// RUN: mlir-opt %s --transform-interpreter --split-input-file -canonicalize | FileCheck %s
// This is a simple tile-and-fuse example with a single fusion group.
module {
// CHECK: func @foo
// CHECK: scf.forall {{.*}} {
// CHECK: linalg.fill
// CHECK: linalg.matmul
// CHECK: linalg.generic
// CHECK: }
func.func @foo(%A: tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?xf32>,
%D: tensor<?x?xf32>, %sz0: index, %sz1: index)
-> tensor<?x?xf32>
{
%cst = arith.constant 0.000000e+00 : f32
%5 = linalg.fill
{__producer__}
ins(%cst : f32)
outs(%D : tensor<?x?xf32>) -> tensor<?x?xf32>
%6 = linalg.matmul
{__producer__}
ins(%A, %B : tensor<?x?xf32>, tensor<?x?xf32>)
outs(%5 : tensor<?x?xf32>) -> tensor<?x?xf32>
%7 = linalg.generic
{__root__,
indexing_maps = [affine_map<(d0, d1) -> (d0)>,
affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]
}
ins(%C, %6 : tensor<?xf32>, tensor<?x?xf32>)
outs(%D : tensor<?x?xf32>) {
^bb0(%arg2: f32, %arg3: f32, %arg4: f32):
%16 = arith.maximumf %arg3, %cst : f32
%17 = arith.cmpf ogt, %arg2, %cst : f32
%18 = arith.select %17, %cst, %16 : f32
linalg.yield %18 : f32
} -> tensor<?x?xf32>
return %7 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
// Find the root and all producers.
%root = transform.structured.match attributes{"__root__"} in %arg1 : (!transform.any_op) -> !transform.any_op
%producers = transform.structured.match attributes{"__producer__"} in %arg1 : (!transform.any_op) -> !transform.any_op
// Tile the root.
%tiled_op, %forall_op = transform.structured.tile_using_forall %root num_threads [10, 20]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
// Fuse all producers.
transform.structured.fuse_into_containing_op %producers into %forall_op
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
}
// -----
// Inverse the order of the payload ops passed to the tile_using_forall
// op. Fusion should still work.
module {
// CHECK: func @foo
// CHECK: scf.forall {{.*}} {
// CHECK: linalg.fill
// CHECK: linalg.matmul
// CHECK: linalg.generic
// CHECK: }
func.func @foo(%A: tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?xf32>,
%D: tensor<?x?xf32>, %sz0: index, %sz1: index)
-> tensor<?x?xf32>
{
%cst = arith.constant 0.000000e+00 : f32
%5 = linalg.fill
{__producer__}
ins(%cst : f32)
outs(%D : tensor<?x?xf32>) -> tensor<?x?xf32>
%6 = linalg.matmul
{__producer__}
ins(%A, %B : tensor<?x?xf32>, tensor<?x?xf32>)
outs(%5 : tensor<?x?xf32>) -> tensor<?x?xf32>
%7 = linalg.generic
{__root__,
indexing_maps = [affine_map<(d0, d1) -> (d0)>,
affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]
}
ins(%C, %6 : tensor<?xf32>, tensor<?x?xf32>)
outs(%D : tensor<?x?xf32>) {
^bb0(%arg2: f32, %arg3: f32, %arg4: f32):
%16 = arith.maximumf %arg3, %cst : f32
%17 = arith.cmpf ogt, %arg2, %cst : f32
%18 = arith.select %17, %cst, %16 : f32
linalg.yield %18 : f32
} -> tensor<?x?xf32>
return %7 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
// Find the root and all producers.
%root = transform.structured.match attributes{"__root__"} in %arg1 : (!transform.any_op) -> !transform.any_op
%producers = transform.structured.match attributes{"__producer__"} in %arg1 : (!transform.any_op) -> !transform.any_op
%reversed_producers = transform.test_reverse_payload_ops %producers : (!transform.any_op) -> !transform.any_op
// Tile the root.
%tiled_op, %forall_op = transform.structured.tile_using_forall %root num_threads [10, 20]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
// Fuse all producers.
transform.structured.fuse_into_containing_op %reversed_producers into %forall_op
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
}