// RUN: mlir-opt %s --split-input-file --verify-diagnostics
#my_poly = #polynomial.int_polynomial<y + x**1024>
// expected-error@below {{polynomials must have one indeterminate, but there were multiple: x, y}}
#ring1 = #polynomial.ring<coefficientType=i32, coefficientModulus=2837465, polynomialModulus=#my_poly>
// -----
// expected-error@below {{expected integer value}}
// expected-error@below {{expected a monomial}}
// expected-error@below {{found invalid integer exponent}}
#my_poly = #polynomial.int_polynomial<5 + x**f>
#ring1 = #polynomial.ring<coefficientType=i32, coefficientModulus=2837465, polynomialModulus=#my_poly>
// -----
#my_poly = #polynomial.int_polynomial<5 + x**2 + 3x**2>
// expected-error@below {{parsed polynomial must have unique exponents among monomials}}
#ring1 = #polynomial.ring<coefficientType=i32, coefficientModulus=2837465, polynomialModulus=#my_poly>
// -----
// expected-error@below {{expected + and more monomials, or > to end polynomial attribute}}
#my_poly = #polynomial.int_polynomial<5 + x**2 7>
#ring1 = #polynomial.ring<coefficientType=i32, coefficientModulus=2837465, polynomialModulus=#my_poly>
// -----
// expected-error@below {{expected a monomial}}
#my_poly = #polynomial.int_polynomial<5 + x**2 +>
#ring1 = #polynomial.ring<coefficientType=i32, coefficientModulus=2837465, polynomialModulus=#my_poly>
// -----
#my_poly = #polynomial.int_polynomial<5 + x**2>
// expected-error@below {{failed to parse Polynomial_RingAttr parameter 'coefficientModulus' which is to be a `::mlir::IntegerAttr`}}
// expected-error@below {{expected attribute value}}
#ring1 = #polynomial.ring<coefficientType=i32, coefficientModulus=x, polynomialModulus=#my_poly>
// -----
// expected-error@below {{coefficientModulus specified but coefficientType is not integral}}
#ring1 = #polynomial.ring<coefficientType=f32, coefficientModulus=17>
// -----
// expected-error@below {{coefficientModulus should not be 0}}
#ring1 = #polynomial.ring<coefficientType=i32, coefficientModulus=0>
// -----
// expected-error@below {{coefficientModulus should be positive}}
#ring1 = #polynomial.ring<coefficientType=i32, coefficientModulus=-1>
// -----
// expected-error@below {{coefficientModulus needs bit width of 33 but coefficientType can only contain 32 bits}}
#ring1 = #polynomial.ring<coefficientType=i32, coefficientModulus=4294967297>
// -----
#ring1 = #polynomial.ring<coefficientType=i32, coefficientModulus=4294967296>
// -----
// expected-error@below {{coefficientModulus should be positive}}
#ring1 = #polynomial.ring<coefficientType=i64, coefficientModulus=18446744073709551615>
// -----
// unfortunately, coefficientModulus of 64bit should be contained in larger type
#ring1 = #polynomial.ring<coefficientType=i64, coefficientModulus=18446744073709551615 : i128>