// RUN: mlir-opt %s --transform-interpreter --split-input-file -canonicalize | FileCheck %s
// Demonstrates what happens when peeling the middle loop (2nd parallel
// dimension) followed by vectorization in the presence of _scalable_ vectors
// (these are introduced through scalable tiling). The main goal is to verify
// that canonicalizations fold away the masks in the main loop.
func.func @matmul(%A: tensor<1024x512xf32>,
%B: tensor<512x2000xf32>,
%C: tensor<1024x2000xf32>) -> tensor<1024x2000xf32> {
// CHECK: #[[MAP:.*]] = affine_map<()[s0] -> (-(2000 mod s0) + 2000)>
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[C2000:.*]] = arith.constant 2000 : index
// CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index
// CHECK-DAG: %[[C1024:.*]] = arith.constant 1024 : index
// CHECK-DAG: %[[C512:.*]] = arith.constant 512 : index
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C16:.*]] = arith.constant 16 : index
// CHECK: %[[VSCALE:.*]] = vector.vscale
// CHECK: %[[STEP:.*]] = arith.muli %[[VSCALE]], %[[C16]] : index
// CHECK: scf.for {{.*}} %[[C0]] to %[[C1024]] step %[[C8]] iter_args(%arg4 = %arg2) -> (tensor<1024x2000xf32>) {
// Main loop after vectorisation (without masking)
// CHECK: %[[UB_MAIN:.*]] = affine.apply #[[MAP]]()[%[[STEP]]]
// CHECK: scf.for {{.*}} %[[C0]] to %[[UB_MAIN]] step %[[STEP]] {{.*}} -> (tensor<1024x2000xf32>) {
// CHECK: scf.for %arg7 = %[[C0]] to %[[C512]] step %[[C1]] {{.*}} -> (tensor<1024x2000xf32>) {
// CHECK-NOT: vector.mask
// CHECK: arith.mulf {{.*}} : vector<8x[16]x1xf32>
// CHECK-NEXT: vector.shape_cast {{.*}} : vector<8x[16]x1xf32> to vector<8x[16]xf32>
// CHECK-NEXT: arith.addf {{.*}} : vector<8x[16]xf32>
// CHECK-NOT: vector.mask
// CHECK: scf.yield {{.*}} : tensor<1024x2000xf32>
// CHECK-NEXT: }
// CHECK-NEXT: scf.yield {{.*}} : tensor<1024x2000xf32>
// CHECK-NEXT: }
// Remainder loop after vectorisation (with masking)
// CHECK: scf.for {{.*}} %[[UB_MAIN]] to %[[C2000]] step %[[STEP]] {{.*}} -> (tensor<1024x2000xf32>) {
// CHECK: scf.for {{.*}} %[[C0]] to %[[C512]] step %[[C1]] {{.*}} -> (tensor<1024x2000xf32>) {
// CHECK: %[[MASK_1:.*]] = vector.create_mask {{.*}} : vector<1x[16]xi1>
// CHECK: %[[RHS:.*]] = vector.mask %[[MASK_1]] { vector.transfer_read {{.*}} } : vector<1x[16]xi1> -> vector<8x[16]x1xf32>
// CHECK: %[[MASK_2:.*]] = vector.create_mask {{.*}} : vector<8x[16]xi1>
// CHECK: %[[LHS:.*]] = vector.mask %[[MASK_2]] { vector.transfer_read {{.*}} } : vector<8x[16]xi1> -> vector<8x[16]xf32>
// CHECK: %[[MUL:.*]] = arith.mulf %{{.*}}, %[[RHS]] : vector<8x[16]x1xf32>
// CHECK: %[[MASK_3:.*]] = vector.create_mask {{.*}} : vector<8x[16]xi1>
// CHECK: vector.shape_cast %[[MUL]] : vector<8x[16]x1xf32> to vector<8x[16]xf32>
// CHECK: arith.addf %[[LHS]], %{{.*}} : vector<8x[16]xf32>
// CHECK: arith.select %[[MASK_3]], {{.*}} : vector<8x[16]xi1>, vector<8x[16]xf32>
// CHECK: vector.mask %[[MASK_2]] { vector.transfer_write {{.*}} } : vector<8x[16]xi1> -> tensor<8x?xf32>
// CHECK: scf.yield %inserted_slice : tensor<1024x2000xf32>
// CHECK: }
// CHECK: scf.yield {{.*}} : tensor<1024x2000xf32>
// CHECK: }
// CHECK: scf.yield {{.*}} : tensor<1024x2000xf32>
// CHECK-NEXT: }
%res = linalg.matmul ins(%A, %B: tensor<1024x512xf32>, tensor<512x2000xf32>)
outs(%C: tensor<1024x2000xf32>) -> tensor<1024x2000xf32>
return %res : tensor<1024x2000xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%root: !transform.any_op {transform.readonly}) {
%matmul = transform.structured.match ops{["linalg.matmul"]} in %root : (!transform.any_op) -> !transform.any_op
// 1. Scalable tiling
%_, %loop_1, %loop_2, %loop_3 =
transform.structured.tile_using_for %matmul tile_sizes [8, [16], 1] : (!transform.any_op)
-> (!transform.any_op, !transform.op<"scf.for">, !transform.op<"scf.for">,!transform.op<"scf.for">)
// 2. Loop peeling (only the middle dimension)
%main_loop, %remainder_loop = transform.loop.peel %loop_2 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">, !transform.op<"scf.for">)
// 3. Vectorize the main loop
%matmul_main = transform.structured.match ops{["linalg.matmul"]} in %main_loop : (!transform.op<"scf.for">) -> !transform.any_op
transform.structured.vectorize %matmul_main vector_sizes [8, [16], 1] : !transform.any_op
// 4. Vectorize the remainder loop
%matmul_remainder = transform.structured.match ops{["linalg.matmul"]} in %remainder_loop : (!transform.op<"scf.for">) -> !transform.any_op
transform.structured.vectorize %matmul_remainder vector_sizes [8, [16], 1] : !transform.any_op
transform.yield
}
}