// RUN: mlir-opt %s -test-vector-transfer-flatten-patterns -split-input-file | FileCheck %s
// RUN: mlir-opt %s -test-vector-transfer-flatten-patterns=target-vector-bitwidth=128 -split-input-file | FileCheck %s --check-prefix=CHECK-128B
// TODO: Align naming and format with e.g. vector-transfer-permutation-lowering.mlir
///----------------------------------------------------------------------------------------
/// vector.transfer_read
/// [Pattern: FlattenContiguousRowMajorTransferReadPattern]
///
/// NOTE: Scalable vectors are not supported
///----------------------------------------------------------------------------------------
func.func @transfer_read_dims_match_contiguous(
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<5x4x3x2xi8> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0 : i8
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>, vector<5x4x3x2xi8>
return %res : vector<5x4x3x2xi8>
}
// CHECK-LABEL: func @transfer_read_dims_match_contiguous
// CHECK-SAME: %[[MEM:[0-9a-zA-Z]+]]: memref<5x4x3x2xi8
// CHECK: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{.}}[0, 1, 2, 3]
// CHECK: %[[READ1D:.+]] = vector.transfer_read %[[COLLAPSED]]
// CHECK: %[[VEC2D:.+]] = vector.shape_cast %[[READ1D]] : vector<120xi8> to vector<5x4x3x2xi8>
// CHECK: return %[[VEC2D]]
// CHECK-128B-LABEL: func @transfer_read_dims_match_contiguous
// CHECK-128B: memref.collapse_shape
func.func @transfer_read_dims_match_contiguous_scalable(
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<5x4x3x[2]xi8> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0 : i8
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>, vector<5x4x3x[2]xi8>
return %res : vector<5x4x3x[2]xi8>
}
// CHECK-LABEL: func @transfer_read_dims_match_contiguous_scalable
// CHECK-NOT: memref.collapse_shape
// CHECK-128B-LABEL: func @transfer_read_dims_match_contiguous_scalable
// CHECK-128B-NOT: memref.collapse_shape
// -----
func.func @transfer_read_dims_match_contiguous_empty_stride(
%mem : memref<5x4x3x2xi8>) -> vector<5x4x3x2xi8> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0 : i8
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
memref<5x4x3x2xi8>, vector<5x4x3x2xi8>
return %res : vector<5x4x3x2xi8>
}
// CHECK-LABEL: func @transfer_read_dims_match_contiguous_empty_stride(
// CHECK-SAME: %[[MEM:[0-9a-zA-Z]+]]: memref<5x4x3x2xi8
// CHECK: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{.}}[0, 1, 2, 3]
// CHECK: %[[READ1D:.+]] = vector.transfer_read %[[COLLAPSED]]
// CHECK: %[[VEC2D:.+]] = vector.shape_cast %[[READ1D]] : vector<120xi8> to vector<5x4x3x2xi8>
// CHECK: return %[[VEC2D]]
// CHECK-128B-LABEL: func @transfer_read_dims_match_contiguous_empty_stride(
// CHECK-128B: memref.collapse_shape
// -----
// The shape of the memref and the vector don't match, but the vector is a
// contiguous subset of the memref, so "flattenable".
func.func @transfer_read_dims_mismatch_contiguous(
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<1x1x2x2xi8> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0 : i8
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>, vector<1x1x2x2xi8>
return %res : vector<1x1x2x2xi8>
}
// CHECK-LABEL: func.func @transfer_read_dims_mismatch_contiguous(
// CHECK-SAME: %[[MEM:.*]]: memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<1x1x2x2xi8> {
// CHECK: %[[VAL_1:.*]] = arith.constant 0 : i8
// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_3:.*]] = memref.collapse_shape %[[MEM]] {{\[\[}}0, 1, 2, 3]] : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>> into memref<120xi8, strided<[1], offset: ?>>
// CHECK: %[[VAL_4:.*]] = vector.transfer_read %[[VAL_3]]{{\[}}%[[VAL_2]]], %[[VAL_1]] {in_bounds = [true]} : memref<120xi8, strided<[1], offset: ?>>, vector<4xi8>
// CHECK: %[[VAL_5:.*]] = vector.shape_cast %[[VAL_4]] : vector<4xi8> to vector<1x1x2x2xi8>
// CHECK: return %[[VAL_5]] : vector<1x1x2x2xi8>
// CHECK-128B-LABEL: func @transfer_read_dims_mismatch_contiguous(
// CHECK-128B: memref.collapse_shape
// -----
func.func @transfer_read_dims_mismatch_non_zero_indices(
%idx_1: index,
%idx_2: index,
%mem: memref<1x43x4x6xi32>) -> vector<1x2x6xi32>{
%c0 = arith.constant 0 : index
%c0_i32 = arith.constant 0 : i32
%res = vector.transfer_read %mem[%c0, %idx_1, %idx_2, %c0], %c0_i32 {
in_bounds = [true, true, true]
} : memref<1x43x4x6xi32>, vector<1x2x6xi32>
return %res : vector<1x2x6xi32>
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<()[s0, s1] -> (s0 * 24 + s1 * 6)>
// CHECK-LABEL: func.func @transfer_read_dims_mismatch_non_zero_indices(
// CHECK-SAME: %[[IDX_1:.*]]: index, %[[IDX_2:.*]]: index,
// CHECK-SAME: %[[MEM:.*]]: memref<1x43x4x6xi32>
// CHECK: %[[C_0:.*]] = arith.constant 0 : i32
// CHECK: %[[C_0_IDX:.*]] = arith.constant 0 : index
// CHECK: %[[COLLAPSED_IN:.*]] = memref.collapse_shape %[[MEM]] {{\[}}[0], [1, 2, 3]] : memref<1x43x4x6xi32> into memref<1x1032xi32>
// CHECK: %[[COLLAPSED_IDX:.*]] = affine.apply #[[$ATTR_0]]()[%[[IDX_1]], %[[IDX_2]]]
// CHECK: %[[READ:.*]] = vector.transfer_read %[[COLLAPSED_IN]][%[[C_0_IDX]], %[[COLLAPSED_IDX]]], %[[C_0]] {in_bounds = [true]} : memref<1x1032xi32>, vector<12xi32>
// CHECK-128B-LABEL: func @transfer_read_dims_mismatch_non_zero_indices(
// CHECK-128B-NOT: memref.collapse_shape
// -----
// Overall, the source memref is non-contiguous. However, the slice from which
// the output vector is to be read _is_ contiguous. Hence the flattening works fine.
func.func @transfer_read_dims_mismatch_non_contiguous_non_zero_indices(
%mem : memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>>,
%idx_1 : index,
%idx_2 : index) -> vector<2x2xf32> {
%c0 = arith.constant 0 : index
%cst_1 = arith.constant 0.000000e+00 : f32
%res = vector.transfer_read %mem[%c0, %idx_1, %idx_2, %c0], %cst_1 {
in_bounds = [true, true]
} : memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>>, vector<2x2xf32>
return %res : vector<2x2xf32>
}
// CHECK: #[[$MAP:.+]] = affine_map<()[s0] -> (s0 * 2)>
// CHECK-LABEL: func.func @transfer_read_dims_mismatch_non_contiguous_non_zero_indices(
// CHECK: %[[COLLAPSE:.+]] = memref.collapse_shape %{{.*}} {{\[}}[0], [1], [2, 3]]
// CHECK-SAME: : memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>> into memref<1x3x6xf32, strided<[40, 10, 1], offset: ?>>
// CHECK: %[[APPLY:.*]] = affine.apply #[[$MAP]]()
// CHECK-128B-LABEL: func @transfer_read_dims_mismatch_non_contiguous_non_zero_indices(
// CHECK-128B: memref.collapse_shape
// -----
// The leading dynamic shapes don't affect whether this example is flattenable
// or not. Indeed, those dynamic shapes are not candidates for flattening anyway.
func.func @transfer_read_leading_dynamic_dims(
%mem : memref<?x?x8x4xi8, strided<[?, 32, 4, 1], offset: ?>>,
%idx_1 : index,
%idx_2 : index) -> vector<8x4xi8> {
%c0_i8 = arith.constant 0 : i8
%c0 = arith.constant 0 : index
%res = vector.transfer_read %mem[%idx_1, %idx_2, %c0, %c0], %c0_i8 {
in_bounds = [true, true]
} : memref<?x?x8x4xi8, strided<[?, 32, 4, 1], offset: ?>>, vector<8x4xi8>
return %res : vector<8x4xi8>
}
// CHECK-LABEL: func @transfer_read_leading_dynamic_dims
// CHECK-SAME: %[[MEM:.+]]: memref<?x?x8x4xi8, {{.+}}>, %[[IDX_1:.+]]: index, %[[IDX_2:.+]]: index
// CHECK: %[[C0_I8:.+]] = arith.constant 0 : i8
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{\[}}[0], [1], [2, 3]{{\]}}
// CHECK-SAME: : memref<?x?x8x4xi8, {{.+}}> into memref<?x?x32xi8, {{.+}}>
// CHECK: %[[VEC1D:.+]] = vector.transfer_read %[[COLLAPSED]]
// CHECK-SAME: [%[[IDX_1]], %[[IDX_2]], %[[C0]]], %[[C0_I8]]
// CHECK-SAME: {in_bounds = [true]}
// CHECK-SAME: : memref<?x?x32xi8, {{.+}}>, vector<32xi8>
// CHECK: %[[RES:.+]] = vector.shape_cast %[[VEC1D]] : vector<32xi8> to vector<8x4xi8>
// CHECK: return %[[RES]] : vector<8x4xi8>
// CHECK-128B-LABEL: func @transfer_read_leading_dynamic_dims
// CHECK-128B: memref.collapse_shape
// -----
// One of the dims to be flattened is dynamic - not supported ATM.
func.func @negative_transfer_read_dynamic_dim_to_flatten(
%idx_1: index,
%idx_2: index,
%mem: memref<1x?x4x6xi32>) -> vector<1x2x6xi32> {
%c0 = arith.constant 0 : index
%c0_i32 = arith.constant 0 : i32
%res = vector.transfer_read %mem[%c0, %idx_1, %idx_2, %c0], %c0_i32 {
in_bounds = [true, true, true]
} : memref<1x?x4x6xi32>, vector<1x2x6xi32>
return %res : vector<1x2x6xi32>
}
// CHECK-LABEL: func.func @negative_transfer_read_dynamic_dim_to_flatten
// CHECK-NOT: memref.collapse_shape
// CHECK-NOT: vector.shape_cast
// CHECK-128B-LABEL: func @negative_transfer_read_dynamic_dim_to_flatten
// CHECK-128B-NOT: memref.collapse_shape
// -----
// The vector to be read represents a _non-contiguous_ slice of the input
// memref.
func.func @transfer_read_dims_mismatch_non_contiguous_slice(
%mem : memref<5x4x3x2xi8>) -> vector<2x1x2x2xi8> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0 : i8
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
memref<5x4x3x2xi8>, vector<2x1x2x2xi8>
return %res : vector<2x1x2x2xi8>
}
// CHECK-LABEL: func.func @transfer_read_dims_mismatch_non_contiguous_slice(
// CHECK-NOT: memref.collapse_shape
// CHECK-NOT: vector.shape_cast
// CHECK-128B-LABEL: func @transfer_read_dims_mismatch_non_contiguous_slice(
// CHECK-128B-NOT: memref.collapse_shape
// -----
func.func @transfer_read_0d(
%mem : memref<i8>) -> vector<i8> {
%cst = arith.constant 0 : i8
%res = vector.transfer_read %mem[], %cst : memref<i8>, vector<i8>
return %res : vector<i8>
}
// CHECK-LABEL: func.func @transfer_read_0d
// CHECK-NOT: memref.collapse_shape
// CHECK-NOT: vector.shape_cast
// CHECK-128B-LABEL: func @transfer_read_0d(
// CHECK-128B-NOT: memref.collapse_shape
// CHECK-128B-NOT: vector.shape_cast
// -----
// Strides make the input memref non-contiguous, hence non-flattenable.
func.func @transfer_read_non_contiguous_src(
%mem : memref<5x4x3x2xi8, strided<[24, 8, 2, 1], offset: ?>>) -> vector<5x4x3x2xi8> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0 : i8
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
memref<5x4x3x2xi8, strided<[24, 8, 2, 1], offset: ?>>, vector<5x4x3x2xi8>
return %res : vector<5x4x3x2xi8>
}
// CHECK-LABEL: func.func @transfer_read_non_contiguous_src
// CHECK-NOT: memref.collapse_shape
// CHECK-NOT: vector.shape_cast
// CHECK-128B-LABEL: func @transfer_read_non_contiguous_src
// CHECK-128B-NOT: memref.collapse_shape
// CHECK-128B-NOT: vector.shape_cast
// -----
///----------------------------------------------------------------------------------------
/// vector.transfer_write
/// [Pattern: FlattenContiguousRowMajorTransferWritePattern]
///
/// NOTE: Scalable vectors are not supported
///----------------------------------------------------------------------------------------
func.func @transfer_write_dims_match_contiguous(
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>,
%vec : vector<5x4x3x2xi8>) {
%c0 = arith.constant 0 : index
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0] :
vector<5x4x3x2xi8>, memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>
return
}
// CHECK-LABEL: func @transfer_write_dims_match_contiguous(
// CHECK-SAME: %[[MEM:[0-9a-zA-Z]+]]: memref<5x4x3x2xi8
// CHECK-SAME: %[[VEC:[0-9a-zA-Z]+]]: vector<5x4x3x2xi8>
// CHECK-DAG: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{.}}[0, 1, 2, 3]{{.}} : memref<5x4x3x2xi8, {{.+}}> into memref<120xi8, {{.+}}>
// CHECK-DAG: %[[VEC1D:.+]] = vector.shape_cast %[[VEC]] : vector<5x4x3x2xi8> to vector<120xi8>
// CHECK: vector.transfer_write %[[VEC1D]], %[[COLLAPSED]]
// CHECK-128B-LABEL: func @transfer_write_dims_match_contiguous(
// CHECK-128B: memref.collapse_shape
func.func @transfer_write_dims_match_contiguous_scalable(
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>,
%vec : vector<5x4x3x[2]xi8>) {
%c0 = arith.constant 0 : index
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0] :
vector<5x4x3x[2]xi8>, memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>
return
}
// CHECK-LABEL: func @transfer_write_dims_match_contiguous_scalable(
// CHECK-NOT: memref.collapse_shape
// CHECK-128B-LABEL: func @transfer_write_dims_match_contiguous_scalable
// CHECK-128B-NOT: memref.collapse_shape
// -----
func.func @transfer_write_dims_match_contiguous_empty_stride(
%mem : memref<5x4x3x2xi8>,
%vec : vector<5x4x3x2xi8>) {
%c0 = arith.constant 0 : index
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0] :
vector<5x4x3x2xi8>, memref<5x4x3x2xi8>
return
}
// CHECK-LABEL: func @transfer_write_dims_match_contiguous_empty_stride(
// CHECK-SAME: %[[MEM:[0-9a-zA-Z]+]]: memref<5x4x3x2xi8
// CHECK-SAME: %[[VEC:[0-9a-zA-Z]+]]: vector<5x4x3x2xi8>
// CHECK-DAG: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{.}}[0, 1, 2, 3]{{.}} : memref<5x4x3x2xi8> into memref<120xi8>
// CHECK-DAG: %[[VEC1D:.+]] = vector.shape_cast %[[VEC]] : vector<5x4x3x2xi8> to vector<120xi8>
// CHECK: vector.transfer_write %[[VEC1D]], %[[COLLAPSED]]
// CHECK-128B-LABEL: func @transfer_write_dims_match_contiguous_empty_stride(
// CHECK-128B: memref.collapse_shape
// -----
func.func @transfer_write_dims_mismatch_contiguous(
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>,
%vec : vector<1x1x2x2xi8>) {
%c0 = arith.constant 0 : index
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0] :
vector<1x1x2x2xi8>, memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>
return
}
// CHECK-LABEL: func.func @transfer_write_dims_mismatch_contiguous
// CHECK-SAME: %[[MEM:.*]]: memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>,
// CHECK-SAME: %[[VEC:.*]]: vector<1x1x2x2xi8>) {
// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_3:.*]] = memref.collapse_shape %[[MEM]] {{\[\[}}0, 1, 2, 3]] : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>> into memref<120xi8, strided<[1], offset: ?>>
// CHECK: %[[VAL_4:.*]] = vector.shape_cast %[[VEC]] : vector<1x1x2x2xi8> to vector<4xi8>
// CHECK: vector.transfer_write %[[VAL_4]], %[[VAL_3]]{{\[}}%[[VAL_2]]] {in_bounds = [true]} : vector<4xi8>, memref<120xi8, strided<[1], offset: ?>>
// CHECK-128B-LABEL: func @transfer_write_dims_mismatch_contiguous(
// CHECK-128B: memref.collapse_shape
// -----
func.func @transfer_write_dims_mismatch_non_zero_indices(
%idx_1: index,
%idx_2: index,
%mem: memref<1x43x4x6xi32>,
%vec: vector<1x2x6xi32>) {
%c0 = arith.constant 0 : index
%c0_i32 = arith.constant 0 : i32
vector.transfer_write %vec, %mem[%c0, %idx_1, %idx_2, %c0] {in_bounds = [true, true, true]} :
vector<1x2x6xi32>, memref<1x43x4x6xi32>
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<()[s0, s1] -> (s0 * 24 + s1 * 6)>
// CHECK-LABEL: func.func @transfer_write_dims_mismatch_non_zero_indices(
// CHECK-SAME: %[[IDX_1:.*]]: index, %[[IDX_2:.*]]: index,
// CHECK-SAME: %[[MEM:.*]]: memref<1x43x4x6xi32>,
// CHECK-SAME: %[[VEC:.*]]: vector<1x2x6xi32>) {
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[IDX:.*]] = affine.apply #[[$ATTR_0]](){{\[}}%[[IDX_1]], %[[IDX_2]]]
// CHECK-DAG: %[[CS:.*]] = memref.collapse_shape %[[MEM]] {{\[\[}}0], [1, 2, 3]] : memref<1x43x4x6xi32> into memref<1x1032xi32>
// CHECK: %[[SC:.*]] = vector.shape_cast %[[VEC]] : vector<1x2x6xi32> to vector<12xi32>
// CHECK: vector.transfer_write %[[SC]], %[[CS]]{{\[}}%[[C0]], %[[IDX]]] {in_bounds = [true]} : vector<12xi32>, memref<1x1032xi32>
// CHECK-128B-LABEL: func @transfer_write_dims_mismatch_non_zero_indices(
// CHECK-128B-NOT: memref.collapse_shape
// -----
// Overall, the destination memref is non-contiguous. However, the slice to
// which the input vector is to be written _is_ contiguous. Hence the
// flattening works fine.
func.func @transfer_write_dims_mismatch_non_contiguous_non_zero_indices(
%vec : vector<2x2xf32>,
%mem : memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>>,
%idx_1 : index,
%idx_2 : index) {
%c0 = arith.constant 0 : index
vector.transfer_write %vec, %mem[%c0, %idx_1, %idx_2, %c0] {in_bounds = [true, true]} : vector<2x2xf32>, memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>>
return
}
// CHECK: #[[$MAP:.+]] = affine_map<()[s0] -> (s0 * 2)>
// CHECK-LABEL: func.func @transfer_write_dims_mismatch_non_contiguous_non_zero_indices(
// CHECK-DAG: %[[APPLY:.*]] = affine.apply #[[$MAP]]()
// CHECK-DAG: %[[COLLAPSE:.+]] = memref.collapse_shape %{{.*}} {{\[}}[0], [1], [2, 3]] : memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>> into memref<1x3x6xf32, strided<[40, 10, 1], offset: ?>>
// CHECK-128B-LABEL: func @transfer_write_dims_mismatch_non_contiguous_non_zero_indices(
// CHECK-128B: memref.collapse_shape
// -----
// The leading dynamic shapes don't affect whether this example is flattenable
// or not. Indeed, those dynamic shapes are not candidates for flattening anyway.
func.func @transfer_write_leading_dynamic_dims(
%vec : vector<8x4xi8>,
%mem : memref<?x?x8x4xi8, strided<[?, 32, 4, 1], offset: ?>>,
%idx_1 : index,
%idx_2 : index) {
%c0 = arith.constant 0 : index
vector.transfer_write %vec, %mem[%idx_1, %idx_2, %c0, %c0] {in_bounds = [true, true]} :
vector<8x4xi8>, memref<?x?x8x4xi8, strided<[?, 32, 4, 1], offset: ?>>
return
}
// CHECK-LABEL: func @transfer_write_leading_dynamic_dims
// CHECK-SAME: %[[VEC:.+]]: vector<8x4xi8>, %[[MEM:.+]]: memref<?x?x8x4xi8, {{.+}}>, %[[ARG2:.+]]: index, %[[ARG3:.+]]: index
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{\[}}[0], [1], [2, 3]{{\]}}
// CHECK-SAME: : memref<?x?x8x4xi8, {{.+}}> into memref<?x?x32xi8, {{.+}}>
// CHECK: %[[VEC1D:.+]] = vector.shape_cast %[[VEC]] : vector<8x4xi8> to vector<32xi8>
// CHECK: vector.transfer_write %[[VEC1D]], %[[COLLAPSED]]
// CHECK-SAME: [%[[ARG2]], %[[ARG3]], %[[C0]]]
// CHECK-SAME: {in_bounds = [true]}
// CHECK-SAME: : vector<32xi8>, memref<?x?x32xi8, {{.+}}>
// CHECK-128B-LABEL: func @transfer_write_leading_dynamic_dims
// CHECK-128B: memref.collapse_shape
// -----
// One of the dims to be flattened is dynamic - not supported ATM.
func.func @negative_transfer_write_dynamic_to_flatten(
%idx_1: index,
%idx_2: index,
%vec : vector<1x2x6xi32>,
%mem: memref<1x?x4x6xi32>) {
%c0 = arith.constant 0 : index
%c0_i32 = arith.constant 0 : i32
vector.transfer_write %vec, %mem[%c0, %idx_1, %idx_2, %c0] {in_bounds = [true, true, true]} :
vector<1x2x6xi32>, memref<1x?x4x6xi32>
return
}
// CHECK-LABEL: func.func @negative_transfer_write_dynamic_to_flatten
// CHECK-NOT: memref.collapse_shape
// CHECK-NOT: vector.shape_cast
// CHECK-128B-LABEL: func @negative_transfer_write_dynamic_to_flatten
// CHECK-128B-NOT: memref.collapse_shape
// -----
// The vector to be written represents a _non-contiguous_ slice of the output
// memref.
func.func @transfer_write_dims_mismatch_non_contiguous_slice(
%mem : memref<5x4x3x2xi8>,
%vec : vector<2x1x2x2xi8>) {
%c0 = arith.constant 0 : index
%cst = arith.constant 0 : i8
vector.transfer_write %vec, %mem[%c0, %c0, %c0, %c0] :
vector<2x1x2x2xi8>, memref<5x4x3x2xi8>
return
}
// CHECK-LABEL: func.func @transfer_write_dims_mismatch_non_contiguous_slice(
// CHECK-NOT: memref.collapse_shape
// CHECK-NOT: vector.shape_cast
// CHECK-128B-LABEL: func @transfer_write_dims_mismatch_non_contiguous_slice(
// CHECK-128B-NOT: memref.collapse_shape
// -----
func.func @transfer_write_0d(
%mem : memref<i8>,
%vec : vector<i8>) {
vector.transfer_write %vec, %mem[] : vector<i8>, memref<i8>
return
}
// CHECK-LABEL: func.func @transfer_write_0d
// CHECK-NOT: memref.collapse_shape
// CHECK-NOT: vector.shape_cast
// CHECK-128B-LABEL: func @transfer_write_0d(
// CHECK-128B-NOT: memref.collapse_shape
// CHECK-128B-NOT: vector.shape_cast
// -----
// The strides make the input memref non-contiguous, hence non-flattenable.
func.func @transfer_write_non_contiguous_src(
%mem : memref<5x4x3x2xi8, strided<[24, 8, 2, 1], offset: ?>>,
%vec : vector<5x4x3x2xi8>) {
%c0 = arith.constant 0 : index
vector.transfer_write %vec, %mem[%c0, %c0, %c0, %c0] :
vector<5x4x3x2xi8>, memref<5x4x3x2xi8, strided<[24, 8, 2, 1], offset: ?>>
return
}
// CHECK-LABEL: func.func @transfer_write_non_contiguous_src
// CHECK-NOT: memref.collapse_shape
// CHECK-NOT: vector.shape_cast
// CHECK-128B-LABEL: func @transfer_write_non_contiguous_src
// CHECK-128B-NOT: memref.collapse_shape
// CHECK-128B-NOT: vector.shape_cast
// -----
func.func @negative_out_of_bound_transfer_read(
%mem : memref<?x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<5x4x3x2xi8> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0 : i8
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst {in_bounds = [false, true, true, true]} :
memref<?x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>, vector<5x4x3x2xi8>
return %res : vector<5x4x3x2xi8>
}
// CHECK: func.func @negative_out_of_bound_transfer_read
// CHECK-NOT: memref.collapse_shape
// -----
func.func @negative_out_of_bound_transfer_write(
%mem : memref<?x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>, %vec : vector<1x1x3x2xi8>) {
%c0 = arith.constant 0 : index
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0] {in_bounds = [false, true, true, true]} :
vector<1x1x3x2xi8>, memref<?x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>
return
}
// CHECK: func.func @negative_out_of_bound_transfer_write
// CHECK-NOT: memref.collapse_shape