// RUN: mlir-opt %s -split-input-file -allow-unregistered-dialect -pass-pipeline="builtin.module(func.func(linalg-detensorize))" | FileCheck %s
#map0 = affine_map<() -> ()>
#attrs = {
indexing_maps = [#map0, #map0, #map0],
iterator_types = []
}
func.func @main() -> (tensor<i32>) attributes {} {
%c0 = arith.constant 0 : i32
%0 = tensor.from_elements %c0 : tensor<i32>
%c10 = arith.constant 10 : i32
%1 = tensor.from_elements %c10 : tensor<i32>
cf.br ^bb1(%0 : tensor<i32>)
^bb1(%2: tensor<i32>): // 2 preds: ^bb0, ^bb2
%3 = tensor.empty() : tensor<i1>
%4 = linalg.generic #attrs
ins(%2, %1 : tensor<i32>, tensor<i32>)
outs(%3 : tensor<i1>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i1):
%8 = arith.cmpi slt, %arg0, %arg1 : i32
linalg.yield %8 : i1
} -> tensor<i1>
%5 = tensor.extract %4[] : tensor<i1>
cf.cond_br %5, ^bb2(%2 : tensor<i32>), ^bb3(%2 : tensor<i32>)
^bb2(%6: tensor<i32>): // pred: ^bb1
%7 = tensor.empty() : tensor<i32>
%8 = linalg.generic #attrs
ins(%6, %6 : tensor<i32>, tensor<i32>)
outs(%7 : tensor<i32>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i32):
%9 = arith.addi %arg0, %arg1 : i32
linalg.yield %9 : i32
} -> tensor<i32>
cf.br ^bb3(%8 : tensor<i32>)
^bb3(%10: tensor<i32>): // pred: ^bb1
return %10 : tensor<i32>
}
// CHECK-LABEL: func @main()
// CHECK-DAG: %[[cst:.*]] = arith.constant dense<0>
// CHECK-DAG: arith.constant true
// CHECK: cf.br
// CHECK-NEXT: ^[[bb1:.*]]:
// CHECK-NEXT: cf.cond_br %{{.*}}, ^[[bb2:.*]], ^bb3
// CHECK-NEXT: ^[[bb2]]
// CHECK-NEXT: cf.br ^[[bb3:.*]]
// CHECK-NEXT: ^[[bb3]]
// CHECK-NEXT: return %[[cst]]
// CHECK-NEXT: }
// -----
// Similar to the above test with one change: one of the block after the
// if-condition passes/forwards its tensor argument to another block.
#map0 = affine_map<() -> ()>
#attrs = {
indexing_maps = [#map0, #map0, #map0],
iterator_types = []
}
func.func @main() -> (tensor<i32>) attributes {} {
%c0 = arith.constant 0 : i32
%0 = tensor.from_elements %c0 : tensor<i32>
%c10 = arith.constant 10 : i32
%1 = tensor.from_elements %c10 : tensor<i32>
cf.br ^bb1(%0 : tensor<i32>)
^bb1(%2: tensor<i32>): // 2 preds: ^bb0, ^bb2
%3 = tensor.empty() : tensor<i1>
%4 = linalg.generic #attrs
ins(%2, %1 : tensor<i32>, tensor<i32>)
outs(%3 : tensor<i1>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i1):
%8 = arith.cmpi slt, %arg0, %arg1 : i32
linalg.yield %8 : i1
} -> tensor<i1>
%5 = tensor.extract %4[] : tensor<i1>
cf.cond_br %5, ^bb2(%2 : tensor<i32>), ^bb3(%2 : tensor<i32>)
^bb2(%6: tensor<i32>): // pred: ^bb1
%7 = tensor.empty() : tensor<i32>
%8 = linalg.generic #attrs
ins(%6, %6 : tensor<i32>, tensor<i32>)
outs(%7 : tensor<i32>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i32):
%9 = arith.addi %arg0, %arg1 : i32
linalg.yield %9 : i32
} -> tensor<i32>
cf.br ^bb3(%8 : tensor<i32>)
^bb3(%10: tensor<i32>): // pred: ^bb1
cf.br ^bb4(%10 : tensor<i32>)
^bb4(%11: tensor<i32>): // pred: ^bb1
return %11 : tensor<i32>
}
// CHECK-LABEL: func @main()
// CHECK-DAG: %[[cst:.*]] = arith.constant dense<0>
// CHECK-DAG: arith.constant true
// CHECK: cf.br ^[[bb1:.*]]
// CHECK-NEXT: ^[[bb1:.*]]:
// CHECK-NEXT: cf.cond_br %{{.*}}, ^[[bb2:.*]], ^bb3
// CHECK-NEXT: ^[[bb2]]:
// CHECK-NEXT: cf.br ^[[bb3:.*]]
// CHECK-NEXT: ^[[bb3]]:
// CHECK-NEXT: cf.br ^[[bb4:.*]]
// CHECK-NEXT: ^[[bb4]]:
// CHECK-NEXT: return %[[cst]]
// CHECK-NEXT: }
// -----
#map0 = affine_map<() -> ()>
#attrs = {
indexing_maps = [#map0, #map0, #map0],
iterator_types = []
}
func.func @main() -> (tensor<i32>) attributes {} {
%c0 = arith.constant 0 : i32
%0 = tensor.from_elements %c0 : tensor<i32>
%c10 = arith.constant 10 : i32
%1 = tensor.from_elements %c10 : tensor<i32>
cf.br ^bb1(%0 : tensor<i32>)
^bb1(%2: tensor<i32>): // 2 preds: ^bb0, ^bb2
%3 = tensor.empty() : tensor<i1>
%4 = linalg.generic #attrs
ins(%2, %1 : tensor<i32>, tensor<i32>)
outs(%3 : tensor<i1>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i1):
%8 = arith.cmpi slt, %arg0, %arg1 : i32
linalg.yield %8 : i1
} -> tensor<i1>
%5 = tensor.extract %4[] : tensor<i1>
// This cf.cond_br intentionally has bb2 as it's target for both branches. This
// is to make sure that the "forward phase" of the cost-model correctly adds
// the users of a block argument (in this case bb2's argument) to the work
// list.
cf.cond_br %5, ^bb2(%2 : tensor<i32>), ^bb2(%2 : tensor<i32>)
^bb2(%6: tensor<i32>): // pred: ^bb1
%12 = tensor.from_elements %c10 : tensor<i32>
%7 = tensor.empty() : tensor<i32>
%8 = linalg.generic #attrs
ins(%6, %12 : tensor<i32>, tensor<i32>)
outs(%7 : tensor<i32>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i32):
%9 = arith.addi %arg0, %arg1 : i32
linalg.yield %9 : i32
} -> tensor<i32>
cf.br ^bb3(%8 : tensor<i32>)
^bb3(%10: tensor<i32>): // pred: ^bb1
return %10 : tensor<i32>
}
// CHECK-LABEL: func @main()
// CHECK-DAG: %[[cst:.*]] = arith.constant dense<10>
// CHECK-DAG: arith.constant true
// CHECK: cf.br ^[[bb1:.*]]
// CHECK-NEXT: ^[[bb1]]:
// CHECK-NEXT: cf.cond_br %{{.*}}, ^[[bb2:.*]], ^bb2
// CHECK-NEXT: ^[[bb2]]
// CHECK-NEXT: cf.br ^[[bb3:.*]]
// CHECK-NEXT: ^[[bb3]]
// CHECK-NEXT: return %[[cst]]
// CHECK-NEXT: }