// RUN: mlir-opt %s --transform-interpreter --split-input-file | FileCheck %s
// CHECK-LABEL: func.func @eliminate_tensor_empty(
// CHECK-SAME: %[[arg0:.*]]: tensor<50x91xf32>,
// CHECK-NOT: tensor.empty
// CHECK: %[[filled:.*]] = linalg.fill {{.*}} outs(%[[arg0]]
// CHECK: %[[matmul:.*]] = linalg.matmul {{.*}} outs(%[[filled]]
// CHECK: %[[generic:.*]] = linalg.generic {{.*}} outs(%[[matmul]]
// CHECK: return %[[generic]]
func.func @eliminate_tensor_empty(
%arg0: tensor<50x91xf32>, %arg1: tensor<91xf32>, %arg2: tensor<50x1280xf32>,
%arg3: tensor<1280x91xf32>) -> tensor<50x91xf32>
{
%cst = arith.constant 0.0 : f32
%0 = tensor.empty() : tensor<50x91xf32>
%1 = linalg.fill ins(%cst : f32)
outs(%0 : tensor<50x91xf32>) -> tensor<50x91xf32>
%2 = linalg.matmul
ins(%arg2, %arg3 : tensor<50x1280xf32>, tensor<1280x91xf32>)
outs(%1 : tensor<50x91xf32>) -> tensor<50x91xf32>
%3 = linalg.generic
{indexing_maps = [affine_map<(d0, d1) -> (d1)>,
affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]}
ins(%arg1, %2 : tensor<91xf32>, tensor<50x91xf32>)
outs(%arg0 : tensor<50x91xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32):
%16 = arith.addf %in, %in_0 : f32
linalg.yield %16 : f32
} -> tensor<50x91xf32>
return %3 : tensor<50x91xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.eliminate_empty_tensors %0 : !transform.any_op
transform.apply_patterns to %0 {
transform.apply_patterns.linalg.erase_unnecessary_inputs
} : !transform.any_op
transform.yield
}
}
// -----
#map = affine_map<(d0) -> (d0)>
// This test is intended to check that the produced IR does not contain any
// type errors from sharing empty tensor operations with different types.
// The verifiers are sufficient to lock down the intended behavior.
// CHECK-LABEL: func.func @collapse_shape_prevents_reuse(
func.func @collapse_shape_prevents_reuse(%fill_value: f32) -> tensor<56xf32>
{
%init0 = tensor.empty() : tensor<56xf32>
%init1 = tensor.empty() : tensor<56x1xf32>
%filled_tensor = linalg.fill
ins(%fill_value : f32)
outs(%init1 : tensor<56x1xf32>) -> tensor<56x1xf32>
// The collapse shape alters the tensor rank, so the %init1 tensor.empty cannot be
// pushed into the output of the linalg.generic.
%reshaped_tensor = tensor.collapse_shape %filled_tensor [[0, 1]]
: tensor<56x1xf32> into tensor<56xf32>
%bias = linalg.generic {
indexing_maps = [#map, #map],
iterator_types = ["parallel"]
} ins(%reshaped_tensor : tensor<56xf32>)
outs(%init0 : tensor<56xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<56xf32>
return %bias : tensor<56xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.eliminate_empty_tensors %0 : !transform.any_op
transform.yield
}
}
// -----
#map = affine_map<(d0, d1) -> (d0, d1)>
// This test is intended to check that the produced IR does not contain any
// type errors from sharing empty tensor operations with different types.
// The verifiers are sufficient to lock down the intended behavior.
// CHECK-LABEL: func.func @collapse_cast_prevents_reuse(
func.func @collapse_cast_prevents_reuse(%fill_value: f32) -> tensor<56x?xf32>
{
%c1 = arith.constant 1 : index
%init0 = tensor.empty(%c1) : tensor<56x?xf32>
%init1 = tensor.empty() : tensor<56x1xf32>
%filled_tensor = linalg.fill
ins(%fill_value : f32)
outs(%init1 : tensor<56x1xf32>) -> tensor<56x1xf32>
// The cast alters the number of dynamic dims, so the %init1 tensor.empty cannot be
// pushed into the output of the linalg.generic.
%cast = tensor.cast %filled_tensor : tensor<56x1xf32> to tensor<56x?xf32>
%bias = linalg.generic {
indexing_maps = [#map, #map],
iterator_types = ["parallel", "parallel"]
} ins(%cast : tensor<56x?xf32>)
outs(%init0 : tensor<56x?xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<56x?xf32>
return %bias : tensor<56x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.eliminate_empty_tensors %0 : !transform.any_op
transform.yield
}
}