*}} = scf.if
// CHECK: else
// CHECK-NEXT: %[[ALLOC1:.*]] = memref.alloc(%arg0, %arg1)
// -----
// Test Case: nested region control flow with a nested buffer allocation in a
// divergent branch.
// The alloc positions of %1 does not need to be changed. %3 is moved upwards.
// CHECK-LABEL: func @nested_region_control_flow_div
func.func @nested_region_control_flow_div(
%arg0 : index,
%arg1 : index) -> memref<?x?xf32> {
%0 = arith.cmpi eq, %arg0, %arg1 : index
%1 = memref.alloc(%arg0, %arg0) : memref<?x?xf32>
%2 = scf.if %0 -> (memref<?x?xf32>) {
scf.yield %1 : memref<?x?xf32>
} else {
%3 = memref.alloc(%arg0, %arg1) : memref<?x?xf32>
scf.yield %3 : memref<?x?xf32>
}
return %2 : memref<?x?xf32>
}
// CHECK: %[[ALLOC0:.*]] = memref.alloc(%arg0, %arg0)
// CHECK-NEXT: %[[ALLOC1:.*]] = memref.alloc(%arg0, %arg1)
// CHECK-NEXT: %{{.*}} = scf.if
// -----
// Test Case: deeply nested region control flow with a nested buffer allocation
// in a divergent branch.
// The alloc position of %1 does not need to be changed. Allocs %4 and %5 are
// moved upwards.
// CHECK-LABEL: func @nested_region_control_flow_div_nested
func.func @nested_region_control_flow_div_nested(
%arg0 : index,
%arg1 : index) -> memref<?x?xf32> {
%0 = arith.cmpi eq, %arg0, %arg1 : index
%1 = memref.alloc(%arg0, %arg0) : memref<?x?xf32>
%2 = scf.if %0 -> (memref<?x?xf32>) {
%3 = scf.if %0 -> (memref<?x?xf32>) {
scf.yield %1 : memref<?x?xf32>
} else {
%4 = memref.alloc(%arg0, %arg1) : memref<?x?xf32>
scf.yield %4 : memref<?x?xf32>
}
scf.yield %3 : memref<?x?xf32>
} else {
%5 = memref.alloc(%arg1, %arg1) : memref<?x?xf32>
scf.yield %5 : memref<?x?xf32>
}
return %2 : memref<?x?xf32>
}
// CHECK: %[[ALLOC0:.*]] = memref.alloc(%arg0, %arg0)
// CHECK-NEXT: %[[ALLOC1:.*]] = memref.alloc(%arg0, %arg1)
// CHECK-NEXT: %[[ALLOC2:.*]] = memref.alloc(%arg1, %arg1)
// CHECK-NEXT: %{{.*}} = scf.if
// -----
// Test Case: deeply nested region control flow with a nested buffer allocation
// that has dependency within a nested region should not be moved outside of
// this region.
// CHECK-LABEL: func @nested_region_control_flow_div_nested_dependencies
func.func @nested_region_control_flow_div_nested_dependencies(
%arg0: i32,
%arg1: i1,
%arg2: index) -> memref<?x?xf32> {
%0 = scf.if %arg1 -> (memref<?x?xf32>) {
%1 = arith.constant 1 : i32
%2 = arith.addi %arg0, %1 : i32
%3 = arith.index_cast %2 : i32 to index
%4 = memref.alloc(%arg2, %3) : memref<?x?xf32>
scf.yield %4 : memref<?x?xf32>
} else {
%1 = arith.constant 2 : i32
%2 = arith.addi %arg0, %1 : i32
%3 = arith.index_cast %2 : i32 to index
%4 = memref.alloc(%arg2, %3) : memref<?x?xf32>
scf.yield %4 : memref<?x?xf32>
}
return %0 : memref<?x?xf32>
}
// CHECK: (%[[ARG0:.*]]: {{.*}}
// CHECK-NEXT: %{{.*}} = scf.if
// CHECK-NEXT: %{{.*}} = arith.constant
// CHECK-NEXT: %{{.*}} = arith.addi
// CHECK-NEXT: %[[FUNC:.*]] = arith.index_cast
// CHECK-NEXT: alloc(%arg2, %[[FUNC]])
// CHECK-NEXT: scf.yield
// CHECK-NEXT: } else {
// CHECK-NEXT: %{{.*}} = arith.constant
// CHECK-NEXT: %{{.*}} = arith.addi
// CHECK-NEXT: %[[FUNC:.*]] = arith.index_cast
// CHECK-NEXT: alloc(%arg2, %[[FUNC]])
// -----
// Test Case: nested region control flow within a region interface.
// The alloc positions of %0 does not need to be changed.
// CHECK-LABEL: func @inner_region_control_flow
func.func @inner_region_control_flow(%arg0 : index) -> memref<?x?xf32> {
%0 = memref.alloc(%arg0, %arg0) : memref<?x?xf32>
%1 = test.region_if %0 : memref<?x?xf32> -> (memref<?x?xf32>) then {
^bb0(%arg1 : memref<?x?xf32>):
test.region_if_yield %arg1 : memref<?x?xf32>
} else {
^bb0(%arg1 : memref<?x?xf32>):
test.region_if_yield %arg1 : memref<?x?xf32>
} join {
^bb0(%arg1 : memref<?x?xf32>):
test.region_if_yield %arg1 : memref<?x?xf32>
}
return %1 : memref<?x?xf32>
}
// CHECK: %[[ALLOC0:.*]] = memref.alloc(%arg0, %arg0)
// CHECK-NEXT: {{.*}} test.region_if
// -----
// Test Case: nested region control flow within a region interface including an
// allocation in a divergent branch.
// The alloc positions of %0 does not need to be changed. %2 is moved upwards.
// CHECK-LABEL: func @inner_region_control_flow_div
func.func @inner_region_control_flow_div(
%arg0 : index,
%arg1 : index) -> memref<?x?xf32> {
%0 = memref.alloc(%arg0, %arg0) : memref<?x?xf32>
%1 = test.region_if %0 : memref<?x?xf32> -> (memref<?x?xf32>) then {
^bb0(%arg2 : memref<?x?xf32>):
test.region_if_yield %arg2 : memref<?x?xf32>
} else {
^bb0(%arg2 : memref<?x?xf32>):
%2 = memref.alloc(%arg0, %arg1) : memref<?x?xf32>
test.region_if_yield %2 : memref<?x?xf32>
} join {
^bb0(%arg2 : memref<?x?xf32>):
test.region_if_yield %arg2 : memref<?x?xf32>
}
return %1 : memref<?x?xf32>
}
// CHECK: %[[ALLOC0:.*]] = memref.alloc(%arg0, %arg0)
// CHECK-NEXT: %[[ALLOC1:.*]] = memref.alloc(%arg0, %arg1)
// CHECK-NEXT: {{.*}} test.region_if
// -----
// Test Case: Alloca operations shouldn't be moved.
// CHECK-LABEL: func @condBranchAlloca
func.func @condBranchAlloca(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
cf.cond_br %arg0, ^bb1, ^bb2
^bb1:
cf.br ^bb3(%arg1 : memref<2xf32>)
^bb2:
%0 = memref.alloca() : memref<2xf32>
test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
cf.br ^bb3(%0 : memref<2xf32>)
^bb3(%1: memref<2xf32>):
test.copy(%1, %arg2) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK-NEXT: cf.cond_br
// CHECK: ^bb2
// CHECK: ^bb2
// CHECK-NEXT: %[[ALLOCA:.*]] = memref.alloca()
// CHECK-NEXT: test.buffer_based
// -----
// Test Case: Alloca operations shouldn't be moved. The alloc operation also
// shouldn't be moved analogously to the ifElseNested test.
// CHECK-LABEL: func @ifElseNestedAlloca
func.func @ifElseNestedAlloca(
%arg0: i1,
%arg1: memref<2xf32>,
%arg2: memref<2xf32>) {
%0 = memref.alloca() : memref<2xf32>
test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
cf.cond_br %arg0,
^bb1(%arg1, %0 : memref<2xf32>, memref<2xf32>),
^bb2(%0, %arg1 : memref<2xf32>, memref<2xf32>)
^bb1(%1: memref<2xf32>, %2: memref<2xf32>):
cf.br ^bb5(%1, %2 : memref<2xf32>, memref<2xf32>)
^bb2(%3: memref<2xf32>, %4: memref<2xf32>):
cf.cond_br %arg0, ^bb3(%3 : memref<2xf32>), ^bb4(%4 : memref<2xf32>)
^bb3(%5: memref<2xf32>):
cf.br ^bb5(%5, %3 : memref<2xf32>, memref<2xf32>)
^bb4(%6: memref<2xf32>):
cf.br ^bb5(%3, %6 : memref<2xf32>, memref<2xf32>)
^bb5(%7: memref<2xf32>, %8: memref<2xf32>):
%9 = memref.alloc() : memref<2xf32>
test.buffer_based in(%7: memref<2xf32>) out(%9: memref<2xf32>)
test.copy(%9, %arg2) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK-NEXT: %[[ALLOCA:.*]] = memref.alloca()
// CHECK-NEXT: test.buffer_based
// CHECK: ^bb5
// CHECK: ^bb5
// CHECK: ^bb5
// CHECK-NEXT: ^bb5
// CHECK-NEXT: %[[ALLOC:.*]] = memref.alloc()
// CHECK-NEXT: test.buffer_based
// -----
// Test Case: Alloca operations shouldn't be moved. The alloc operation should
// be moved in the beginning analogous to the nestedRegionsAndCondBranch test.
// CHECK-LABEL: func @nestedRegionsAndCondBranchAlloca
func.func @nestedRegionsAndCondBranchAlloca(
%arg0: i1,
%arg1: memref<2xf32>,
%arg2: memref<2xf32>) {
cf.cond_br %arg0, ^bb1, ^bb2
^bb1:
cf.br ^bb3(%arg1 : memref<2xf32>)
^bb2:
%0 = memref.alloc() : memref<2xf32>
test.region_buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>) {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%1 = memref.alloca() : memref<2xf32>
test.buffer_based in(%arg1: memref<2xf32>) out(%1: memref<2xf32>)
%tmp1 = math.exp %gen1_arg0 : f32
test.region_yield %tmp1 : f32
}
cf.br ^bb3(%0 : memref<2xf32>)
^bb3(%1: memref<2xf32>):
test.copy(%1, %arg2) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK-NEXT: %[[ALLOC:.*]] = memref.alloc()
// CHECK-NEXT: cf.cond_br
// CHECK: test.region_buffer_based
// CHECK: %[[ALLOCA:.*]] = memref.alloca()
// CHECK-NEXT: test.buffer_based
// -----
// Test Case: structured control-flow loop using a nested alloc.
// The alloc positions of %3 will be moved upwards.
// CHECK-LABEL: func @loop_alloc
func.func @loop_alloc(
%lb: index,
%ub: index,
%step: index,
%buf: memref<2xf32>,
%res: memref<2xf32>) {
%0 = memref.alloc() : memref<2xf32>
%1 = scf.for %i = %lb to %ub step %step
iter_args(%iterBuf = %buf) -> memref<2xf32> {
%2 = arith.cmpi eq, %i, %ub : index
%3 = memref.alloc() : memref<2xf32>
scf.yield %3 : memref<2xf32>
}
test.copy(%1, %res) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK: %[[ALLOC0:.*]] = memref.alloc()
// CHECK-NEXT: {{.*}} scf.for
// CHECK: %[[ALLOC1:.*]] = memref.alloc()
// -----
// Test Case: structured control-flow loop with a nested if operation using
// a deeply nested buffer allocation.
// The allocation %4 is not moved upwards.
// CHECK-LABEL: func @loop_nested_if_alloc
func.func @loop_nested_if_alloc(
%lb: index,
%ub: index,
%step: index,
%buf: memref<2xf32>) -> memref<2xf32> {
%0 = memref.alloc() : memref<2xf32>
%1 = scf.for %i = %lb to %ub step %step
iter_args(%iterBuf = %buf) -> memref<2xf32> {
%2 = arith.cmpi eq, %i, %ub : index
%3 = scf.if %2 -> (memref<2xf32>) {
%4 = memref.alloc() : memref<2xf32>
scf.yield %4 : memref<2xf32>
} else {
scf.yield %0 : memref<2xf32>
}
scf.yield %3 : memref<2xf32>
}
return %1 : memref<2xf32>
}
// CHECK: %[[ALLOC0:.*]] = memref.alloc()
// CHECK-NEXT: {{.*}} scf.for
// CHECK: %[[ALLOC1:.*]] = memref.alloc()
// -----
// Test Case: several nested structured control-flow loops with a deeply nested
// buffer allocation inside an if operation.
// Same behavior is an loop_nested_if_alloc: The allocs are not moved upwards.
// CHECK-LABEL: func @loop_nested_alloc
func.func @loop_nested_alloc(
%lb: index,
%ub: index,
%step: index,
%buf: memref<2xf32>,
%res: memref<2xf32>) {
%0 = memref.alloc() : memref<2xf32>
%1 = scf.for %i = %lb to %ub step %step
iter_args(%iterBuf = %buf) -> memref<2xf32> {
%2 = scf.for %i2 = %lb to %ub step %step
iter_args(%iterBuf2 = %iterBuf) -> memref<2xf32> {
%3 = scf.for %i3 = %lb to %ub step %step
iter_args(%iterBuf3 = %iterBuf2) -> memref<2xf32> {
%4 = memref.alloc() : memref<2xf32>
%5 = arith.cmpi eq, %i, %ub : index
%6 = scf.if %5 -> (memref<2xf32>) {
%7 = memref.alloc() : memref<2xf32>
scf.yield %7 : memref<2xf32>
} else {
scf.yield %iterBuf3 : memref<2xf32>
}
scf.yield %6 : memref<2xf32>
}
scf.yield %3 : memref<2xf32>
}
scf.yield %2 : memref<2xf32>
}
test.copy(%1, %res) : (memref<2xf32>, memref<2xf32>)
return
}
// CHECK: %[[ALLOC0:.*]] = memref.alloc()
// CHECK-NEXT: {{.*}} = scf.for
// CHECK-NEXT: {{.*}} = scf.for
// CHECK-NEXT: {{.*}} = scf.for
// CHECK-NEXT: %[[ALLOC1:.*]] = memref.alloc()
// CHECK: %[[ALLOC2:.*]] = memref.alloc()
// -----
// CHECK-LABEL: func @loop_nested_alloc_dyn_dependency
func.func @loop_nested_alloc_dyn_dependency(
%lb: index,
%ub: index,
%step: index,
%arg0: index,
%buf: memref<?xf32>,
%res: memref<?xf32>) {
%0 = memref.alloc(%arg0) : memref<?xf32>
%1 = scf.for %i = %lb to %ub step %step
iter_args(%iterBuf = %buf) -> memref<?xf32> {
%2 = scf.for %i2 = %lb to %ub step %step
iter_args(%iterBuf2 = %iterBuf) -> memref<?xf32> {
%3 = scf.for %i3 = %lb to %ub step %step
iter_args(%iterBuf3 = %iterBuf2) -> memref<?xf32> {
%5 = arith.cmpi eq, %i, %ub : index
%6 = scf.if %5 -> (memref<?xf32>) {
%7 = memref.alloc(%i3) : memref<?xf32>
scf.yield %7 : memref<?xf32>
} else {
scf.yield %iterBuf3 : memref<?xf32>
}
scf.yield %6 : memref<?xf32>
}
scf.yield %3 : memref<?xf32>
}
scf.yield %0 : memref<?xf32>
}
test.copy(%1, %res) : (memref<?xf32>, memref<?xf32>)
return
}
// CHECK: %[[ALLOC0:.*]] = memref.alloc({{.*}})
// CHECK-NEXT: {{.*}} = scf.for
// CHECK-NEXT: {{.*}} = scf.for
// CHECK-NEXT: {{.*}} = scf.for
// CHECK: %[[ALLOC1:.*]] = memref.alloc({{.*}})