// RUN: mlir-opt %s -split-input-file -linalg-generalize-named-ops | FileCheck %s
// Verifies that different argument types is legal.
func.func @generalize_matmul_tensor_f16f64f32(%A : tensor<16x8xf16>, %B: tensor<8x32xf64>, %C: tensor<16x32xf32>) -> tensor<16x32xf32> {
%0 = linalg.matmul ins(%A, %B: tensor<16x8xf16>, tensor<8x32xf64>)
outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
return %0: tensor<16x32xf32>
}
// CHECK-LABEL: @generalize_matmul_tensor_f16f64f32
// CHECK: ^{{.*}}(%[[A_ARG:.+]]: f16, %[[B_ARG:.+]]: f64, %[[C_ARG:.+]]: f32)
// Verify floating point extension and truncation.
// CHECK-NEXT: %[[A_CAST:.+]] = arith.extf %[[A_ARG]] : f16 to f32
// CHECK-NEXT: %[[B_CAST:.+]] = arith.truncf %[[B_ARG]] : f64 to f32
// CHECK-NEXT: %[[MUL:.+]] = arith.mulf %[[A_CAST]], %[[B_CAST]] : f32
// CHECK-NEXT: %[[ADD:.+]] = arith.addf %[[C_ARG]], %[[MUL]] : f32
// CHECK-NEXT: linalg.yield %[[ADD]] : f32
// CHECK-NEXT: -> tensor<16x32xf32>
// -----
// Verifies that different argument types is legal.
func.func @generalize_matmul_tensor_i16i64i32(%A : tensor<16x8xi16>, %B: tensor<8x32xi64>, %C: tensor<16x32xi32>) -> tensor<16x32xi32> {
%0 = linalg.matmul ins(%A, %B: tensor<16x8xi16>, tensor<8x32xi64>)
outs(%C: tensor<16x32xi32>) -> tensor<16x32xi32>
return %0: tensor<16x32xi32>
}
// CHECK-LABEL: @generalize_matmul_tensor_i16i64i32
// CHECK: ^{{.*}}(%[[A_ARG:.+]]: i16, %[[B_ARG:.+]]: i64, %[[C_ARG:.+]]: i32)
// Verify signed integer extension and truncation.
// CHECK-NEXT: %[[A_CAST:.+]] = arith.extsi %[[A_ARG]] : i16 to i32
// CHECK-NEXT: %[[B_CAST:.+]] = arith.trunci %[[B_ARG]] : i64 to i32
// CHECK-NEXT: %[[MUL:.+]] = arith.muli %[[A_CAST]], %[[B_CAST]] : i32
// CHECK-NEXT: %[[ADD:.+]] = arith.addi %[[C_ARG]], %[[MUL]] : i32
// CHECK-NEXT: linalg.yield %[[ADD]] : i32
// CHECK-NEXT: -> tensor<16x32xi32>
// -----
// Verifies that cast attributes control the cast operations used.
func.func @generalize_matmul_tensor_i16i64i32_unsigned(%A : tensor<16x8xi16>, %B: tensor<8x32xi64>, %C: tensor<16x32xi32>) -> tensor<16x32xi32> {
%0 = linalg.matmul {cast = #linalg.type_fn<cast_unsigned>}
ins(%A, %B: tensor<16x8xi16>, tensor<8x32xi64>)
outs(%C: tensor<16x32xi32>) -> tensor<16x32xi32>
return %0: tensor<16x32xi32>
}
// CHECK-LABEL: @generalize_matmul_tensor_i16i64i32_unsigned
// CHECK: = arith.extui
// -----
func.func @generalize_matmul_tensor_i16i64f32(%A : tensor<16x8xi16>, %B: tensor<8x32xi64>, %C: tensor<16x32xf32>) -> tensor<16x32xf32> {
%0 = linalg.matmul ins(%A, %B: tensor<16x8xi16>, tensor<8x32xi64>)
outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
return %0: tensor<16x32xf32>
}
// CHECK-LABEL: @generalize_matmul_tensor_i16i64f32
// Verify signed integer to floating point cast.
// CHECK: = arith.sitofp
// CHECK: = arith.sitofp
// -----
func.func @generalize_matmul_tensor_f16f64i32(%A : tensor<16x8xf16>, %B: tensor<8x32xf64>, %C: tensor<16x32xi32>) -> tensor<16x32xi32> {
%0 = linalg.matmul ins(%A, %B: tensor<16x8xf16>, tensor<8x32xf64>)
outs(%C: tensor<16x32xi32>) -> tensor<16x32xi32>
return %0: tensor<16x32xi32>
}
// CHECK-LABEL: @generalize_matmul_tensor_f16f64i32
// Verify floating point to signed integer cast.
// CHECK: = arith.fptosi
// CHECK: = arith.fptosi
// -----
func.func @generalize_matmul_unsigned_tensor_i16i64i32(%A : tensor<16x8xi16>, %B: tensor<8x32xi64>, %C: tensor<16x32xi32>) -> tensor<16x32xi32> {
%0 = linalg.matmul { cast = #linalg.type_fn<cast_unsigned> }
ins(%A, %B: tensor<16x8xi16>, tensor<8x32xi64>)
outs(%C: tensor<16x32xi32>) -> tensor<16x32xi32>
return %0: tensor<16x32xi32>
}
// CHECK-LABEL: @generalize_matmul_unsigned_tensor_i16i64i32
// Verify unsigned integer extension and truncation.
// CHECK: = arith.extui
// CHECK: = arith.trunci
// -----
func.func @generalize_matmul_unsigned_tensor_i16i64f32(%A : tensor<16x8xi16>, %B: tensor<8x32xi64>, %C: tensor<16x32xf32>) -> tensor<16x32xf32> {
%0 = linalg.matmul { cast = #linalg.type_fn<cast_unsigned> }
ins(%A, %B: tensor<16x8xi16>, tensor<8x32xi64>)
outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
return %0: tensor<16x32xf32>
}
// CHECK-LABEL: @generalize_matmul_unsigned_tensor_i16i64f32
// Verify unsigned integer to floating point cast.
// CHECK: = arith.uitofp
// CHECK: = arith.uitofp
// -----
func.func @generalize_matmul_unsigned_tensor_f16f64i32(%A : tensor<16x8xf16>, %B: tensor<8x32xf64>, %C: tensor<16x32xi32>) -> tensor<16x32xi32> {
%0 = linalg.matmul { cast = #linalg.type_fn<cast_unsigned> }
ins(%A, %B: tensor<16x8xf16>, tensor<8x32xf64>)
outs(%C: tensor<16x32xi32>) -> tensor<16x32xi32>
return %0: tensor<16x32xi32>
}
// CHECK-LABEL: @generalize_matmul_unsigned_tensor_f16f64i32
// Verify floating point to unsigend integer cast.
// CHECK: = arith.fptoui
// CHECK: = arith.fptoui
// -----
func.func @generalize_pooling_nhwc_max_f32(%input : tensor<1x4x16x1xf32>, %shape: tensor<2x2xf32>, %output: tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32> {
%0 = linalg.pooling_nhwc_max {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xf32>, tensor<2x2xf32>) outs(%output : tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32>
return %0: tensor<1x2x4x1xf32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_max_f32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
// CHECK-NEXT: %[[MAX:.+]] = arith.maximumf %[[OUT_ARG]], %[[IN_ARG]] : f32
// CHECK-NEXT: linalg.yield %[[MAX]] : f32
// CHECK-NEXT: -> tensor<1x2x4x1xf32>
// -----
func.func @generalize_pooling_nwc_max_f32(%input : tensor<1x16x1xf32>, %shape: tensor<2xf32>, %output: tensor<1x4x1xf32>) -> tensor<1x4x1xf32> {
%0 = linalg.pooling_nwc_max {dilations = dense<[2]> : tensor<1xi64>, strides = dense<[4]> : tensor<1xi64>}
ins(%input, %shape : tensor<1x16x1xf32>, tensor<2xf32>) outs(%output : tensor<1x4x1xf32>) -> tensor<1x4x1xf32>
return %0: tensor<1x4x1xf32>
}
// CHECK-LABEL: @generalize_pooling_nwc_max_f32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
// CHECK-NEXT: %[[MAX:.+]] = arith.maximumf %[[OUT_ARG]], %[[IN_ARG]] : f32
// CHECK-NEXT: linalg.yield %[[MAX]] : f32
// CHECK-NEXT: -> tensor<1x4x1xf32>
// -----
func.func @generalize_pooling_nhwc_max_i32(%input : tensor<1x4x16x1xi32>, %shape: tensor<2x2xi32>, %output: tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32> {
%0 = linalg.pooling_nhwc_max {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xi32>, tensor<2x2xi32>) outs(%output : tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32>
return %0: tensor<1x2x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_max_i32
// Verify signed integer maximum.
// CHECK: = arith.maxsi
// -----
func.func @generalize_pooling_nwc_max_i32(%input : tensor<1x16x1xi32>, %shape: tensor<2xi32>, %output: tensor<1x4x1xi32>) -> tensor<1x4x1xi32> {
%0 = linalg.pooling_nwc_max {dilations = dense<[2]> : tensor<1xi64>, strides = dense<[4]> : tensor<1xi64>}
ins(%input, %shape : tensor<1x16x1xi32>, tensor<2xi32>) outs(%output : tensor<1x4x1xi32>) -> tensor<1x4x1xi32>
return %0: tensor<1x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nwc_max_i32
// Verify signed integer maximum.
// CHECK: = arith.maxsi
// -----
func.func @generalize_pooling_nhwc_max_unsigned_i32(%input : tensor<1x4x16x1xi32>, %shape: tensor<2x2xi32>, %output: tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32> {
%0 = linalg.pooling_nhwc_max_unsigned {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xi32>, tensor<2x2xi32>) outs(%output : tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32>
return %0: tensor<1x2x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_max_unsigned_i32
// Verify unsigned integer minimum.
// CHECK: = arith.maxui
// -----
func.func @generalize_pooling_nwc_max_unsigned_i32(%input : tensor<1x16x1xi32>, %shape: tensor<2xi32>, %output: tensor<1x4x1xi32>) -> tensor<1x4x1xi32> {
%0 = linalg.pooling_nwc_max_unsigned {dilations = dense<[2]> : tensor<1xi64>, strides = dense<[4]> : tensor<1xi64>}
ins(%input, %shape : tensor<1x16x1xi32>, tensor<2xi32>) outs(%output : tensor<1x4x1xi32>) -> tensor<1x4x1xi32>
return %0: tensor<1x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nwc_max_unsigned_i32
// Verify unsigned integer minimum.
// CHECK: = arith.maxui
// -----
func.func @generalize_pooling_nhwc_min_f32(%input : tensor<1x4x16x1xf32>, %shape: tensor<2x2xf32>, %output: tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32> {
%0 = linalg.pooling_nhwc_min {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xf32>, tensor<2x2xf32>) outs(%output : tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32>
return %0: tensor<1x2x4x1xf32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_min_f32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
// CHECK-NEXT: %[[MIN:.+]] = arith.minimumf %[[OUT_ARG]], %[[IN_ARG]] : f32
// CHECK-NEXT: linalg.yield %[[MIN]] : f32
// CHECK-NEXT: -> tensor<1x2x4x1xf32>
// -----
func.func @generalize_pooling_nwc_min_f32(%input : tensor<1x16x1xf32>, %shape: tensor<2xf32>, %output: tensor<1x4x1xf32>) -> tensor<1x4x1xf32> {
%0 = linalg.pooling_nwc_min {dilations = dense<[2]> : tensor<1xi64>, strides = dense<[4]> : tensor<1xi64>}
ins(%input, %shape : tensor<1x16x1xf32>, tensor<2xf32>) outs(%output : tensor<1x4x1xf32>) -> tensor<1x4x1xf32>
return %0: tensor<1x4x1xf32>
}
// CHECK-LABEL: @generalize_pooling_nwc_min_f32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
// CHECK-NEXT: %[[MIN:.+]] = arith.minimumf %[[OUT_ARG]], %[[IN_ARG]] : f32
// CHECK-NEXT: linalg.yield %[[MIN]] : f32
// CHECK-NEXT: -> tensor<1x4x1xf32>
// -----
func.func @generalize_pooling_nhwc_min_i32(%input : tensor<1x4x16x1xi32>, %shape: tensor<2x2xi32>, %output: tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32> {
%0 = linalg.pooling_nhwc_min {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xi32>, tensor<2x2xi32>) outs(%output : tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32>
return %0: tensor<1x2x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_min_i32
// Verify signed integer minimum.
// CHECK: = arith.minsi
// -----
func.func @generalize_pooling_nwc_min_i32(%input : tensor<1x16x1xi32>, %shape: tensor<2xi32>, %output: tensor<1x4x1xi32>) -> tensor<1x4x1xi32> {
%0 = linalg.pooling_nwc_min {dilations = dense<[2]> : tensor<1xi64>, strides = dense<[4]> : tensor<1xi64>}
ins(%input, %shape : tensor<1x16x1xi32>, tensor<2xi32>) outs(%output : tensor<1x4x1xi32>) -> tensor<1x4x1xi32>
return %0: tensor<1x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nwc_min_i32
// Verify signed integer minimum.
// CHECK: = arith.minsi
// -----
func.func @generalize_pooling_nhwc_min_unsigned_i32(%input : tensor<1x4x16x1xi32>, %shape: tensor<2x2xi32>, %output: tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32> {
%0 = linalg.pooling_nhwc_min_unsigned {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xi32>, tensor<2x2xi32>) outs(%output : tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32>
return %0: tensor<1x2x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_min_unsigned_i32
// Verify unsigned integer minimum.
// CHECK: = arith.minui
// -----
func.func @generalize_pooling_nwc_min_unsigned_i32(%input : tensor<1x16x1xi32>, %shape: tensor<2xi32>, %output: tensor<1x4x1xi32>) -> tensor<1x4x1xi32> {
%0 = linalg.pooling_nwc_min_unsigned {dilations = dense<[2]> : tensor<1xi64>, strides = dense<[4]> : tensor<1xi64>}
ins(%input, %shape : tensor<1x16x1xi32>, tensor<2xi32>) outs(%output : tensor<1x4x1xi32>) -> tensor<1x4x1xi32>
return %0: tensor<1x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nwc_min_unsigned_i32
// Verify unsigned integer minimum.
// CHECK: = arith.minui
// -----
func.func @generalize_pooling_nhwc_sum_f32(%input : tensor<1x4x16x1xf32>, %shape: tensor<2x2xf32>, %output: tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32> {
%0 = linalg.pooling_nhwc_sum {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xf32>, tensor<2x2xf32>) outs(%output : tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32>
return %0: tensor<1x2x4x1xf32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_sum_f32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
// CHECK-NEXT: %[[ADD:.+]] = arith.addf %[[OUT_ARG]], %[[IN_ARG]] : f32
// CHECK-NEXT: linalg.yield %[[ADD]] : f32
// CHECK-NEXT: -> tensor<1x2x4x1xf32>
// -----
func.func @generalize_pooling_nwc_sum_f32(%input : tensor<1x16x1xf32>, %shape: tensor<2xf32>, %output: tensor<1x4x1xf32>) -> tensor<1x4x1xf32> {
%0 = linalg.pooling_nwc_sum {dilations = dense<[2]> : tensor<1xi64>, strides = dense<[4]> : tensor<1xi64>}
ins(%input, %shape : tensor<1x16x1xf32>, tensor<2xf32>) outs(%output : tensor<1x4x1xf32>) -> tensor<1x4x1xf32>
return %0: tensor<1x4x1xf32>
}
// CHECK-LABEL: @generalize_pooling_nwc_sum_f32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
// CHECK-NEXT: %[[ADD:.+]] = arith.addf %[[OUT_ARG]], %[[IN_ARG]] : f32
// CHECK-NEXT: linalg.yield %[[ADD]] : f32
// CHECK-NEXT: -> tensor<1x4x1xf32>
// -----
func.func @generalize_pooling_nhwc_sum_i32(%input : tensor<1x4x16x1xi32>, %shape: tensor<2x2xi32>, %output: tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32> {
%0 = linalg.pooling_nhwc_sum {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xi32>, tensor<2x2xi32>) outs(%output : tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32>
return %0: tensor<1x2x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_sum_i32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: i32, %[[SHAPE_ARG:.+]]: i32, %[[OUT_ARG:.+]]: i32)
// CHECK-NEXT: %[[ADD:.+]] = arith.addi %[[OUT_ARG]], %[[IN_ARG]] : i32
// CHECK-NEXT: linalg.yield %[[ADD]] : i32
// CHECK-NEXT: -> tensor<1x2x4x1xi32>
// -----
func.func @generalize_pooling_nwc_sum_i32(%input : tensor<1x16x1xi32>, %shape: tensor<2xi32>, %output: tensor<1x4x1xi32>) -> tensor<1x4x1xi32> {
%0 = linalg.pooling_nwc_sum {dilations = dense<[2]> : tensor<1xi64>, strides = dense<[4]> : tensor<1xi64>}
ins(%input, %shape : tensor<1x16x1xi32>, tensor<2xi32>) outs(%output : tensor<1x4x1xi32>) -> tensor<1x4x1xi32>
return %0: tensor<1x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nwc_sum_i32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: i32, %[[SHAPE_ARG:.+]]: i32, %[[OUT_ARG:.+]]: i32)
// CHECK-NEXT: %[[ADD:.+]] = arith.addi %[[OUT_ARG]], %[[IN_ARG]] : i32
// CHECK-NEXT: linalg.yield %[[ADD]] : i32
// CHECK-NEXT: -> tensor<1x4x1xi32>
// -----
func.func @generalize_fill_0d(%value: f64, %O: tensor<f32>) -> tensor<f32> {
%0 = linalg.fill ins(%value: f64) outs(%O : tensor<f32>) -> tensor<f32>
return %0: tensor<f32>
}
// CHECK-DAG: #[[$MAP0:.+]] = affine_map<() -> ()>
// CHECK-LABEL: @generalize_fill_0d
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP0]]]
// CHECK-SAME: iterator_types = []
// -----
func.func @generalize_fill_2d(%value: f64, %O: memref<16x32xf32>) {
linalg.fill ins(%value: f64) outs(%O : memref<16x32xf32>)
return
}
// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1) -> ()>
// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: @generalize_fill
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel"]
// -----
func.func @generalize_index(%min: f64, %max: f64, %seed: i32, %O: tensor<16x32xf32>) -> tensor<16x32xf32> {
%0 = linalg.fill_rng_2d ins(%min, %max, %seed: f64, f64, i32) outs(%O : tensor<16x32xf32>) -> tensor<16x32xf32>
return %0: tensor<16x32xf32>
}
// CHECK-LABEL: @generalize_index
// CHECK-DAG: %[[IDX0:.+]] = linalg.index 0 : index
// CHECK-DAG: %[[IDX1:.+]] = linalg.index 1 : index
// CHECK-DAG: %[[IDX0_CAST:.+]] = arith.index_cast %[[IDX0]] : index to i32
// CHECK-DAG: %[[IDX1_CAST:.+]] = arith.index_cast %[[IDX1]] : index to i32
// -----
func.func @generalize_const(%min: f64, %max: f64, %seed: i32, %O: tensor<16x32xf32>) -> tensor<16x32xf32> {
%0 = linalg.fill_rng_2d ins(%min, %max, %seed: f64, f64, i32) outs(%O : tensor<16x32xf32>) -> tensor<16x32xf32>
return %0: tensor<16x32xf32>
}
// CHECK-LABEL: @generalize_const
// CHECK-DAG: %[[CST0:.+]] = arith.constant 1103515245 : i32
// CHECK-DAG: %[[CST1:.+]] = arith.constant 12345 : i32
// CHECK-DAG: %[[CST2:.+]] = arith.constant 2.3283063999999999E-10 : f64
// -----
// Verifies the default value of the fun attribute is an exp op.
func.func @generalize_elemwise_exp(%lhs : tensor<4x8xf32>, %output : tensor<4x8xf32>) -> tensor<4x8xf32> {
%0 = linalg.elemwise_unary ins(%lhs: tensor<4x8xf32>) outs(%output: tensor<4x8xf32>) -> tensor<4x8xf32>
return %0: tensor<4x8xf32>
}
// CHECK-LABEL: @generalize_elemwise_exp
// CHECK: = math.exp
// -----
// Verifies the fun attribute controls the unary function used.
func.func @generalize_elemwise_log(%lhs : tensor<4x8xf32>, %output : tensor<4x8xf32>) -> tensor<4x8xf32> {
%0 = linalg.elemwise_unary {fun = #linalg.unary_fn<log>}
ins(%lhs: tensor<4x8xf32>) outs(%output: tensor<4x8xf32>) -> tensor<4x8xf32>
return %0: tensor<4x8xf32>
}
// CHECK-LABEL: @generalize_elemwise_log
// CHECK: = math.log
// -----
// Verifies the fun attribute controls the unary function used.
func.func @generalize_elemwise_abs(%lhs : tensor<4x8xf32>, %output : tensor<4x8xf32>) -> tensor<4x8xf32> {
%0 = linalg.elemwise_unary {fun = #linalg.unary_fn<abs>}
ins(%lhs: tensor<4x8xf32>) outs(%output: tensor<4x8xf32>) -> tensor<4x8xf32>
return %0: tensor<4x8xf32>
}
// CHECK-LABEL: @generalize_elemwise_abs
// CHECK: = math.absf
// -----
// Verifies the fun attribute controls the unary function used.
func.func @generalize_elemwise_ceil(%lhs : tensor<4x8xf32>, %output : tensor<4x8xf32>) -> tensor<4x8xf32> {
%0 = linalg.elemwise_unary {fun = #linalg.unary_fn<ceil>}
ins(%lhs: tensor<4x8xf32>) outs(%output: tensor<4x8xf32>) -> tensor<4x8xf32>
return %0: tensor<4x8xf32>
}
// CHECK-LABEL: @generalize_elemwise_ceil
// CHECK: = math.ceil
// -----
// Verifies the fun attribute controls the unary function used.
func.func @generalize_elemwise_floor(%lhs : tensor<4x8xf32>, %output : tensor<4x8xf32>) -> tensor<4x8xf32> {
%0 = linalg.elemwise_unary {fun = #linalg.unary_fn<floor>}
ins(%lhs: tensor<4x8xf32>) outs(%output: tensor<4x8xf32>) -> tensor<4x8xf32>
return %0: tensor<4x8xf32>
}
// CHECK-LABEL: @generalize_elemwise_floor
// CHECK: = math.floor
// -----
// Verifies the fun attribute controls the unary function used.
func.func @generalize_elemwise_negf(%lhs : tensor<4x8xf32>, %output : tensor<4x8xf32>) -> tensor<4x8xf32> {
%0 = linalg.elemwise_unary {fun = #linalg.unary_fn<negf>}
ins(%lhs: tensor<4x8xf32>) outs(%output: tensor<4x8xf32>) -> tensor<4x8xf32>
return %0: tensor<4x8xf32>
}
// CHECK-LABEL: @generalize_elemwise_negf
// CHECK: = arith.negf
// -----
// Verifies the default value of the fun attribute is an add op.
func.func @generalize_elemwise_add(%lhs : tensor<4x8xf32>, %rhs : tensor<4x8xf32>, %output : tensor<4x8xf32>) -> tensor<4x8xf32> {
%0 = linalg.elemwise_binary ins(%lhs, %rhs: tensor<4x8xf32>, tensor<4x8xf32>)
outs(%output: tensor<4x8xf32>) -> tensor<4x8xf32>
return %0: tensor<4x8xf32>
}
// CHECK-LABEL: @generalize_elemwise_add
// CHECK: = arith.addf
// -----
// Verifies the fun attribute controls the binary function used.
func.func @generalize_elemwise_mul(%lhs : tensor<4x8xf32>, %rhs : tensor<4x8xf32>, %output : tensor<4x8xf32>) -> tensor<4x8xf32> {
%0 = linalg.elemwise_binary {fun = #linalg.binary_fn<mul>}
ins(%lhs, %rhs: tensor<4x8xf32>, tensor<4x8xf32>)
outs(%output: tensor<4x8xf32>) -> tensor<4x8xf32>
return %0: tensor<4x8xf32>
}
// CHECK-LABEL: @generalize_elemwise_mul
// CHECK: = arith.mulf
// -----
// Verifies pointwise ops support rank zero input tensors
func.func @generalize_elemwise_rank_zero(%lhs : tensor<f32>, %rhs : tensor<f32>, %output : tensor<4x8xf32>) -> tensor<4x8xf32> {
%0 = linalg.elemwise_binary {fun = #linalg.binary_fn<sub>}
ins(%lhs, %rhs: tensor<f32>, tensor<f32>)
outs(%output: tensor<4x8xf32>) -> tensor<4x8xf32>
return %0: tensor<4x8xf32>
}
// CHECK-LABEL: @generalize_elemwise_rank_zero
// CHECK: linalg.generic
// CHECK-SAME: iterator_types = ["parallel", "parallel"]
// CHECK: = arith.subf
// -----
// Verifies the fun attribute controls the binary function used.
func.func @generalize_copy(%lhs : tensor<4x8xf32>, %output : tensor<4x8xf32>) -> tensor<4x8xf32> {
%0 = linalg.copy ins(%lhs: tensor<4x8xf32>) outs(%output: tensor<4x8xf32>) -> tensor<4x8xf32>
return %0: tensor<4x8xf32>
}
// CHECK-LABEL: @generalize_copy
// CHECK: linalg.generic
// CHECK-NEXT: ^bb0(%[[I:[0-9a-zA-Z]*]]: f32
// CHECK-NEXT: linalg.yield %[[I]]