// RUN: mlir-opt %s -transform-interpreter -split-input-file -verify-diagnostics -allow-unregistered-dialect --cse --mlir-print-local-scope | FileCheck %s
func.func @coalesce_inner() {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
// CHECK: scf.for %[[IV0:.+]]
// CHECK: scf.for %[[IV1:.+]]
// CHECK: scf.for %[[IV2:.+]]
// CHECK-NOT: scf.for %[[IV3:.+]]
scf.for %i = %c0 to %c10 step %c1 {
scf.for %j = %c0 to %c10 step %c1 {
scf.for %k = %i to %j step %c1 {
// Inner loop must have been removed.
scf.for %l = %i to %j step %c1 {
"use"(%i, %j) : (index, index) -> ()
}
} {coalesce}
}
}
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["scf.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.cast %0 : !transform.any_op to !transform.op<"scf.for">
%2 = transform.loop.coalesce %1: (!transform.op<"scf.for">) -> (!transform.op<"scf.for">)
transform.yield
}
}
// -----
func.func @coalesce_outer(%arg1: memref<64x64xf32, 1>, %arg2: memref<64x64xf32, 1>, %arg3: memref<64x64xf32, 1>) attributes {} {
// CHECK: %[[T0:.+]] = affine.apply affine_map<() -> (64)>()
// CHECK: %[[UB:.+]] = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%[[T0]])[%[[T0]]]
// CHECK: affine.for %[[IV1:.+]] = 0 to %[[UB:.+]] {
// CHECK-NOT: affine.for %[[IV2:.+]]
affine.for %arg4 = 0 to 64 {
affine.for %arg5 = 0 to 64 {
// CHECK: %[[IDX0:.+]] = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)>(%[[IV1]])[%{{.+}}]
// CHECK: %[[IDX1:.+]] = affine.apply affine_map<(d0)[s0] -> (d0 floordiv s0)>(%[[IV1]])[%{{.+}}]
// CHECK-NEXT: %{{.+}} = affine.load %{{.+}}[%[[IDX1]], %[[IDX0]]] : memref<64x64xf32, 1>
%0 = affine.load %arg1[%arg4, %arg5] : memref<64x64xf32, 1>
%1 = affine.load %arg2[%arg4, %arg5] : memref<64x64xf32, 1>
%2 = arith.addf %0, %1 : f32
affine.store %2, %arg3[%arg4, %arg5] : memref<64x64xf32, 1>
}
} {coalesce}
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["affine.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.cast %0 : !transform.any_op to !transform.op<"affine.for">
%2 = transform.loop.coalesce %1 : (!transform.op<"affine.for">) -> (!transform.op<"affine.for">)
transform.yield
}
}
// -----
func.func @coalesce_and_unroll(%arg1: memref<64x64xf32, 1>, %arg2: memref<64x64xf32, 1>, %arg3: memref<64x64xf32, 1>) attributes {} {
// CHECK: scf.for %[[IV1:.+]] =
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c64 = arith.constant 64 : index
scf.for %arg4 = %c0 to %c64 step %c1 {
// CHECK-NOT: scf.for
scf.for %arg5 = %c0 to %c64 step %c1 {
// CHECK: %[[IDX:.+]]:2 = affine.delinearize_index
// CHECK-NEXT: %{{.+}} = memref.load %{{.+}}[%[[IDX]]#0, %[[IDX]]#1] : memref<64x64xf32, 1>
%0 = memref.load %arg1[%arg4, %arg5] : memref<64x64xf32, 1>
%1 = memref.load %arg2[%arg4, %arg5] : memref<64x64xf32, 1>
%2 = arith.addf %0, %1 : f32
// CHECK: memref.store
// CHECK: memref.store
// CHECK: memref.store
// Residual loop must have a single store.
// CHECK: memref.store
memref.store %2, %arg3[%arg4, %arg5] : memref<64x64xf32, 1>
}
} {coalesce}
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["scf.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.cast %0 : !transform.any_op to !transform.op<"scf.for">
%2 = transform.loop.coalesce %1 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">)
transform.loop.unroll %2 {factor = 3} : !transform.op<"scf.for">
transform.yield
}
}
// -----
func.func @tensor_loops(%arg0 : tensor<?x?xf32>, %lb0 : index, %ub0 : index, %step0 : index,
%lb1 : index, %ub1 : index, %step1 : index, %lb2 : index, %ub2 : index, %step2 : index) -> tensor<?x?xf32> {
%0 = scf.for %i = %lb0 to %ub0 step %step0 iter_args(%arg1 = %arg0) -> tensor<?x?xf32> {
%1 = scf.for %j = %lb1 to %ub1 step %step1 iter_args(%arg2 = %arg1) -> tensor<?x?xf32> {
%2 = scf.for %k = %lb2 to %ub2 step %step2 iter_args(%arg3 = %arg2) -> tensor<?x?xf32> {
%3 = "use"(%arg3, %i, %j, %k) : (tensor<?x?xf32>, index, index, index) -> (tensor<?x?xf32>)
scf.yield %3 : tensor<?x?xf32>
}
scf.yield %2 : tensor<?x?xf32>
}
scf.yield %1 : tensor<?x?xf32>
} {coalesce}
return %0 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["scf.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.cast %0 : !transform.any_op to !transform.op<"scf.for">
%2 = transform.loop.coalesce %1 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">)
transform.yield
}
}
// CHECK: func.func @tensor_loops(
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?xf32>
// CHECK-SAME: %[[LB0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[LB1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[LB2:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB2:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP2:[a-zA-Z0-9_]+]]: index
// CHECK: %[[NITERS0:.+]] = affine.apply
// CHECK-SAME: affine_map<()[s0, s1, s2] -> ((-s0 + s1) ceildiv s2)>()[%[[LB0]], %[[UB0]], %[[STEP0]]]
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[C1:.+]] = arith.constant 1 : index
// CHECK: %[[NITERS1:.+]] = affine.apply
// CHECK-SAME: affine_map<()[s0, s1, s2] -> ((-s0 + s1) ceildiv s2)>()[%[[LB1]], %[[UB1]], %[[STEP1]]]
// CHECK: %[[NITERS2:.+]] = affine.apply
// CHECK-SAME: affine_map<()[s0, s1, s2] -> ((-s0 + s1) ceildiv s2)>()[%[[LB2]], %[[UB2]], %[[STEP2]]]
// CHECK: %[[NEWUB:.+]] = affine.apply affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8] ->
// CHECK-SAME: ((((-s0 + s1) ceildiv s2) * ((-s3 + s4) ceildiv s5)) * ((-s6 + s7) ceildiv s8))
// CHECK-SAME: [%[[LB0]], %[[UB0]], %[[STEP0]], %[[LB1]], %[[UB1]], %[[STEP1]], %[[LB2]], %[[UB2]], %[[STEP2]]]
// CHECK: %[[RESULT:.+]] = scf.for %[[IV:[a-zA-Z0-9]+]] = %[[C0]] to %[[NEWUB]] step %[[C1]] iter_args(%[[ITER_ARG:.+]] = %[[ARG0]])
// CHECK: %[[DELINEARIZE:.+]]:3 = affine.delinearize_index %[[IV]] into (%[[NITERS0]], %[[NITERS1]], %[[NITERS2]])
// CHECK-DAG: %[[K:.+]] = affine.apply affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>(%[[DELINEARIZE]]#2)[%[[LB2]], %[[STEP2]]]
// CHECK-DAG: %[[J:.+]] = affine.apply affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>(%[[DELINEARIZE]]#1)[%[[LB1]], %[[STEP1]]]
// CHECK-DAG: %[[I:.+]] = affine.apply affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>(%[[DELINEARIZE]]#0)[%[[LB0]], %[[STEP0]]]
// CHECK: %[[USE:.+]] = "use"(%[[ITER_ARG]], %[[I]], %[[J]], %[[K]])
// CHECK: scf.yield %[[USE]]
// CHECK: return %[[RESULT]]
// -----
// Coalesce only first two loops, but not the last since the iter_args dont line up
func.func @tensor_loops_first_two(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %lb0 : index, %ub0 : index, %step0 : index,
%lb1 : index, %ub1 : index, %step1 : index, %lb2 : index, %ub2 : index, %step2 : index) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0:2 = scf.for %i = %lb0 to %ub0 step %step0 iter_args(%arg2 = %arg0, %arg3 = %arg1) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%1:2 = scf.for %j = %lb1 to %ub1 step %step1 iter_args(%arg4 = %arg2, %arg5 = %arg3) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%2:2 = scf.for %k = %lb2 to %ub2 step %step2 iter_args(%arg6 = %arg5, %arg7 = %arg4) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%3:2 = "use"(%arg3, %i, %j, %k) : (tensor<?x?xf32>, index, index, index) -> (tensor<?x?xf32>, tensor<?x?xf32>)
scf.yield %3#0, %3#1 : tensor<?x?xf32>, tensor<?x?xf32>
}
scf.yield %2#0, %2#1 : tensor<?x?xf32>, tensor<?x?xf32>
}
scf.yield %1#0, %1#1 : tensor<?x?xf32>, tensor<?x?xf32>
} {coalesce}
return %0#0, %0#1 : tensor<?x?xf32>, tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["scf.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.cast %0 : !transform.any_op to !transform.op<"scf.for">
%2 = transform.loop.coalesce %1 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">)
transform.yield
}
}
// CHECK: func.func @tensor_loops_first_two(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[LB0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[LB1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[LB2:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB2:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP2:[a-zA-Z0-9_]+]]: index
// CHECK: scf.for
// CHECK: affine.delinearize_index
// CHECK: scf.for %{{[a-zA-Z0-9]+}} = %[[LB2]] to %[[UB2]] step %[[STEP2]]
// CHECK-NOT: scf.for
// CHECK: transform.named_sequence
// -----
// Coalesce only first two loops, but not the last since the yields dont match up
func.func @tensor_loops_first_two_2(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %lb0 : index, %ub0 : index, %step0 : index,
%lb1 : index, %ub1 : index, %step1 : index, %lb2 : index, %ub2 : index, %step2 : index) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0:2 = scf.for %i = %lb0 to %ub0 step %step0 iter_args(%arg2 = %arg0, %arg3 = %arg1) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%1:2 = scf.for %j = %lb1 to %ub1 step %step1 iter_args(%arg4 = %arg2, %arg5 = %arg3) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%2:2 = scf.for %k = %lb2 to %ub2 step %step2 iter_args(%arg6 = %arg4, %arg7 = %arg5) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%3:2 = "use"(%arg3, %i, %j, %k) : (tensor<?x?xf32>, index, index, index) -> (tensor<?x?xf32>, tensor<?x?xf32>)
scf.yield %3#0, %3#1 : tensor<?x?xf32>, tensor<?x?xf32>
}
scf.yield %2#1, %2#0 : tensor<?x?xf32>, tensor<?x?xf32>
}
scf.yield %1#0, %1#1 : tensor<?x?xf32>, tensor<?x?xf32>
} {coalesce}
return %0#0, %0#1 : tensor<?x?xf32>, tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["scf.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.cast %0 : !transform.any_op to !transform.op<"scf.for">
%2 = transform.loop.coalesce %1 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">)
transform.yield
}
}
// CHECK: func.func @tensor_loops_first_two_2(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[LB0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[LB1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[LB2:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB2:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP2:[a-zA-Z0-9_]+]]: index
// CHECK: scf.for
// CHECK: affine.delinearize_index
// CHECK: scf.for %{{[a-zA-Z0-9]+}} = %[[LB2]] to %[[UB2]] step %[[STEP2]]
// CHECK-NOT: scf.for
// CHECK: transform.named_sequence
// -----
// Coalesce only last two loops, but not the first since the yields dont match up
func.func @tensor_loops_last_two(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %lb0 : index, %ub0 : index, %step0 : index,
%lb1 : index, %ub1 : index, %step1 : index, %lb2 : index, %ub2 : index, %step2 : index) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0:2 = scf.for %i = %lb0 to %ub0 step %step0 iter_args(%arg2 = %arg0, %arg3 = %arg1) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%1:2 = scf.for %j = %lb1 to %ub1 step %step1 iter_args(%arg4 = %arg2, %arg5 = %arg3) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%2:2 = scf.for %k = %lb2 to %ub2 step %step2 iter_args(%arg6 = %arg4, %arg7 = %arg5) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%3:2 = "use"(%arg3, %i, %j, %k) : (tensor<?x?xf32>, index, index, index) -> (tensor<?x?xf32>, tensor<?x?xf32>)
scf.yield %3#0, %3#1 : tensor<?x?xf32>, tensor<?x?xf32>
}
scf.yield %2#0, %2#1 : tensor<?x?xf32>, tensor<?x?xf32>
}
scf.yield %1#1, %1#0 : tensor<?x?xf32>, tensor<?x?xf32>
} {coalesce}
return %0#0, %0#1 : tensor<?x?xf32>, tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["scf.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.cast %0 : !transform.any_op to !transform.op<"scf.for">
%2 = transform.loop.coalesce %1 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">)
transform.yield
}
}
// CHECK: func.func @tensor_loops_last_two(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[LB0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP0:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[LB1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP1:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[LB2:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[UB2:[a-zA-Z0-9_]+]]: index
// CHECK-SAME: %[[STEP2:[a-zA-Z0-9_]+]]: index
// CHECK: scf.for %{{[a-zA-Z0-9]+}} = %[[LB0]] to %[[UB0]] step %[[STEP0]]
// CHECK-NOT: affine.delinearize_index
// CHECK: scf.for
// CHECK: affine.delinearize_index
// CHECK-NOT: scf.for
// CHECK: transform.named_sequence
// -----
// Check avoiding generating unnecessary operations while collapsing trip-1 loops.
func.func @trip_one_loops(%arg0 : tensor<?x?xf32>, %arg1 : index, %arg2 : index) -> tensor<?x?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%0 = scf.for %iv0 = %c0 to %c1 step %c1 iter_args(%iter0 = %arg0) -> tensor<?x?xf32> {
%1 = scf.for %iv1 = %c0 to %c1 step %c1 iter_args(%iter1 = %iter0) -> tensor<?x?xf32> {
%2 = scf.for %iv2 = %c0 to %arg1 step %c1 iter_args(%iter2 = %iter1) -> tensor<?x?xf32> {
%3 = scf.for %iv3 = %c0 to %c1 step %c1 iter_args(%iter3 = %iter2) -> tensor<?x?xf32> {
%4 = scf.for %iv4 = %c0 to %arg2 step %c1 iter_args(%iter4 = %iter3) -> tensor<?x?xf32> {
%5 = "some_use"(%iter4, %iv0, %iv1, %iv2, %iv3, %iv4)
: (tensor<?x?xf32>, index, index, index, index, index) -> (tensor<?x?xf32>)
scf.yield %5 : tensor<?x?xf32>
}
scf.yield %4 : tensor<?x?xf32>
}
scf.yield %3 : tensor<?x?xf32>
}
scf.yield %2 : tensor<?x?xf32>
}
scf.yield %1 : tensor<?x?xf32>
} {coalesce}
return %0 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["scf.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.cast %0 : !transform.any_op to !transform.op<"scf.for">
%2 = transform.loop.coalesce %1 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">)
transform.apply_patterns to %2 {
transform.apply_patterns.canonicalization
} : !transform.op<"scf.for">
transform.yield
}
}
// CHECK-LABEL: func @trip_one_loops
// CHECK-SAME: , %[[ARG1:.+]]: index,
// CHECK-SAME: %[[ARG2:.+]]: index)
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK: %[[UB:.+]] = affine.apply affine_map<()[s0, s1] -> (s0 * s1)>()[%[[ARG1]], %[[ARG2]]]
// CHECK: scf.for %[[IV:.+]] = %[[C0]] to %[[UB]] step %[[C1]]
// CHECK: %[[DELINEARIZE:.+]]:2 = affine.delinearize_index %[[IV]] into (%[[ARG1]], %[[ARG2]])
// CHECK: "some_use"(%{{[a-zA-Z0-9]+}}, %[[C0]], %[[C0]], %[[DELINEARIZE]]#0, %[[C0]], %[[DELINEARIZE]]#1)
// -----
// Check generating no instructions when all except one loops is non unit-trip.
func.func @all_outer_trip_one(%arg0 : tensor<?x?xf32>, %arg1 : index) -> tensor<?x?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%0 = scf.for %iv0 = %c0 to %c1 step %c1 iter_args(%iter0 = %arg0) -> tensor<?x?xf32> {
%1 = scf.for %iv1 = %c0 to %c1 step %c1 iter_args(%iter1 = %iter0) -> tensor<?x?xf32> {
%2 = scf.for %iv2 = %c0 to %arg1 step %c1 iter_args(%iter2 = %iter1) -> tensor<?x?xf32> {
%3 = "some_use"(%iter2, %iv0, %iv1, %iv2)
: (tensor<?x?xf32>, index, index, index) -> (tensor<?x?xf32>)
scf.yield %3 : tensor<?x?xf32>
}
scf.yield %2 : tensor<?x?xf32>
}
scf.yield %1 : tensor<?x?xf32>
} {coalesce}
return %0 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["scf.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.cast %0 : !transform.any_op to !transform.op<"scf.for">
%2 = transform.loop.coalesce %1 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">)
transform.apply_patterns to %2 {
transform.apply_patterns.canonicalization
} : !transform.op<"scf.for">
transform.yield
}
}
// CHECK-LABEL: func @all_outer_trip_one
// CHECK-SAME: , %[[ARG1:.+]]: index)
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK: scf.for %[[IV:.+]] = %[[C0]] to %[[ARG1]] step %[[C1]]
// CHECK: "some_use"(%{{[a-zA-Z0-9]+}}, %[[C0]], %[[C0]], %[[IV]])